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In general topology, the arbitrary intersection of open sets 
is not open and the arbitrary union of closed sets is not 
closed. These properties motivated to introduce the 
concepts of Λ-sets and V-sets in topological spaces. In this 
paper we introduce the notions of a pre*- Λ -set and a pre*-
V-set in a topological space. We study the fundamental 
properties of pre*-Λ-sets and pre*-V-sets and investigate 
the topologies defined by these families of sets. Also we 
introduce generalized pre*-Λ-sets and generalized pre*-V-
sets and characterizes their properties. 
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INTRODUCTION AND PRELIMINARIES 

In 1986, Maki [7] and Jin Han Park et al. [5] continued the work of Levine [6] and 

Dunham [3] on generalized closed sets and closure operators by introducing the notion of a 
generalized Λ-set in a topological space (X, τ) and by defining an associated closure operator, 
i.e. the  Λ-closure operator. He studied the relationship between the given topology τ and the 
topology τΛ generated by the family of generalized Λ-sets. Das and Dontchev [2] built on 
Maki’s work by introducing and studying so-called Λs-sets and Vs-sets, and also other forms 
called g.Λs-sets and g.Vs-sets. Maximilian Ganster et al. [4] studied the notions of a pre-Λ-set 
and a pre-V-set in a topological space.  

The purpose of our paper is to continue research along these directions but this time by 
using pre*-open sets. We introduce pre*-Λ-sets and pre*-V-sets in a given topological space 
and thus obtain new topologies defined by these families of sets. We also consider some of the 
fundamental properties of these new topologies. 

A subset S of a topological space (X, τ) is said to be pre-open [8] (resp.  pre*-open [9]) if 
S  int (cl (S) )(resp. S  (int*(cl(S) ), where int(S), int*(S) and cl(S) respectively denote the 
interior, g-interior and the closure of S. The complement of a pre-open set is pre-closed and 
that of pre*-open set is pre*-closed. 

The intersection of all pre-closed (resp.pre*-closed) supersets of a subset S is called the 
pre-closure (resp. pre*-closure) of S and is denoted by pcl (S) (resp. p*cl(S)). It is well known 
that a subset S is pre-closed (resp. pre*-closed) if and only if cl(int (S))  S (resp. cl*(int (S))   
 S). We shall denote the families of all pre open (resp. pre*-open, pre-closed and pre*closed) 
in a space (X, τ) by PO (X, τ) (resp. P*O (X, τ), PC (X, τ) and P*C (X, τ)). 
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In the following X and Y (or (X, τ)  and (Y, σ) will always denote topological spaces. 

No separation axioms are assumed unless stated explicitly. 

Definition 1.1. A subset S is a Λ-set (resp. a V-set) if and only if it is an intersection 
(resp. a union) of open (resp. closed) sets.  

Definition 1.2. Let S be a subset of a space (X, τ). We define subsets Λp(S) and Vp(S) as 
follows: 

   Λp(S) =  {G : S  G, G  PO (X, τ)}and 

   Vp(S) =  {D : D  S, D  PC (X, τ)}. 

Recall that a space (X, τ) is said to be pre*-T1 [10] if for each pair of distinct points x and 
y of X there exists a pre*-open set containing x but not y. Clearly a space (X, τ) is pre*-T1 if 
and only if singletons are pre*-closed. 

Recall that a subset A of a space (X, τ) is said to be generalized closed [6] (briefly g-
closed), if cl (A)  U whenever A  U and U  τ. A space (X, τ) is said to be a T1/2 space if 
every g-closed subset of X is closed.  

Recall that a space (X, τ) is called resolvable if it has two disjoint dense subsets and 
Alexandorff [1] if arbitrary intersection of open sets is open. 

PRE*- Λ –SETS AND PRE*-V-SETS 

Definition 2.1. Let S be a subset of a space (X, τ). We define subsets * p  (S) and *
pV  

(S) as follows: 

                       * p  (S) =  {G : S  G, G  P*O (X, τ)} 

and                                *
pV (S) =  {D : D  S, D  P*C (X, τ)}. 

In our first result, we summarize the fundamental properties of the sets * p  (S) and *
pV

(S). 

