WEAKLY aĝ-NORMAL SPACES

M. C. SHARMA

Department of Mathematics, N.R.E.C. College, Khurja – 203131 (U.P.), India

AND

POONAM SHARMA

Alpine College of Engineering, Village - Kot, NH-91, Dadri (G. B. Nagar)- 201306 (U.P.), India

RECEIVED : 19 September, 2013

The aim of this paper is to introduce a new class of normal spaces called w α \hat{g} - normal spaces by using w α \hat{g} -open sets due to Navalagi and. Patil [4] and obtained several properties of such a space. Moreover, we obtain some new characterizations and preservation theorems of w α \hat{g} -normal spaces.

2010 AMS Subject Classification: 54D15, 54C08.

KEY WORDS AND PHRASES : $w\alpha \hat{g}$ -closed, $w\alpha \hat{g}$ -open sets, $w\alpha \hat{g}$ -closed, almost $w\alpha \hat{g}$ -closed, almost gsp-closed, almost rg β -closed functions, $w\alpha \hat{g}$ -normal spaces.

INTRODUCTION

The aim of this paper is to introduce a new class of normal spaces called wag-normal spaces by using wag-open sets and obtained several properties of such a space. Navalagi and. Patil [4] introduced the concept of wag-closed sets and discuss some of their basic properties. Recently, Devamanoharan [1] introduced the concept of ρ -regular and ρ -normal spaces by using ρ -closed sets and obtained several properties of such spaces. Throughout this paper, (X, τ) , (Y, σ) spaces always mean topological spaces X, Y respectively on which no separation axioms are assumed unless explicitly stated.

Preliminaries

2.1. Definition. A subset *A* of a topological space *X* is called

- 1. α -closed [6] if cl(int(cl(A))) $\subseteq A$.
- 2. ga-closed [3] if α -cl(A) $\subseteq U$ whenever $A \subseteq U$, and U is an α -open in X.
- 3. *ags-closed* [8] if α -cl(U) $\subseteq U$ whenever $A \subset U$ and U is semi-open in X.
- 4. *aĝ*-closed [5] if $cl(U) \subseteq U$ whenever $A \subseteq U$ and U is *ags*-open in X.
- 5. *waĝ*-closed [4] if cl(int(A)) $\subseteq U$ whenever $A \subseteq U$ and U is ags-open in X.
- 6. *rg* β -closed [7] if β -cl $A \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- 7. *gsp*-closed [2] if sp-cl(U) $\subset U$ whenever $A \subset U$ and U is open in X.

43/M013

The complement of α -closed (resp. $g\alpha$ -closed, αgs -closed, αgs -closed, $w\alpha g$ -closed, $rg\beta$ closed, gsp-closed) set is said to be α -open (resp. $g\alpha$ -open, αgs -open αg -open, $w\alpha g$ -open, $rg\beta$ -closed, gsp-open) set. The intersection of all $w\alpha g$ -closed subset of X containing A is called the $w\alpha g$ -closure of A and is denoted by $w\alpha g$ -cl(A). The union of all $w\alpha g$ -open sets contained in A is called $w\alpha g$ -interior of A and is denoted by $w\alpha g$ -int(A). The family of $w\alpha g$ open (resp. $w\alpha g$ -closed) sets of a space X is denoted by $W\alpha GO(X)$ (resp. $W\alpha GC(X)$).

2.2. Remark. Every α-closed (resp. α-open) set is wag-closed (resp. wag-open) set.

Definitions stated above, we have the following diagram:

closed $\Rightarrow \alpha$ -closed $\Rightarrow \alpha \hat{g}$ -closed $\Rightarrow g\alpha$ -closed $\Rightarrow w\alpha \hat{g}$ - closed $\Rightarrow gsp$ -closed $\Rightarrow rg\beta$ -closed

However the converses of the above are not true may be seen by the following examples.

2.3. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, X\}$. Then $A = \{b\}$ is wag-closed set as well as *gsp*-closed set but not ag-closed set in X.

2.4. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then the sets $\{a\}, \{b\}$ is *gsp*-closed set but not wag-closed set in X.

2.5. Example. Let $X = \{a, b, c\}, \tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}$. Then the sets $\{a, b\}$ is $rg\beta$ -closed but not *gsp*-closed

2.6. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Then the set $\{a\}$ is wag-closed in X but not ga-closed set.

