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This paper deals with an unsteady radial flow of a viscous 
incompressible fluid in a porous medium around a radially 
oscillating time dependent spherical surface. The 
momentum equation considered for the flow through a 
porous medium takes care of the fluid- inertia and the 
Newtonian stresses in addition to the classical Darcy’s 
friction. Expression for the pressure distribution has been 
derived in terms of the expansion rate of the sphere-radius. 
Two special cases: 

(A) r = cos t       (B)       
 

1
(1 cos )

(1 )
r t     

are discussed in detail In this ‘r’ is the radius of the surface 
of the sphere at time ‘t’ and ‘’ is the sphere radius 
oscillation parameter. The variation of the pressure for 
different values of the flow parameter ‘’ and the Darcy 
number characteristic of the medium position at different 
instants of time in each of the cases has been discussed 
and illustrated. 

 

KEYWORDS : Pressure, Darcy’s number, Porous Medium, 
Expansion factor, Radius decay- parameter. 

 

INTRODUCTION 

Studies on radial flows of a viscous fluid were  initiated  in the year 1915 by Jeffery 

G.B.  [5]   and these were followed  later by Hamael G. [4] and Harrison W. J. Such flows are 
discussed at length by Dryden H.L., Murnaghan F.D. and Batemen H. [3] in their classical 
work on Hydrodynamics. Recently Raisinghania M.D. [9] in his treatise on Fluid Dynamics 
discussed several types of  radial flows of viscous fluids  in a clear medium. 

Flows through porous media have been a subject of considerable research activity for 
over the last one and half centuries, because of their wide range of application in diverse fields 
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of science, engineering and technology.  Studies in this area were initiated in 1856 by Darcy H 
[2] based on a series of experiments on flows of slurry fluids through channels. Darcy 
formulated an empirical law for fluid flows through porous media : The  total  volume of the 
fluid percolating in unit time is proportional to the  hydraulic  head and inversely proportional 
to the distance between the inlet and  outlet .This law was later generalized by Brinkman H.C. 
[1] by , taking in to account for the stresses generated in the flow region. Later, Yamamoto K. 
and Yoshida Z. [10] further generalized the basic equations by the inclusion fluid inertia in 
addition to the Newtonian-Stresses developed in fluids in motion. Later Pattabhi 
Ramacharyulu N.Ch. [8] examined several flow problems through straight tubes of diverse 
cross sections. A general solution for an incompressible flow through porous media has been 
obtained by  Narasinhacharyulu V.  and  Pattabhi Ramachryulu N. Ch. [6]. Recently the  
present authors [7] investigated  an unsteady radial flow of  a viscous  incompressible fluid 
through a porous medium around a sphere whose  radius (r)  exponentially decreases with 
time. The present investigation is on the unsteady radial flow of viscous incompressible flow 
through a porous medium around a sphere whose surface is oscillating. A generalized 
momentum equation given by Yamamoto K. and Yoshida Z. [10] for the flows through porous 
medium has been solved for the radial flow. It is noticed that the flow is independent of a 
Newtonian viscous stresses. However the flow depends on Darcian friction. Expression for the 
pressure distribution has been obtained in terms  of  the radial velocity on the sphere- surface. 
The cases of the sphere radius  at time are 

(A)  cosr t    and   (B)  
1

(1 cos )
(1 )

r t   
 

   in  the non dimensional form 

MATHEMATICAL FORMULATION AND SOLUTION OF THE PROBLEM  

Consider a spherical co-ordinate system , ,R  f  with a origin ‘O’ fixed at the center of 

the sphere. R is the radial distance from the origin, ‘’ the polar angle, ‘f’ the azimuthal angle. 
The flow of a viscous incompressible fluid through a porous medium is governed by the 
modified  Navier-Stokes equations suggested by Yamamoto K. and Yoshida Z. [10]:  

        2d q
p q q

dt k


 

                              … (1) 

together with the  equation of  continuity 

      ( . ) 0
q

q q
t

  
  


 … (2) 

Here ‘ q


’ represents the fluid velocity and ‘p’
 
is the fluid pressure. Further 

 
is the fluid 

mass density,  is the coefficient of Newtonian of viscosity and ‘k’ is the coefficient of  

