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INTRODUCTION 

In [2] Foster, A.L. introduced the concept  ‘Boolean ring’.  He extended many 

properties, both ring and logical, of Boolean rings to Boolean like rings.  Swaminathan, V. [9] 
continued the study of  Boolean-like rings initiated by A.L. Foster. He investigated some 
aspects of the ideal theory of Boolean like rings  and also obtained a subdirect product 
representation of Boolean-like rings in terms  of two element fields and particular four-
element Boolean-like rings.  In [5] K. Venkateswarlu et al introduced the concept of Boolean-
like semi ring which is  a generalization of Boolean-like rings of A.L. Foster and obtained 
various properties of ideals. 

In this paper we introduce the concept of Boolean-like near ring, which  is a 
generalization of Boolean like ring.  An example of a Boolean-like near-ring, which is not a 
Boolean-like ring is given.  In section 3, it is proved  that a Boolean-like near-ring is a 
Boolean near-ring  if and only if it is a Boolean ring.  In section 4, we prove that every 
Boolean like near-ring with identity is a Boolean-like ring.  In addition we prove that if a 
Boolean-like near-ring N has no nonzero idempotent elements; then N is a zero ring.  

In section 5, we prove that  in a Boolean like near-ring N the set I of all nilpotent elements 
of N forms an ideal and N/I is a Boolean ring. Further the set J of all idempotent elements of N 
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forms a subnear-ring.  We also prove that every Boolean-like near-ring is a commutative ring.  
In section 6, we introduce the concept of special Boolean-like ring and prove that a near-ring 
is a Boolean-like near-ring if and only if  it is a special Boolean-like ring.  In addition, we 
prove that in a special Boolean-like ring R such that R2 = R, an ideal P ≠ R is maximal if and 
only if it is prime. 

Throughout the paper we consider only left near-rings.  Henceforth, by a near-ring we 
mean a left near-ring. 

PRELIMINARIES 

A (left)  near-ring is a nonempty set N together with two binary operations +  and . such 

that  (i) (N, +) is a group, (ii) (N, .)  is a semigroup and (iii) n1 (n2 + n3) = n1 n2  + n1 n3 for all  
n1,  n2, n3  N (left distributive law) [7].  If we take (n1 + n2) n3 = n1 n3 + n2 n3  instead of  (iii), 
we get a (right)  near-ring.  A (right) near ring N is called a boolean (right) near ring if n2 = n 
for all n  N [7]. D.J. Hansen and Jiang Luh [3] proved that  every  boolean (right) near-ring 
satisfies (right) weak commutative law: xyz = xzy for all x, y, z.  According to Foster, A.L. [9]  
a boolean like ring is a commutative ring with unity 1 and is of characteristic 2 with a(1 + a) 
b(1 + b) = 0 for all a, b.  As per Venkateswarlu, K. et al [5] a boolean like semiring is a (left) 
near-ring such that a + a = 0 for all a, and (ii) ab (a + b + ab) = ab for all a, b.  As per 
Subrahmanyam, N.V. [8], a boolean semiring is a (left) boolean near-ring N such that (N, +) is 
abelian.   

Throughout the paper, it will be assumed that the near-rings are (left) near-rings.                     

BASIC DEFINITIONS AND RESULTS 

We now introduce the concept of a Boolean like near-ring. 

Definition 3.1:  A  near-ring N is said to be a Boolean like  near ring if the following 
conditions hold: 

(i) a + a = 0  for all a є N (i.e., Characteristic of  N is 2) 

(ii) ab (a + b + ab) = ba,  for all a, b  N, and 

(iii) abc = acb, for all a, b, c є N. ( right weak commutative law) 

It is well  known that every Boolean ring with unity is a Boolean like ring and every 
Boolean like ring is a Boolean like  near ring. 

Following example shows that every Boolean like  near-ring, need not, in general be a 
Boolean like ring.  

Example 3.2 :  Let  N = {0, a, b, c} be the  Klein’s four group. Addition and 
multiplication are given in the following tables [3].  

   +       0      a      b      c                                             .      0        a      b       c 

   0       0      a      b      c                                             0      0       0       0      0 

   a       a      0      c      b                                             a      0       a       0      a 

    b       b      c       0     a                                                b       0       0       0       0  

    c       c      b      a      0                                                c       0        a       0       a                   
 Then N is a Boolean like near ring  but  not a Boolean like ring.  
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Let us  recall  that a near ring N is called a Boolean near ring if   a2 = a, for all a  N.  