Weakly $\alpha \hat{g}$ -normal spaces

B.1. Definition. A topological space X is said to be **normal** (resp. *wag*-normal) if for every pair of disjoint closed sets A and B, there exist open (resp. wag-open) sets U and V such that $A \subset U$ and $B \subset V$.

3.2. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then $A = \{a\}$ and $B = \phi$ are disjoint closed sets, there exist disjoint open sets $U = \{a, c, d\}$ and $V = \{b\}$ such that $A \subset U$ and $B \subset V$. Hence X is normal as well as $w\alpha \hat{g}$ -normal because every open set is $w\alpha \hat{g}$ -open set.

3.3. Remark. By the definitions and examples stated above, we have the following diagram :

normal $\Rightarrow \alpha$ -normal $\Rightarrow w\alpha \hat{g}$ -normal.

3.5. Definition. A function $f: X \rightarrow Y$ is said to be

1. *waĝ*-closed if f(F) is *waĝ*-closed in Y for every closed set F of X.

2. almost wag-closed if for every regular closed set F of X, f(F) is wag-closed in Y.

3. almost gsp-closed if for every regular closed set F of X, f(F) is gsp-closed in Y.

4. almost rg\beta-closed if for every regular closed set F of X, f(F) is $rg\beta$ -closed in Y.

We have the following diagram for properties of functions:

 $w\alpha \hat{g}$ -closed \Rightarrow almost $w\alpha \hat{g}$ -closed \Rightarrow almost gsp-closed \Rightarrow almost $rg\beta$ -closed

3.6. Lemma. A subset A of a topological space X is $w\alpha \hat{g}$ -open iff $F \subseteq int(cl(A))$ whenever F is αgs -closed and $F \subseteq A$.

3.7. Theorem. A surjection $f: X \to Y$ is a almost wag-closed if and only if for each subsets *S* of *Y* and each $U \in RO(X)$ containing $f^{-1}(S)$ there exists a wag-open set *V* of *Y* such that $S \subset V$ and $f^{-1}(V) \subset U$.

Proof. Necessity. Suppose that f is almost $w\alpha \hat{g}$ -closed. Let S be a subset of Y and $U \in RO(X)$ containing $f^{-1}(S)$. If V = Y - f(X - U), then V is a $w\alpha \hat{g}$ -open set of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Sufficiency. Let F be any regular closed set of X. Then $f^{-1}(Y - f(F)) \subset X - F$ and $X - F \in RO(X)$. There exists a wag-open set V of Y such that $Y - f(F) \subset V$ and $f^{-1}(V) \subset X - F$. Therefore, we have $f(F) \supset Y - V$ and $F \subset X - f^{-1}(V) \subset f^{-1}(Y - V)$. Hence we obtain f(F) = Y - V and f(F) is wag-closed in Y. This shows that f is almost wag-closed.

3.8. Theorem. For a topological space *X*, the following are equivalent :

- (a) X is $w\alpha \hat{g}$ -normal.
- (b) For any disjoint closed sets A and B, there exist disjoint gsp-open sets U and V such that $A \subset U$ and $B \subset V$.
- (c) For any disjoint closed sets A and B, there exist disjoint $rg\beta$ -open sets U and V such that $A \subset U$ and $B \subset V$.
- (d) For any closed sets A and any open set B containing A, there exists gsp-open set U of X such that $A \subset U \subset w\alpha \hat{g}$ -cl(U) $\subset B$.
- (e) For any closed sets A and any open set B containing A, there exists $rg\beta$ -open set U of X such that $A \subset U \subset w\alpha \hat{g}$ -cl(U) $\subset B$.

Proof. (a) \Rightarrow (b), (b) \Rightarrow (c), (d) \Rightarrow (e), (c) \Rightarrow (d) and (e) \Rightarrow (a).

(a) \Rightarrow (b). Let X be a wag-normal. Let A, B be disjoint closed sets in X. By assumption, there exist disjoint wag-open sets U and V such that $A \subset U$ and $B \subset V$. Since every wag-open set is gsp-open set, U, V are gsp-open sets such that $A \subset U$ and $B \subset V$.

(b) \Rightarrow (c). Let *A*, *B* be disjoint closed sets. By assumption, there exist *gsp*-open sets *U* and *V* such that $A \subset U$ and $B \subset V$. Since every *gsp*-open set is $rg\beta$ -open set, *U*, *V* are $rg\beta$ -open sets such that $A \subset U$ and $B \subset V$.