Darcian porosity of the medium  and all these coefficients  are assumed to be constants. The 

term 2 q


  on the R.H.S. of (1) represents the contribution of the Newtonian Viscous-Stress 

and q
k


  is the classical Darcy-resistance to the flow.  
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Fig. 1: Flow- Sketch 

By radial and axi-symmetries 

                                           0
q






  and    0

q





f
   … (3) 

For the  unsteady radial flow under investigation, the velocity field  can be taken as 

                                           (( , ),0,0)q U R T

  … (4) 

The continuity equation (2) now reduced to 

                                         

2

2

1 ( )
0

R U

RR





 … (5) 

Momentum equation in the Radial-direction (R) 

                                         
1U U P

U U
T R R k

    
     

     
 … (6) 

where  


 


 

Momentum equation in the  and f-direction are 

                                   0
P



 and   0

P


f
 … (7) 

It can be noted   from the equation (7) that 

(i) The pressure (P) is a function of R and T only. (i.e. independent of  and f) 

(ii) It is also independent of Newtonian viscous  stresses and 

(iii) The Newtonian viscous resistance on the porous media q
k

 
 
 

 influences the 

pressure distribution. 

For simplicity the following non dimensional quantities are introduced in the foregoing 
analysis         

      
2 2

0
0 2

0 0

; ; ; ;
R tu p

R R r U T P
R R

 
   

  

2
0R

D
k

  … (8)       
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also  where ‘D’ is the Darcy  porosity coefficient  and where  0R  is the initial radius of the 

sphere.   By definition, the radial velocity ‘u’ on the sphere of the surface is given by 

                                      
dr

u
dt

    on the sphere-surface … (9) 

The following are the basic equations in the non-dimensional form 

Continuity Equation 

                                            
2

2

1 ( )
0

r u

rr





 … (10) 

Momentum equation in the radial direction 

                                            
u u p

u Du
t r r

  
   

  
 … (11) 

From  (10), we  get 

                                           
2

( )f t
u

r
  … (12) 

It follows from (9) and (12)  that   

                                           2( )f t r u  on 1r               …(13) 

and  from (11) and (12)  we get the equation for the determination of the fluid pressure (P): 

                                        
1 2

2 5 2

( ) ( ( )) ( )
2

p f t f t f t
D

r r r r


   


                             … (14) 

this on integrating with respect to ‘r’  yields 

                                
2

2 4 2

1 1
( ( ))

2

df d f D
p p f t

dt rr r dt


 
     

 
 … (15) 

where p  in the pressure at infinity i.e. lim
r

p p


    this computed on the sphere surface 

given 

                         

22

2

3

2

d r dr dr
P r Dr

dt dtdt

    
      

    
    where  P p p         …(16) 

computed on the surface of the sphere 

Case-A: cosr t    where    the sphere radius oscillation parameter is a constant in 
this case  we get 

                           2( ) (cos )f t t    … (A.1) 

Also    2 2( (5 cos 2 2 sin 2 )) / 4P t D t         … (A.2) 

                       2( cos (2 )) / 4R t    f                                                                                                                
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with    2 225 4R D    and 1 2
tan

5

D  
  

 


              
… (A.3)  

The  maximum  and  minimum pressures  on the sphere surface are
 

2
max ( 25 4 )

4
p D

 
    
 

   and      2( 25 4 )min 4
p D

 
    
 

 … (A.4) 

maxP  is always positive and minP is positive whenever   2 225 4 .D   

RESULTS AND DISCUSSIONS 

It is noticed from the figures (A.1)-(A.8) the variation of the pressure on the spherical 

surface verses Radius-oscillation parameter () for different values of porosity parameter (D), 
the number of oscillation beats increases as Radius-oscillation parameter increases for a 
specific range of Radius-oscillation parameter. 

The variation of the pressure verses Darcy number (D). It is illustrated in figures         
(A.9-A.12) and it is noticed  that as the  Darcy number (D) increases for different  values of  
Radius-oscillation parameter ( ) the pressure gradually decreases this may be associated due 

to the increase in internal resistance in the porous medium.  

