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INTRODUCTION 

In Euclidean plane geometry

can also be defined as an equiangular quadrilateral, since equiangular means that all of its 
angles are equal (360°/4 = 90°). It can also be defined as a parallelogram containing a right 
angle. A rectangle with four sides of equal length is a 
used to refer to a non-square

 ABCD. 

The word rectangle comes from the 
(right) and angulus (angle). 

A so-called crossed rectangle
of two opposite sides of a rectangle along with the two diagonals It is a special case of an 
antiparallelogram, and its angles are not right angles. Other geometries, such as 
elliptic, and hyperbolic, have so
equal angles that are not right angles.

 Consider two numbers 2 and 7

the two  sides of a rectangle then the above equation implies that the sum  of the area  and 
perimeter may  be written as the difference of two squares. In [3]
sequence of rectangles of sides 

                                                     

 In this communication, we search an infinite sequence of rectangles of sides 
that 
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Euclidean plane geometry, a rectangle is any quadrilateral with four right angles

can also be defined as an equiangular quadrilateral, since equiangular means that all of its 
angles are equal (360°/4 = 90°). It can also be defined as a parallelogram containing a right 
angle. A rectangle with four sides of equal length is a square. The term oblong is occasionally 

square rectangle. A rectangle with vertices ABCD would be denoted as 

The word rectangle comes from the Latin rectangulus, which is a combination of 
 

crossed rectangle is a crossed (self-intersecting) quadrilateral which consists 
of two opposite sides of a rectangle along with the two diagonals It is a special case of an 

and its angles are not right angles. Other geometries, such as spherical
, have so-called rectangles with opposite sides equal in length and 

equal angles that are not right angles. 

Consider two numbers 2 and 7. Now 2 22( 2 7) (2 7) 6 2 .       If 2 and 7 are taken as 

the two  sides of a rectangle then the above equation implies that the sum  of the area  and 
perimeter may  be written as the difference of two squares. In [3] we have searched an infinite 
sequence of rectangles of sides x and y such that 

                                                     2 2( ) 2 ( ) ,x y x y x y      

In this communication, we search an infinite sequence of rectangles of sides x and 
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right angles. It 

can also be defined as an equiangular quadrilateral, since equiangular means that all of its 
angles are equal (360°/4 = 90°). It can also be defined as a parallelogram containing a right 

is occasionally 
would be denoted as 

, which is a combination of rectus 

intersecting) quadrilateral which consists 
of two opposite sides of a rectangle along with the two diagonals It is a special case of an 

spherical, 
called rectangles with opposite sides equal in length and 

If 2 and 7 are taken as 

the two  sides of a rectangle then the above equation implies that the sum  of the area  and 
we have searched an infinite 

and y such 
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                                                     2 2( ) 2 ( ) ,x y x y x y      

as a particular problem of the sum of the area and perimeter is expressed as the difference of  
the two squares of two sides x and y.  

METHOD OF ANALYSIS 

The equation to be solved is  

             2 2( ) 2 ( ) .x y x y x y      ... (1) 

Introducing the linear transformation 

                                           x = u + v, y = u – v, where u > v, … (2) 

the equation (1) becomes 

         
2 2( )( ) 2[( ) ( )] ( ) ( )u v u v u v u v u v u v           

                                         2 2 2 2 2 24 2 2u v u u v uv u v uv         

                                                2 24 4u u uv v    

                                                           2 2( 2 ) 4v u u    

                                             2 24 5 ( 2 )u u v u    

                                       2 24
5 ( 2 )

5
u u v u
 

   
 

   

By writing complete squares, we get 

                              
2

22 4
5 ( 2 )

5 25
u v u

  
     
   

  

On simplifying, we get 

                                       2 2(5 2) 4 5( 2 )u v u                   

  Putting  X = v + 2u and Y = 5u + 2 in the above equation, we obtain                        … (3) 

                                                2 24 5Y X    

                   i.e.,                     2 2 25 4 2 ,Y X       … (4) 

which is the well-known Pell’s equation whose solutions [2] are given by 

                                            1 1(9 4 5) (9 4 5)n n
nY      ,   … (5) 

                                           1 11
[(9 4 5) (9 4 5) ]

5
n n

nX      ,    … (6)   

where 9 4 5  is the fundamental solution of the Pellian 2 25 1.Y X   

In view of the equations (2), (3), the solutions [1] of (4) are given by 
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            1 11
[(9 4 5) (3 5) (9 4 5) (3 5) 6]

5
n ny         ,   …(7) 

           1 11
[(9 4 5) ( 5 1) (9 4 5) ( 5 1) 2]

5
n nx         ,    ….(8) 

where n = 0, 1, 2,…..   

The values of x and y will be in integer only when n = 2r – 1, r = 1, 2, 3,… 

For simplicity and brevity some values of x and y are presented in the following table  

                                                              Table 

S. No. Values of n Values of x Values of y 

1 1 80 48 

2 3 25632 15840 

3 5 8253296 5100816 

4 7 2657535552 1642447296 

5 9 8557181994320 28862928880 

It is noted that all the values of x and y are even. Further it is observed that the values x 
and y are satisfied the following recurrence relations: 

(i) 2 3 2 1 2 1322 128,r r rx x x       

where                2 2
2 1

1
[(9 4 5) ( 5 1) (9 4 5) ( 5 1) 2]

5
r r

rx         , r = 1, 2, 3…. 