We show that the conditions  (i) and (ii)  of def 1.1 are equivalent for boolean  near-rings. 

Theorem 3.3 :   A Boolean  near-ring N has characteristic 2 if and only if  ab (a + b + ab) 
= ba for a, b є N. 

Proof:   Hansen and Luh [3] proved that a  (left) Boolean near-ring satisfies (left) weak 
commutative law,  

i.e.,      abc = bac.      

Suppose  N has characteristic 2 then 

          ab (a + b + ab) = aba + abb + abab 

                                    = baa + abb + aabb     (by left weak commutativity  i.e., abc = bac) 

                                  = ba + ab + ab                   

                                    = ba                          (since N has characteristic 2)   

Conversly, suppose that  ab (a + b + ab) = ba,  for all a, b  N 

By taking b = a, we get that 

     aa (a + a + aa) = aa 

      aaa + aaa + aaaa  = aa    

      a + a + a = a 

      a + a = 0 

Therefore, N is of characteristic ‘2’. 

It is well known that a Booolean ring is a Boolean (left) near-ring satisfying the  right 
weak commutative  law.  The converse is proved in the following: 

Lemma 3.4 :   A  Boolean  near-ring N with right weak commutativity is a Boolean ring. 

Proof:  By [3], a  Boolean  near ring satisfies (left) weak commutative law i.e., abc = bac. 

Therefore, aba = baa = ba  by ( left) weak commutative law. 

Also, ab = aab = aba   by (right) weak commutative law.  

Therefore, ab = ba,  for all  a, b  N. 

Hence multiplication in N is commutative. 

By using two distributive laws, we have 

            (a + b) (b + a) = (a + b) b + (a + b) a 

                      = ab + bb + aa + ba               … (1) 

             (a + b) (b + a) = a (b + a) + b (b + a)  

                       = ab + aa + bb + ba    … (2) 

From (1) and (2),  

       ab + bb + aa + ba = ab + aa + bb + ba     

                       b + a = a + b 

Therefore, addition is commutative. 

Hence N is a Boolean ring.   
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By the above lemma,  we have the following: 

Corollary3.5 :  A Boolean  near-ring satisfies (right) weak commutative law if and only 
if it is a Boolean ring.  

Since  every Boolean like near-ring  satisfies the (right) weak commutative law, we get 
the following: 

Corollary 3.6 :  A Boolean  near-ring is a Boolean like near-ring if and only if it is a 
Boolean ring.  

ELEMENTARY RESULTS 

In this section, N stands for a Boolean like near-ring, unless otherwise stated. We prove 

some interesting results which are useful in proving the main theorem. 

In section 3,we mentioned that every Boolean like ring is a  Boolean like near-ring with 
identity.  We prove in  this section the converse, namely every Boolean like near ring having 
an identity element is a Boolean like ring.  

Lemma 4.1 : If  a є N, then  a2   is an idempotent. 

Proof :    By def,  ab (a + b + ab) = ba for a, b  є N.   

Substituting  b = a, we get that  aa (a + a + aa) = aa  i.e., aaaa = aa and so a4 = a2    

Therefore,  a2 = a4 = (a2)2. Thus a2  is an idempotent.  

Corollary 4.2 :  If a є N, then a is nilpotent iff  a2 = 0 

Proof :   If a is nilpotent, then ak = 0 for some  k  >  1.    

Choose an even integer  m > 1 such that am = 0. Then m = 2n, for some n ≥ 1 

Therefore   0  =  am = a2n =  (a2)n  = a2,  since a2  is an idempotent.  Converse is trivial.  

Note 4.3: Since characteristic of N is 2, addition in N is commutative.  

Lemma 4.4 :   For any a, b є N,    (a + b)2 = (a + b)2 (a2 + b2) 

Proof :   By lemma 4.1 and  by using the definition 3.1 repeatedly, we get that 

(a + b) 2 = (a + b)4 = (a + b)2 (a + b)2 = (a + b)2  [(a + b) a + (a + b) b] 

      = (a + b)2  [(a + b) a + b (a + b)] 

       = (a + b)2 [a (a + b) [a + a + b + a (a + b)] + (a + b)2 [(a + b) b [a + b + b + (a + b) b] 

      = (a + b)2 [(a + b) a [b + (a + b) a] + (a + b)2  [(a + b) b [a + (a + b) b] 

      = (a + b)2 [(a + b) ab + (a + b)2 a2] + (a + b)2  [(a + b) ba + (a + b)2 b2] 

      = (a + b)2 [(a + b) ab + (a + b)2 (a2 + b2) + (a + b) ab] 

      = (a + b)2 [(a + b)2 (a2 + b2)] 

      = (a + b)4 (a2 + b2) 

      = (a + b)2 (a2 + b2) 

Corollary 4.5 :  If a є N, then  a + a2   is nilpotent.  