Lemma 2.2. For subsets S, Q and Si, I  I, of a space (X, τ) the following properties hold: 

(1)  S  * p  (S), 

(2) Q  S implies that * p  (Q)  * p  (S), 

(3) * p
*( p (S)) = * p (S), 

(4)  If S  P*O (X, τ), then S = * p  (S), 

(5) * p  ( {Si : iI}) =  *{ p  (Si)  : iI}, 

(6) * p  ( {Si : iI})  *{ p  (Si)  : iI}, 

 (7) * p  (X\ S) = X\ *
pV (S). 
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Proof:  (1)  Let x * p (S). Then there exists a pre*-open set G such that S  G and x  

G. Hence x  S and so S  * p  (S). 

(2)  Let x * p  (S). Then there exists a pre*-open set G such that S  G and x  G. By 

our assumption Q  S, Q  G  and hence x  * p  (Q). This shows (2). 

(3)   From (1) and (2), we have * p  (S)  * p  ( * p  (S)). If x  * p  (S), then there 

exists G  P*O (X, τ) such that S  G and x  G. Hence * p  (S)  G, and so we  have  

   x  * p  ( * p  (S)). Thus * p  ( * p  (S)) = * p  (S). 

(4)  It directly follows from the definition of * p  (S) and (1). 

(5) Let S =  {Si : iI}. By (2), we have that  *{ p  (Si): iI} * p  (S). If x *{ p

(Si) : i  I}, then, for each i  I, there exists Gi  P*O (X, τ) such that Si  Gi and x  Gi. If    

G = {Gi : i  I}, then G  P*O (X, τ) with S  G and x  G. Hence x  * p (S), and so (5) 

holds.  

(6)  From (2), * p  (S) * p  (Si) for each i  I where S = 

 i
i I

S  and hence   

     

* p (S)= * p  (

 i
i I

S ) * ( ).


 p i
i I

S  

(7)  Let x  * p (X\S). Then for every pre*-open set G containing X\S, x  G. Hence         

x  X\G, for every pre*-closed set X\G  S. Therefore x  *
pV (S) and hence x  X\ *

pV (S). 

Similarly, X\ *
pV (S)  * p (X\S). 

The following lemma is an immediate consequence of Lemma 2.2. 

Lemma 2.3. For subsets S, Q and Si, i  I, of a space (X, τ) the following properties hold: 

(1) *
pV (S)  S, 

(2) Q  S implies that *
pV (Q)  *

pV (S), 

(3) *
pV *( pV (S)) = *

pV (S), 

(4) If S  P*C (X, τ) then S = *
pV (S), 

(5) *
pV ( {Si : i  I}) =  *{ pV (Si) : i  I}, 

(6)  *{ pV (Si) : i  I}  *
pV ( {Si : i  I}). 

Definition 2.4.  A subset S of a space (X, τ) is called  a 
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(1) pre*-Λ-set, briefly * p -set if S = * p (S), 

(2)  pre*-V-set, briefly *
pV -set if S = *

pV (S). 

Remark 2.5. Clearly, a subset S is a * p -set (resp. a *
pV -set) if and only if it is an 

intersection (resp. a union) of pre*-open (resp. pre*-closed) sets.  

Hence Λ-sets, pre Λ-sets and pre*-open sets are * p -set, and V-sets, pre-V-sets and pre*-

closed sets are *
pV -sets. 

Observe also that a subset S is a * p -set if and only if X\S is a *
pV -set. 

Proposition 2.6. For a space (X, τ) the following statements hold: 

(1)  and X are * p -sets and *
pV -sets. 

(2) Every union of * p -sets (resp. *
pV -sets) is a * p -set (resp. *

pV -set). 

(3) Every intersection of * p -sets (resp. *
pV -sets) is a * p -set (resp. *

pV -set). 

Proof :  (1) We shall only consider the case of * p -sets. (1) is obvious. 

(2) Let{Si : i  I} be a family of * p -sets in (X, τ). Then * p (Si) = Si  for every i  I. 

If  S = {Si : i  I}, then by Lemma 2.2,  we have S =  *{ p (Si) : i  I} = * p (S).  

(3)  Let S1 =  {Si : i  I}, then by lemma 3.2(6), * p (S1) =
* p ( {Si : i  I})   *{ p

(Si) : i  I} = {Si : i  I}= S1. Also by Lemma 3.2(1), S  * p (S1). This proves (3). 

Remark 2.7. Let *
p (resp. * )Vp  denote the family of all * p -sets (resp. *

pV -sets) in    (X, 

τ). Then *
p (resp. * )Vp   is a topology on X containing all pre*-open (resp. pre*-closed) sets. 