(ii) 2 3 2 1 2 1322 384,r r ry y y      

where                 2 2
2 1

1
[(9 4 5) (3 5) (9 4 5) (3 5) 6]

5
r r

ry         , r = 1, 2, 3…. 

Proof of (i)      

Let                2 2
2 1

1
[(9 4 5) ( 5 1) (9 4 5) ( 5 1) 2]

5
r r

rx           …(9) 

The above equation (9) may be written as 

            2 2
2 1[5 2] (9 4 5) ( 5 1) (9 4 5) ( 5 1)r r

rx             . .. (10) 

  If 9 4 5 and 5 1, then we have 9 4 5 8 5, and 5 1 2A B A B           

Then the equation (10) becomes 

              2 2
2 1[5 2] ( 2) ( 8 5)r r

rx A B A B       ... (11) 

Replacing r by r +1, r + 2 successively in (11), we get  

            2 2 2 2
2 1[5 2] ( 2) ( 8 5)r r

rx A B A B 
      , ... (12) 

            2 4 2 4
2 3[5 2] ( 2) ( 8 5)r r

rx A B A B 
      .   ...  (13)  

Multiplying the equation (11) by 2A  and then subtracting from the equation (12), we get 



136 Acta Ciencia Indica, Vol. XL M, No. 2 (2014) 

 

          2 2 2 2
2 1 2 1[5 2] [5 2] ( 8 5) [ ( 8 5) ]r

r rx x A B A A A                              … (14) 

Multiplying the equation (12) by 2A  and then subtracting from the equation (13), we get  

          2 2 2 2 2
2 3 2 1[5 2] [5 2] ( 8 5) [ ( 8 5) ]r

r rx x A B A A A
                ... (15) 

Multiplying the equation (14) by 2( 8 5)A  and then subtracting from the equation (15), 

we get  

          2 2 2 2
2 3 2 1 2 1[5 2] [5 2][ ( 8 5) ] [5 2] ( 8 5) 0          r r rx x A A x A A  

2 2 2 2
2 3 2 1 2 1[5 2] [5 2][(9 4 5) (9 4 5) ] [5 2](9 4 5) (9 4 5) 0,            r r rx x x

where 9 4 5. A  

On simplifying we get, 

                    2 3 2 1 2 1[5 2] 322[5 2] [5 2] 0       r r rx x x    

                                           2 3 2 1 2 15 1610 5 640     r r rx x x   

On dividing by 5, we get  

                        2 3 2 1 2 1322 128     r r rx x x   … (16) 

This is the recurrence relation satisfied by the values of x.  

It is observed that the values of x : (80, 25632, 8253296); (25632, 8253296, 2657535552); 
and (8253296, 2657535552, 855718194320) are satisfied by the above equation (16). 

Proof of (ii)  

  Let    2 2
2 1

1
[(9 4 5) (3 5) (9 4 5) (3 5) 6]

5
       r r

ry             ... (17) 

The above equation (17) may be written as 

           2 2
2 1[5 6] (9 4 5) (3 5) (9 4 5) (3 5)       r r

ry                               … (18)  

If 9 4 5 and 3 5, then we have 9 4 5 8 5,and 3 5 2 5A B A B           

Then the equation (18) becomes    

             2 2
2 1[5 6] ( 2 5) ( 8 5)     r r

ry A B A B                                        … (19) 

  Replacing r by r +1, r + 2 successively in (19), we get  

            2 2 2 2
2 1[5 6] ( 2 5) ( 8 5) , 
     r r

ry A B A B    ... (20) 

            2 4 2 4
2 3[5 6] ( 2 5) ( 8 5) 
     r r

ry A B A B .               … (21)   

Multiplying the equation (19) by 2A  and then subtracting from the (20), we get 

             2 2 2 2
2 1 2 1[5 6] [5 6] ( 8 5) [( 8 5) ]       r

r ry y A B A A A   … (22) 

Multiplying the equation (20) by 2A  and then subtracting from the (21), we get  

           2 2 2 2 2
2 3 2 1[5 6] [5 62] ( 8 5) [( 8 5) ]
       r

r ry y A B A A A  ... (23) 
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Multiplying the equation (22) by 2( 8 5)A  and then subtracting from the equation (23), 

we get  

            2 2 2 2
2 3 2 1 2 1[5 6] [5 6][ ( 8 5) ] [5 6] ( 8 5) 0          r r ry y A A y A A  

2 2 2 2
2 3 2 1 2 1[5 6] [5 6][(9 4 5) (9 4 5) ] [5 6](9 4 5) (9 4 5) 0r r ry y y              

On simplifying we get, 

                    2 3 2 1 2 1[5 6] 322[5 6] [5 6] 0       r r ry y y  

                                          2 3 2 1 2 15 1610 5 1920    r r ry y y    

On dividing by 5, we get  

                                         2 3 2 1 2 1322 384.    r r ry y y      …(24) 

This is the recurrence relation satisfied by the values of y.  

It is observed that the values of y : (48, 15840, 5100816); (15840, 5100816, 1642447296); 
(5100816, 1642447296, 52886292880) are satisfied by the above equation (24). 

CONCLUSION 

One may search for other integral solutions of (7), and (8).  
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