Proof :   By lemmas 4.4 and 4.1  (a + a2)2 = (a + a2)2 (a2 + a4) = (a + a2)2 (a2 + a2) = 0,  

Therefore   (a + a2)   is nilpotent.  

Corollary 4.6 : If a, b  є N, then  (a + a2) (b + b2)  = 0 
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Proof :   We know that  xy (x + y + xy) = yx, for all x, y  N. 

Therefore   

           (a + a2) (b + b2) = (b + b2) (a + a2) (b + b2 + a + a2 + (b + b2) (a + a2) )  

                                      =  (b + b2)2 (a + a2) + (b + b2) (a + a2)2 + (b + b2)2 (a + a2)2  = 0,  

since  (c + c2)2 = 0, for all c  N, by corollaries 4.5 and 4.2.   

We now prove that every Boolean like near-ring with identity is a boolean like ring. 

Corollary 4.7 :   If N has the identity  1, then N is a Boolean like ring.  

Proof :   By definition, abc = acb for a, b, c є N. Then 1bc = 1cb and this implies that    
bc = cb. 

Thus multiplication is commutative.  Since the characteristic of N is 2, (N, +) is an abelian 
group. 

So, N is a commutative ring with 1.     

For  a, b є N, a (1 + a) b (1 + b) =  (a + a2) (b + b2) = 0    [by cor.4.6] 

Therefore N is a Boolean like ring.  

Corollary 4.8 :   If a and b are nilpotent elements in N, then ab = 0 

Proof :   Since a and b are nilpotent, by corollary 4.2,   a2 = 0 and b2 = 0  

Again  by corollary 4.6,  (a + a2)   (b + b2) = 0   and this implies that  ab = 0. 

Lemma 4.9 :  If N has no nonzero idempotent elements, then ab = 0  for all a, b є N 

Proof : If a є N,  then by lemma 4.1,  a2 is an idempotent. By hypothesis, a2 = 0   

Therefore a is nilpotent.  Thus, every element of N is nilpotent. Hence 

If  a, b є N, then  a and b are nilpotent elements and  by corollary 4.8, ab = 0. 

Therefore,  ab = 0  for a, b є N. 

Corollary 4.10:  If N has no nonzero idempotent elements, then N is a trivial  ring.  

MAIN THEOREM 

In this section, N stands for a Boolean like near-ring.  We prove  in the section that the 

set I of all nilpotent elements of N  is an ideal and N/I is a Boolean ring.  Main result of the 
section is  that every Boolean like near-ring is a commutative ring.   

From now onwards, we consider nontrivial near-rings.  So, by cor. 4.10, we may assume 
that N contains nonzero idempotent elements. 

We now prove the main theorem. Before that we prove some results.             

Lemma 5.1:  For any b є N, b2  is a central idempotent. 

Proof :  By lemma 4.1  b2  is an idempotent element. 

By def 3.1      ac (a + c + ac) = ca, for all a, c  N. 

Substituting    c = b2   in this equation, we get that ab2 (a + b2 + ab2) = b2a.  Then           
ab2 a + ab4 + ab2 ab2 = b2a, and by lemma 4.1, this implies that  a2 b2  + ab2 + a2b2 = b2a.  
Thus, ab2  = b2a. 
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Theorem 5.2 :  The map φ : N → N  defined by φ (a) = a2   for all a є N is a near-ring 
homomorphism. 

Proof :   For  a, b є N  φ (a + b) = (a + b)2.   

By using  lemma 4.4, lemma 5.1, def 3.1(iii) and note 4.3 

We get that   

                (a + b)2 = (a + b)2 (a2 + b2) = (a + b)2 a2 + (a + b)2 b2 

     =  a2(a + b)2 + b2 (a + b)2      

     =  a2 [(a + b) (a + b)] + b2 [(a + b) (a + b)]   

     =  a2 [(a + b) a + (a + b) b] + b2 [(a + b) a + (a + b) b) 

     =  a [a2 (a + b) + ab (a + b)] + b [ba  (a + b) + b2 (a + b)]   

     =  a [a3 + a2b + a2b + ab2] + b [ba2 + b2a + b2a + b3 ] 

     =  [a4  + a2 b2 ] + [b4 + b2 a2] 

     =  [a4  + a2 b2 + b4  + b2 a2] = a4 + b4  = a2 + b2  = φ (a) + φ (b)    

Therefore,     φ(a + b) = φ (a) + φ (b) 

Also    φ (ab) = (ab)2  = (ab) (ab) = abab = a2 b2  = φ (a) φ (b) 

Therefore  φ  is a homomorphism. 