Also it is noticed from figures (A.13)-(A.16) that the variation of the pressure verses time 
(t) on the spherical surface as time increasing for different values of porosity parameter (D) 
the chaotic oscillations are noted in each of the cases stated above.  

 
Fig. (A.1). Variation of the Pressure VS Radius oscillation time for different  porosity  at time t = 0.5 
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Fig. (A.2). Variation of the Pressure VS Radius oscillation time for different porosity at time t = 1.0 

 
Fig. (A.3).  Variation of the Pressure VS Radius oscillation time for different  porosity  at time  t = 1.2 

 
Fig. (A.4).  Variation of the Pressure VS Radius oscillation time for different porosity at time  t = 1.4 
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Fig. (A.5). Variation of the Pressure VS Radius oscillation time for different porosity at time t = 1.6 

 
Fig. (A.6). Variation of the Pressure VS Radius oscillation time for different porosity at time t = 2.0 

 
Fig. (A.7). Variation of the Pressure VS Radius oscillation time for different porosity at time t = 2.5 

0 1 2 3 4 5 6 7 8 9
-500

-400

-300

-200

-100

0

100

200

300

400

500
t=1.6

Radius oscillation time() -------->

P
re

s
s
u
re

 (
p
) 

--
--

--
--

>

 

 
D=0

D=40

D=80

D=120

0 1 2 3 4 5 6 7 8 9
-600

-400

-200

0

200

400

600
t=2.0

Radius oscillation time() -------->

P
re

s
s
u
re

 (
p
) 

--
--

--
--

>

 

 
D=0

D=40

D=80

D=120

0 1 2 3 4 5 6 7 8 9
-600

-400

-200

0

200

400

600
t=2.5

Radius oscillation time( ) -------->

P
re

s
s
ur

e
 (

p
) 

--
--

--
--

>

 

 
D=0

D=40

D=80

D=120



100 Acta Ciencia Indica, Vol. XL M, No. 1 (2014) 

 

 
Fig. (A.8). Variation of the Pressure VS Radius oscillation time for different porosity at time t = 3.0 

 
Fig. (A.9). Variation of the Pressure VS Darcy number  for different  alpha at time t = 2.5 

 
Fig. (A.10). Variation of the Pressure VS Darcy number for different  alpha at time t = 3.0 

0 1 2 3 4 5 6 7 8 9
-600

-400

-200

0

200

400

600
t=3.0

Radius oscillation time() -------->

P
re

s
s
u

re
 (

p
) 

--
--

--
--

>

 

 
D=0

D=40

D=80

D=120

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
t=2.5

Darcy number (D) -------->

P
re

ss
ur

e 
(p

) 
--

--
--

--
>

 

 

=0

=.1

=.2

=.3

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
t=3.0

Darcy number (D) -------->

P
re

s
s
ur

e
 (

p)
 -

--
--

--
->

 

 

=0

=.1

=.2

=.3



Acta Ciencia Indica, Vol. XL M, No. 1 (2014) 101 

 
Fig. (A.11). Variation of the Pressure VS Time for different  porosity at  � = .5 

 
Fig. (A.12).  Variation of the Pressure VS Time for different  Darcy no at � = 1.0 

 

Fig. (A.13). Variation of the Pressure VS Time for different  Darcy no at  � = 1.2 

0 1 2 3 4 5 6 7 8 9
-15

-10

-5

0

5

10

15

20
=0.5

Time (t)-------->

P
re

ss
ur

e 
(p

) 
--

--
--

--
>

 

 
D=0

D=20

D=40

D=60

0 1 2 3 4 5 6 7 8 9
-30

-20

-10

0

10

20

30

40
=1.0

Time (t)-------->

P
re

s
s
u
re

 (
p
) 

--
--

--
--

>

 

 
D=0

D=20

D=40

D=60

0 1 2 3 4 5 6 7 8 9
-40

-30

-20

-10

0

10

20

30

40
=1.2

Time (t)-------->

P
re

s
s
u
re

 (
p
) 

--
--

--
--

>

 