Clearly, (X, * )p ) and (X, * )Vp  and are Alexandroff spaces.  

We now offer additional characterizations of pre*-T1 spaces. 

Theorem 2.8. For a space (X, τ) the following are equivalent: 

(1) (X, τ) is pre*-T1, 

(2) Every subset of X is a * p -set, 

(3) Every subset of X is a *
pV -set, 

(4) Every open subset of X is a *
pV -set. 

Proof:  Clearly (2)  (3). 
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(1)  (3): Let A  X. Since A =  {{x}: x  A}, A is a union of pre*closed sets, hence a 
*
pV -set. 

(3)  (4) : This is obvious. 

(4)  (1) : First observe that every singleton is open or pre*-closed. Let  x  X. If {x} is 

open, then by assumption, {x} is a *
pV -set and so pre*-closed. Hence each singleton is 

pre*closed. That is p*cl({x}) ={x}. Therefore (X, τ) is pre*-T1. 

Lemma 2.9. Let (X, τ) be a topological space and x  X. Then y  * p ({x}) if and only if 

p*cl({x}).  

Proof:  Suppose y  * p ({x}). Then for every pre*-open set G  {x}, y  G.  

If x  p*cl ({y}), then there exists H  P*C (X, τ) such that {y}  H and x  H. That 
implies x  X\H, X\H  P*O (X, τ) and y  X\H. Take X\H = G. Then G  P*O (X, τ), {x}    
 G and y  G. By this Contradiction we get, x  p*cl ({y}).  Conversely, Suppose                 

x  p*cl({y}). Then for every pre*-closed set G  {y}, x  G. If y  * p ({x}), then there 

exists H  P*O (X, τ)  such that {x}  H and y  H. Take X\H = G. Then G  P*C (X, τ),      
y  G and x  G. So there exists a pre*-closed set G  {y} such that x  G. By this 

contradiction, we get y  * p ({x}). 

Theorem 2.10. The following statements are equivalent for any points x and y in a 
topological space (X, τ) 

(1)  * p ({x})≠ * p ({y}) 

(2)  p*cl({x}) ≠ p*cl ({y}) 

Proof: (1)  (2): Let * p ({x}) ≠ * p ({y}). Then there exists z  X such that z * p  

({x}) and z  * p  ({y}) or z  * p  ({x}) and z  * p  ({y}). If we consider the first case, we 

have x  p*cl({z}), y  p*cl ({z}) by using Lemma 2.9. Since y  p*cl ({z}), there is a pre*-
closed set H such that z  H and y  H. Since x  p*cl ({z}), we have x  H. Also y  H 
and x  H implies y  p*cl ({x}). But y  p*cl ({y}), we  get p*cl ({x}) ≠ p*cl ({y}). The 
proof for the other case is similar. 

(2) (1): Suppose p*cl ({x}) ≠  p*cl  ({y}). Then there exists z  X such that z  p*cl 

({x}) and z  p*cl ({y}) or z  p*cl ({x}) and z  p*cl ({y})). Consider the case z  p*cl 

({x}) and z  p*cl ({y}). Then by Lemma 2.9, x  * p ({z}) and y  * p  ({z}). Since y  * p

({z}), there is a pre*-open set G such that z  G and y  G. Since x  * p  ({z}), x  G. Now  

y  G and x  G implies that y  * p ({x}). Thus * p  ({y}) ≠ * p  ({x}). The proof for the 

case z  p*cl ({x}) and z  p*cl ({y})) is similar.   

Lemma 2.11. Let (X, τ) be a topological space and A  P*O (X, τ). 

Then * p (A) = {x  X :  p*c l({x})  A ≠ }. 
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Proof:  Let x  * p (A). Since A  P*O (X, τ), A = * p (A). Also x  p*cl ({x}) and hence 

p*cl({x})  A ≠ . Conversely, let x  X such that p*cl ({x}  A ≠ . If x  * p (A), then 

there exists V  P*O (X, τ) such that A  V and x  V. Let y  p*cl ({x}  A. Then y  A and 

hence y  V, since A  V. Since y  p*cl ({x}), x  * p ({y}). Therefore for every pre*-open 

set G  {y} in (X, τ), x  G. In particular, x  V. This is a contradiction to x  V, so we get     

x  * p (A). 

*
p -CLOSED SETS AND ITS PROPERTIES 

Definition 3.1. (1)  Let A be a subset of a space (X, τ). Then A is called a * p -closed set 

if A = S  C where S is a * p -set and C is a closed set. 