(d) \Rightarrow (e). Let *A* be any closed set and *B* be any open set containing *A*. By assumption, there exists *gsp*-open set *U* of *X* such that $A \subset U \subset w\alpha \hat{g}$ -cl $(U) \subset B$. Since every *gsp*-open set is *rg*\beta-open set, there exists *rg*\beta-open set *U* of *X* such that $A \subset U \subset w\alpha \hat{g}$ -cl $(U) \subset B$.

(c) \Rightarrow (d). Let *A* be any closed set and *B* be any open set containing *A*. By assumption, there exist $rg\beta$ -open set *U* and *W* such that $A \subset U$ and $X - B \subset W$. By Lemma 3.6 we get, $X - B \subset w\alpha g$ -int(*W*) and $w\alpha g$ -cl(*U*) $\cap w\alpha g$ -int(*W*) = ϕ .

Hence, $A \subset U \subset w\alpha \hat{g}$ -cl $(U) \subset X - w\alpha \hat{g}$ -int $(W) \subset B$.

(e) \Rightarrow (a). If A and B be any two disjoint closed sets of X. Then $A \subset X - B$ and X - B is a open. By assumption there exist $rg\beta$ -open set G of X such that $A \subset G \subset w\alpha \hat{g}$ -cl(G) $\subset X - B$. Put $U = w\alpha \hat{g}$ -int(G), $V = X - w\alpha \hat{g}$ -cl(G). Then U and V are disjoint $w\alpha \hat{g}$ -open sets of X such that $A \subset U$ and $B \subset V$. Therefore, X is $w\alpha \hat{g}$ -normal.

3.9. Theorem. If $f: X \to Y$ is a continuous almost $w\alpha \hat{g}$ -closed surjection and X is normal space, then Y is $w\alpha \hat{g}$ -normal.

Proof. Let A and B be any two disjoint closed sets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint closed set of X. Since X is normal, there exists disjoint open set U and V such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Let G = int(cl(U)) and H = int(clV). Then G and H are disjoint regularly open sets of X such that $f^{-1}(A) \subset G$ and $f^{-1}(B) \subset H$. Set K and L are wag-open sets of Y such that, $A \subset K$ and $B \subset L$, $f^{-1}(K) \subset G$ and $f^{-1}(L) \subset H$. By **Theorem 3.7**, there exist disjoint wag-open sets K and L of Y such that, $A \subset K$ and $B \subset L$, $f^{-1}(K) \subset G$ and $f^{-1}(L) \subset H$. Since G and $f^{-1}(L) \subset H$. Since G and $f^{-1}(L) \subset H$.

3.10. Corollary. If $f: X \to Y$ is a continuous, $w\alpha \hat{g}$ -closed surjection and X is normal space, then Y is $w\alpha \hat{g}$ -normal.

Proof. Easy to verify.

3.11. Corollary. If $f: X \to Y$ is a continuous almost *gsp*-closed surjection and X is a normal space, then Y is wag-normal.

Proof. Easy to verify.

3.12 Corollary. If $f: X \to Y$ is a continuous almost $rg\beta$ -closed surjection and X is a normal space, then Y is wag-normal.

Proof. Easy to verify.

References

- 1. Devamanoharan, C., On ρ-regular spaces and ρ-normal spaces, *International Journal of Math. Archive*, **2(11)**, 2177 2183 (2011).
- Dontchev, J., On generalizing semi-pre-open sets, *Mem. Fac. Sci. Kochi. Univ. Ser. A. Math.*, Vol. 16, 35-48 (1995).
- Maki, H., Devi, R. and Balachandran, K., Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42, 13-21 (1993).
- Navalagi, G. and Patil, S. D., On weakly αĝ-closed sets, *American Journal of Math. Sci. and Appli.*, Vol. 1, No. 1, 33-37 (2013).
- 5. Navalagi, G. and Patil, S. D., On α-semi-closed sets in topology (Submitted).
- 6. Njastad, O., On some classes of nearly open sets, Pacific J. Math. 15, 961-970 (1965).
- 7. Palaniappan, Y., On regular generalised β-closed sets, *International Journal of Scientific & Engineering Research*, Volume **4**, Issue **4**, 1410-1415 April (2013).
- Rajamani, M. and Viswanathan, K., αgs-closed sets in topological spaces, Acta Ciencia Indica, Vol. XXX M, No. 3, 521-526 (2004).