 
D=0

D=20

D=40

D=60



102 Acta Ciencia Indica, Vol. XL M, No. 1 (2014) 

 

 

Fig. (A.14). Variation of the Pressure VS Time for different  Darcy no at  � = 1.6 

 
Fig. (A.15). Variation of the Pressure VS Time for different  Darcy no at time � = 2.0 

 
Fig. (A.16). Variation of the Pressure VS Time for different Darcy no at time � = 2.5 
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Case-B :           *(1 cos )
(1 cos )

(1 )

t
r r t

  
    

 
                                                                                

Here  the sphere radius oscillating from its initial value  * 1

(1 )
r 

 
 

From equation (11)  we get 

                      
* 2 2( ) ( ) (1 cos )f t r t                … (B.1) 

Also
2 2

2{ ( cos sin ) ((1.25) cos 2 (.5) sin 2 )}
4

P t D t t D t
 

             …(B.2) 

           
2 2

1 1 2 2cos( ) cos(2 )
4

R t R t
 

    f    f                  … (B.3) 

the  amplitudes 1 2,R R
 
and phase lags 1 2,f f  respectively are given by

 

   

22 4 2 2 1
1 1; tan

D
R D   
    

 
    f


  …(B.4)                                 

   2 2 2 1
2 2

2
(.5)( ) 25 2 ; tan

5

D
R D   

     f   
 

    … (B.5) 

RESULTS AND DISCUSSIONS 

It is noticed from the figures (B.1)-(B.6) the variation of the pressure on the spherical 

surface verses Radius-oscillation parameter () for different values of porosity parameter (D), 
the number of oscillation beats increases as Radius-oscillation parameter increases for a 
specific range of Radius-oscillation parameter. 

The variation of the pressure verses Darcy number (D). It is illustrated in figures        
(B.7-B.10) and it is noticed  that as the  Darcy number (D) increases for different  values of 
Radius-oscillation parameter () the pressure gradually decreases this may be associated due 
to the increase in internal resistance in the porous medium.  

 
Fig. (B.1). Variation of the Pressure VS Radius oscillation time for different porosity at  t = 1.0, 	� = .1 
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Also It is noticed from figures (B.11)-(B.16) that the variation of the pressure verses time 
(t) on the spherical surface as time increasing for different values of porosity parameter (D) 
the chaotic oscillation are noted in each of the cases stated above.  

 
Fig. (B.2). Variation of the Pressure VS Radius oscillation time different for porosity at  t = 1.0, � = .4 

 
Fig. (B.3). Variation of the Pressure VS Radius oscillation time for different porosity at  t = 1.0, � = .8 

 
Fig. (B.4). Variation of the Pressure VS Radius oscillation time for different porosity at  t = 2.0, � = .1 
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Fig. (B.5). Variation of the Pressure VS Radius oscillation time for different porosity at  t = 2.0, � = .4 

 
Fig. (B.6). Variation of the Pressure VS Radius oscillation time for different  porosity at  t = 2.0, � = .8 

 
Fig. (B.7). Variation of the Pressure VS Darcy number for different  time at   � = 2.0,	� = .1 
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Fig. (B.8). Variation of the Pressure VS Darcy number for different  time at  � = 2.0,	� = .4 

 
Fig. (B.9). Variation of the Pressure VS Time for  different porosity  at  � = 1.0,	� = .1 

 
Fig. (B.10). Variation of the Pressure VS Time for different porosity  at  � = 1.0,	� = .4 
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Fig. (B.11). Variation of the Pressure VS Time for different porosity  at  � = 1.0,	� = .8 

 
Fig. (B.12). Variation of the Pressure VS Time for different porosity  at  � = 2.0,	� = .1 

 
Fig. (B.13). Variation of the Pressure VS Time for different porosity  at  � = 2.0,	� = .4 
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Fig. (B.14). Variation of the Pressure VS Time for different porosity  at  � = 2.0,	� = .8 

 
Fig. (B.15). Variation of the Pressure VS Time for different porosity  at  � = 3.0,	� = .1 

 
Fig. (B.16). Variation of the Pressure VS Time for different porosity  at  � = 3.0,	� = .4 
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