Lemma 5.3 :  If a є N, then a can be represented uniquely as  a = n + e, where n is 
nilpotent and e is an idempotent.  

Proof : By corollaries  4.5 , 4.1 and def 3.1,  a = (a + a2) + a2  where  (a + a2)  is nilpotent  
and   a2 is an idempotent.  

Suppose  a = n + e, where n is nilpotent and e is an idempotent.  

By lemma 5.1, e is a central element. 

Then,    a2 = (n + e)2 = (n + e)2 (n2 + e2) = (n + e)2 e2 = [e (n + e)]2 = (en + e)2 

                 = (en + e) (en + e) = (en + e) en + (en + e) e = en (en + e) + e (en + e)  

         = e2n2 + e2n + e2n + e2 = e 

Therefore, e = a2.  Also, (a + a2) + a2 = n + a2  and this  implies that  a + a2 = n. 

Thus, the representation is unique. 

The following result follows from the above lemma. 

Corollary 5.4 :  If N is Boolean like near ring without nonzero nilpotent elements, then N 
is a Boolean ring. 

Theorem 5.5 : The set I of all nilpotent elements of a Boolean like near-ring N forms an 
ideal and N/I is a boolean ring.   

Proof : By  cor. 4.2, an element a є N is nilpotent iff a2 = 0. Therefore, I = {a є N/a2 = 0} 

  I = ker , where   is the near-ring homomorphism defined in  theorem 5.2.  Hence  I 
is an ideal.  Since N is a Boolean like near-ring, N/I is also a boolean like near-ring.  Further  
N/I has no nonzero nilpotent  elements. By corollary  5.4., N/I is a boolean ring. 

Corollary 5.6 :The set of all idempotent elements of N form a boolean ring.  

Proof:   By lemma 4.1, for any a є N, a2  is an  idempotent.  Therefore {a2/a є N} is the 
set of  all idempotents.  Hence {a2/a є N} =  (N), where  is the homomorphism defined in 
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theorem 5.2.  But  N/I   (N).  By theorem 5.5, N/I  is a boolean ring and so  (N) is also 
boolean ring.  

We  now prove the main theorem.  

Theorem 5.7 :  Every Boolean like near ring is a commutative ring. 

Proof :  Let N be a Boolean like near ring. 

Since (N, +) is  abelian, it suffices to prove that multiplication in N is commutative.  

Let   x, y є N.   By lemma 5.3, x  = n + e, y = m + f  where n, m are nilpotent elements and  
e, f are idempotent elements.      

Then  xy = (n + e) (m + f) = (n + e) m + (n + e) f = (n + e) m + nf + ef, since f is central.  

Similarly,  yx = (m + f) (n + e) = (m + f) n + (m + f) e  = (m + f) n + me + fe 

Clearly     ef = fe,    since e, f are central elements.  

To show  xy = yx, it suffices to show that  (n + e) m + nf = (m + f) n + me 

Consider,     (n + e) m =  m (n + e) [m + (n + e) + m (n + e)] 

      = m2 (n + e) + m (n + e)2 + m2  (n + e)2  (by def 3.1(iii)) 
                                                          = m (n + e)2,  since  m2 = 0  

                                    =  m (n2  + e2),   by  theorem 5.2      

                                    = me   

Similarly (m + f) n = nf.  Therefore (n + e) m + nf = me + nf = nf + me = (m + f) n + me. 

This completes the proof. 

According to Venkateswarlu, K., et al [5] a Boolean like semiring is a near-ring N such 
that 

 (i) a + a = 0 for all a є N,  and (ii) ab (a + b + ab) = ab for all a, b є N 

Corollary 5.8 :   Every Boolean like near-ring is a Boolean like semiring. 

Proof : If N is a Boolean like near-ring, then N is a commutative ring, by theorem 5.7 

Therefore,  ab (a + b + ab) = ba    ( by definition) 

                                           = ab   (since multiplication is commutative) 

Therefore, N is a Boolean like semiring. 

But every boolean like semiring need not, in general, be a boolean like near-ring.  This 
can be seen from the following example [5]. 