(2)  The complement of a * p -closed set is called a * p -open set. 

(3)  The collection of all * p -open sets in (X, τ) is denoted by * p O (X, τ). 

The collection of all * p -closed sets in (X, τ) is denoted by * p C (X, τ). 

(4)  A point x  X is called a * p -cluster point of A if for every * p -open set U 

containing x, A  U ≠ . 

(5)  The set of all * p -cluster points of A is called the * p -cluster of A and is denoted by 

* p -cl(A). 

Proposition 3.2. (1)   A 
 

* p -cl(A), 

(2)  * p – cl (A) =  {F/A  F and F is * p -closed}, 

(3)  If A  B, then * p -cl (A)  * p -cl (B), 

(4)  A is * p -closed if and only if A= * p -cl(A), 

(5) * p -cl(A)= * p  -cl ( * p -cl (A)), 

(6)  * p -cl(A) is
 

* p -closed. 

Proof:  (1)   Let x 
 

* p -cl(A). Then x is not a * p -cluster poin of A. So there exists a 

* p -open set U containing x such that A  U =  and hence x  A. 

(2)   Let x  * p -cl(A). Then there exists a * p -open set U containing x such that   
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 A  U = . Take F = X\U. Then F is * p -closed, A  F and x  F and hence   x     

{F : A  F and F is * p -closed}. Similarly * p -cl(A)   {F : A  F and F is * p - closed}. 

(3)  Let x  * p -cl (B). Then there exists a * p -open set U containing x such that B  U 

= . Since A  B, A  U  B  U =  and hence x is not a * p -cluster point of A.   

Therefore x  * p -cl(A). 

(4)  Suppose A is * p -closed. Let x  A. Then x  X\A and X\A is * p -open. Take       

X\A = U. Then U is a * p -open set containing x and A  U =  and hence x  * p -cl(A). 

Therefore * p -cl (A)  A. By using (1), we get A = * p -cl(A). Conversely, suppose A= * p -

cl(A). Since A =  {F/A  F and F is * p -closed}, by using (2), we get A is * p -closed. 

(5) By using (2) and (4), we have * p -cl (A)  * p -cl( * p -cl(A)). Let x  * p -cl ( * p -

cl(A)). That implies x is a * p -cluster point of * p -cl(A).  

That implies for every * p -open set U containing x, * p -cl (A)  U ≠ . Let y * p -

cl(A)  U. Then y is a * p -cluster point of A. Therefore for every * p -open set G containing 

y, A  G ≠ . Since U is * p -open and y  U, A  U ≠  and hence x  * p -cl(A). Hence

* p -cl(A) = * p -cl( * p -cl(A).  

(6) Follows from (4) and (5). 

Remark 3.3. (1)   and X are both * p -open and * p -closed. 

(2)  By Proposition 3.2(6), * p -cl(A) is the smallest * p -closed set containing A. 

Proposition 3.4 – Arbitrary intersection of * p -closed sets is * p -closed. 

Proof:  Let A = 

 k
k I

A and x  * p -cl(A). Then x is a * p -cluster point of A. Hence for 

every * p -open set U containing x, A  U ≠ . That implies 

 k
k I

A  U ≠ . This implies 

that Ak  U ≠  for each k  I. If x  A, then for some i  I, x  Ai. Since Ai is * p -closed,  

Ai =
* p -cl(Ai) and hence x  * p -cl(Ai). Therefore x is not a * p -cluster point of Ai. So 

there exists a * p -open set V containing x such that Ai  V = . By this contradiction, x  A. 
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Therefore * p -cl(A)  A and hence A = * p -cl(A).  Therefore A is * p -closed. That is 

 k
k I

A

is * p -closed. 

Proposition 3.5. Arbitrary Union of * p -open sets is * p -open. 

Definition 3.6. Let (X, τ) be a topological space, and let A  X. Then * p -kernel of A is 

defined by * p -ker(A) =  {G/G * p O (X, τ) and A  G}. 

Let (X, τ) be a topological space and A, B be subsets of X. Let x, y  X. Then we have the 
following lemma. 

Lemma 3.7. (1)  A  * p -ker(A), 

(2)  If A  B, then * p -ker(A)  * p -ker(A), 

(3) * p -ker(A)= * p -ker ( * p -ker(A)), 

(4)  y * p -ker ({x}) if and only if x  *
p -cl({y}), 

(5)  *
p -ker(A) = {x : *

p -cl({x})  A ≠ }. 

Proof:  (1)  Let x  *
p -ker(A). Then there exists V  *

p O (X, τ), such that A  V and 

xV and hence x  A. 

(2)  Let x  *
p -ker(B). Then there exists a G  *

p O (X, τ) such that B  G and x  G. 

By our assumption A  B, A  G and hence x  *
p -ker(A). 

(3)   From (1) and (2), we have *
p -ker(A)  *

p -ker( *
p -ker(A)).  

Let x  *
p -ker(A). Then for every *

p -open set G  *
p -ker(A), x  G. Since A  *

p -

ker(A), for every *
p -open set G  A, x  G. Hence x  *

p -ker(A). Therefore *
p -ker( *

p -

ker(A)  *
p -ker(A). Hence *

p -ker(A) = *
p -ker( *

p -ker(A)). 

(4)  It directly follows from the definition of *
p  (S) and (1). 

(5) Let x  *
p -ker(A). Then for every *

p -open set GA, x  G. Suppose *
p -cl({x}) 

 A = . Then A  X\( *
p -cl({x})). Then V is a *

p -open set containing A and x  V. By 

this contradiction, we get *
p -cl({x})  A ≠ . Conversely, let x  X such that *

p -cl({x})  
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A ≠ . Let y  *
p -cl({x})  A. Then y is a *

p -cluster point of {x}. Therefore for every *
p

-open set U containing y, U  {x} ≠  and hence x  U.  

If x  *
p -ker(A), then there exists a *

p -open set V A such that x  cl({x})  A ≠ . 

(S), and so (5) holds.  

Theorem 3.8. For any points x and y in a space X, *
p -ker({x}) ≠ *

p -ker({y}) if and 

only if *
p -cl({x}) ≠ *

p -cl({y}). 

Proof : Suppose  *
p -ker({x}) *

p -ker({y}). Then there exists a point z in X such that 

z *
p -ker({x}) and z *

p -ker({y}). By Lemma 3.7(4), x *
p -cl({z}) and y *

p -

cl({z}). By Proposition 3.2(3), *
p -cl({x}) *

p  -cl({z}) and y *
p -cl({z}) which implies 

that y *
p -cl({x}). This shows that *

p -cl({x}) *
p -cl({y}).  

For the converse, suppose *
p -cl({x}) *

p -cl({y}). Then there exists a point z in X 

such that z *
p -cl({x}) and z *

p -cl({y}) which implies that by Definition 3.1(5), there  

exists a *
p -open set V containing z such that x V and y V. Thus V is a *

p -open set 

containing x but not y. If y *
p -ker({x}), then By Lemma 3.7(4), x *

p -cl({y}) and so for 

every *
p -open set G containing x, G {y} Ø, that is, y G, a contradiction. Hence y

*
p -ker({x}) and hence *

p -ker({x}) *
p -ker({y}).                                                                        

Definition 3.9. Let X be a space and x   X. Then we define a subset *
p - x  of X as 

follows :    *
p - x  = *

p -cl({x}) *
p -ker({x}). 

Proposition 3.10. Let X be a space. Then the following properties hold: 

(1) For each xX, *
p -ker ( *

p - x ) = *
p -ker({x}). 

(2) For each xX, *
p -cl( *

p - x ) = *
p -cl({x}). 

(3) If U is a *
p -open set of X and x   U, then *

p - x   U. 

(4) If F is a *
p -closed set of X and x   F, then *

p - x  F. 

Proof : (1) Let x   X. By Proposition 3.2(1) and Lemma 3.7(1), {x} *
p -cl({x}) and 

{x} *
p -ker({x}) and so by Definition 3.9, it follows that {x} *

p - x . By using Lemma 

3.7(2), *
p -ker({x}) *

p -ker( *
p - x ). For the reverse inclusion, if y *

p -ker({x}), then 



   



 



 

 

 

   


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there exists a *
p -open set V such that xV and y V. It follows that *

p - x  *
p -

ker({x}) *
p -ker(V) = V and so *

p -ker( *
p - x ) *

p -ker(V) = V. Since yV, y  *
p -

ker ( *
p - x ). 

 Consequently, *
p -ker( *

p - x ) *
p -ker({x}).  