Example 5.9 :  Let K = {0, a, b, c} be the Klein’s four group operations  +   and  . are 
defined as follows:                                         

    +      0     a       b      c                                           .        0       a      b       c 

    0    0     a      b      c                                            0       0       0      0       0 

    a    a     0      c      b                                            a       0       0      a       a 

    b       b     c       0      a                                               b       0        0      b        b   

    c       c     b      a      0                                            c       0        a      b       c     

K is a Boolean like semi ring  but not a boolean like near-ring, since cab ≠  cba 

 



52 Acta Ciencia Indica, Vol. XL M, No. 1 (2014) 

 

SPECIAL BOOLEAN-LIKE RINGS  

We introduce, in the section, the concept  of a special boolean-like ring and prove that 

this concept is equivalent to the concept of a boolean like near-ring.  

Definition 6.1:  A commutative ring R is called a special boolean-like ring if  

(i) r + r  = 0 for all r є R 

(ii) Every element  a є R can be expressed  as  a = n + e, where n is a nilpotent element 
and e is an idempotent element.  

(iii) n1 n2 = 0 for all nilpotent elements  n1, n2 in R. 

Note 6.2 : (1) Every boolean ring is a special boolean ring. 

 (2)  By (ii) of the above definition, we get that every special boolean-like ring with no 
nonzero nilpotent elements is a boolean ring.  

 (3) If n is a nilpotent element of R, then by taking n1 = n2 = n in (iii) of the above 
definition  we get that n2 = 0. 

By theorem 5.6, lemma 5.4 and corollary 6.8, we get the following  

Theorem 6.3:   Every Boolean – like  near-ring is a special Boolean-like ring.  

We now prove the converse of the above result  

Theorem 6.4 :  Every special Boolean-like ring is a Boolean-like near-ring.  

Proof :   Let R be a special Boolean-like ring.  To prove the theorem, it suffices to prove 
that xy (x + y + xy) = yx for all x, y є R. If x, y є R, then by definition, x = n + e, y = m + f 
where n, m are nilpotent elements and e, f are idempotents. Since the characteristic of R is 2,   

x + x2 = (n + e) + (n + e)2 = (n + e) + (n2 + e2) = (n + e) + e = n, as n2 = 0 by note 6.2 (2),    

Similarly, one can prove that   y + y 2 = m. 

Hence  (x + x2) (y + y2) = mn = 0,  by (iii)  of the definition 6.1 and this implies that              
xy + xy2 + x2y +  x2y2 = 0 

  xy2 + x2y + x2y2 = xy = yx, since R is commutative 

  xy (x + y + xy) = yx. 

This completes the proof.  

By combining the above two theorems, we get the following. 

Theorem 6.5 : Let N be a  near-ring.  Then N is a boolean like near-ring if and only if N 
is a special boolean-like ring. 

Corollary 6.6 : If a special boolean –like ring R has the identity 1 then  it is a boolean-
like ring. 

Proof :  By the theorem 6.4, R  is a Boolean like near-ring. Since R has 1, the result 
follows  by Corollary  4.7.    

By  (III theorem  2.19.11) we have the following. 

Theorem 6.7 : If R  is a special Boolean-like ring such that R2 = R, then every maximal 
ideal in R is prime. 

We now prove the converse.  Before that, we prove a lemma. 
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Lemma 6.8 :  Let B be a Boolean ring  ≠ (0).  If B has no nonzero zero divisors, then B is 
a field. 

Proof :  Let u ≠ 0 be an arbitrary but a fixed element in B.  For  any r  B, x (r + ur) = 0.  

By hypothesis, r + ur = 0, i.e., ur = r.  Thus, u is the identity element in B, which we 
denote by 1. 

For a  B,  a (1 + a) = 0 and hence either a = 0 or a = 1. 

 B = {0, 1} is a two element field.  

Theorem 6.9: Let R be a special Boolean-like ring. If P is a prime ideal in R  such that    
P ≠ R, then P is a maximal ideal.  

Proof : Since P is a prime ideal, R/P has no nonzero zero divisors, since (x + P) (y + P) = 
P 

 xy + P = P 

 xy  P   x  P or y  P   x + P = P or y + P = P. 

Since R is a special Boolean like ring, R/P is also a special Boolean-like ring.  By note 
6.2(1) R/P is a Boolean ring.  By lemma 6.8, R/P is a field. Thus, P is a maximal ideal of R. 

By combining the above two theorems, we get the following. 

Theorem 6.10 :   Let R be a special Boolean-like ring  such that R2 = R.  Then an ideal    
P ≠ R is  maximal in R if and only if P is prime in R.  
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