(2) By Proposition 3.2(1) and Lemma 3.7(1), and  Definition 3.9, we have {x} *
p -

.x  Then by Proposition 3.2(3), *
p -cl({x}) *

p -cl( *
p - x ). On the other hand, by 

Definition 3.9, *
p - x  *

p -cl({x}) and so *
p -cl( *

p - x ) *
p -cl( *

p -cl({x}))= 

*
p -cl({x}).  

(3) Suppose U is a *
p -open set and xU. Then by Lemma 3.7(2), *

p -ker({x}) *
p -

ker(U) = U and so *
p - x   U.  

(4) Suppose F is *
p -closed and x  F. Then x *

p -cl({x})  F. By Definition 3.9, we 

have x *
p - x  and *

p - x  *
p -cl({x}) which implies that *

p - x  F.  

GENERALIZED PRE*-Λ-SETS 

Following the lines of investigation of Maki in [11] one could now define generalized 

pre*-Λ-sets and generalized pre*-V-sets in the following way. 

Definition 4.1. A subset S of a space (X, τ) is called 

(i)  a generalized pre*-Λ-set, briefly g-Λp*-set, if *
p  (S)  P whenever S  P and         

P  P*C (X, τ), 

(ii) a generalized pre*-V-set, briefly g-Vp*-set, if V  *
pV (S) whenever V  S and           

V  P*O (X, τ). 

Proposition 4.2. Let S be a subset of a space (X, τ). 

(i) S is a generalized pre*-Λ-set if and only if S is a pre*-Λ-set, 

(ii) S is a generalized pre*-V-set if and only if S is a pre*-V-set. 

Proof:  (i) Clearly, every pre*-Λ-set is a generalized pre*-Λ-set. Now let S be a 

generalized pre*-Λ-set. Suppose there exists x  *
p  (S)\S. Observe that {x} is open or 

pre*closed, and that S  X\{x}. If {x} is open, then X\{x} is closed, hence pre*closed, and so 
*
p  (S)  X\{x}, a contradiction to x  *

p  (S). If {x} is pre*closed, then X\{x} is pre*open 

and so *
p  (S)  X\{x}, a contradiction to x  *

p  (S). Therefore *
p  (S)\S = . And hence S 

= *
p  (S). Thus S is a pre*-Λ-set. (ii) This is proved in a similar way.  
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PROPERTIES OF PRE*-Λ-SETS AND PRE*-V-SETS 

Proposition 5.1- Let (X, τ) be a space. 

(1) (X, * )p  and (X, * )Vp  are always T1/2 spaces, 

(2) If (X, τ) is pre*-T1, then both (X, * )p  and (X, * )Vp  are discrete spaces, 

(3) The identity function i : (X, * )p
 
  (X, * )Vp  is continuous, 

(4) The identity function i : (X, * )p   (X, * )Vp  is contra-continuous. 

Proof:  (1) Let x  X. Then {x} is open or pre*closed in (X, τ). If {x} is open, then it is 

pre*open, and hence {x} * .p  If {x} is pre*closed in (X, τ), then X\{x} is pre*open and so 

X\{x} * .p  That is {x} is closed in (X, * ).p  Hence (X, * )p  and (X, * )Vp  are T1/2 spaces. 

(2) This follows from Theorem 3.8. 

(3) and (4) are obvious.  

Corollary 5.2. If (X, τ) is resolvable, then (X, *
p ) and (X, *

Vp ) are discrete. 

Proof:  We will show that (X, *
p ) is pre*-T1. Let D and E be disjoint dense subsets of  

(X,τ ), and let xX. Without loss of generality, x  D. Then X\{x} = E  (D\{x}) is dense, 
hence pre*open and so {x} is pre*closed.  

Proposition 5.3. If (X, *
p ) is connected, then (X, τ) is pre*connected, i.e. X cannot be 

Proof:  Suppose that (X, τ) is not pre*connected. Hence there exist nonempty disjoint 

pre*open sets S, T in (X, τ ) such that S  T = X. Since S and T are open in (X, *
Vp ), we have a 

contradiction. 

Observe also that (X, *
Vp ) is connected if and only if (X, *

Vp ) is connected.  

CONCLUSION 

In this paper, we have introduced the concept of pre*-Λ-sets, pre*-V-sets, generalized 

pre*-Λ-sets, generalized pre*-V-sets, *
p -sets and *

pV -sets and investigated some of their 

properties. Using these concepts, Further we characterize *
p -regular and *

p -normal spaces, 

*
p -homeomorphisms, *

p -connected and *
p -compact spaces. 
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