BOOLEAN LIKE NEAR RINGS

Ms. K. PUSHPALATHA

Andhra Loyola Institute of Engineering \& Technology, Vijayawada -08 (A.P.), India
AND
Prof. Y.V. REDDY
Retd. Professor of ANU, Guntur (A.P.) India
RECEIVED : 20 September, 2013

Abstract

The concepts of Boolean like near-ring and special boolean like ring are introduced. It is shown that these two concepts are equivalent. An example of a Boolean like near ring which is not a Boolean like ring is furnished. It is also shown that a special boolean like ring with identity is a boolean like ring and conversly. It is proved that the set I of all nilpotent elements in a boolean like near-ring N is an ideal and N / I is a boolean ring. Finally it is proved that a proper ideal in a special boolean-like ring R with $R^{2}=R$ is maximal if and only if it is prime. In addition, some interesting results are proved.

AMS Mathematics Subject Classification (2000):16A76;

secondary 06E20, 16A30, 16A32

KEYWORDS: Boolean like near ring, Boolean near-ring, Special Boolean like ring, Boolean like ring, Boolean like semiring, Left (right) weak commutativity.

Introduction

In [2] Foster, A.L. introduced the concept 'Boolean ring'. He extended many properties, both ring and logical, of Boolean rings to Boolean like rings. Swaminathan, V. [9] continued the study of Boolean-like rings initiated by A.L. Foster. He investigated some aspects of the ideal theory of Boolean like rings and also obtained a subdirect product representation of Boolean-like rings in terms of two element fields and particular fourelement Boolean-like rings. In [5] K. Venkateswarlu et al introduced the concept of Booleanlike semi ring which is a generalization of Boolean-like rings of A.L. Foster and obtained various properties of ideals.

In this paper we introduce the concept of Boolean-like near ring, which is a generalization of Boolean like ring. An example of a Boolean-like near-ring, which is not a Boolean-like ring is given. In section 3, it is proved that a Boolean-like near-ring is a Boolean near-ring if and only if it is a Boolean ring. In section 4, we prove that every Boolean like near-ring with identity is a Boolean-like ring. In addition we prove that if a Boolean-like near-ring N has no nonzero idempotent elements; then N is a zero ring.

In section 5, we prove that in a Boolean like near-ring N the set I of all nilpotent elements of N forms an ideal and N / I is a Boolean ring. Further the set J of all idempotent elements of N
forms a subnear-ring. We also prove that every Boolean-like near-ring is a commutative ring. In section 6, we introduce the concept of special Boolean-like ring and prove that a near-ring is a Boolean-like near-ring if and only if it is a special Boolean-like ring. In addition, we prove that in a special Boolean-like ring R such that $R^{2}=R$, an ideal $P \neq R$ is maximal if and only if it is prime.

Throughout the paper we consider only left near-rings. Henceforth, by a near-ring we mean a left near-ring.

Preliminaries

A (left) near-ring is a nonempty set N together with two binary operations + and . such that (i) $(N,+)$ is a group, (ii) $(N,$.$) is a semigroup and (iii) n_{1}\left(n_{2}+n_{3}\right)=n_{1} n_{2}+n_{1} n_{3}$ for all $n_{1}, n_{2}, n_{3} \in N$ (left distributive law) [7]. If we take $\left(n_{1}+n_{2}\right) n_{3}=n_{1} n_{3}+n_{2} n_{3}$ instead of (iii), we get a (right) near-ring. A (right) near ring N is called a boolean (right) near ring if $n^{2}=n$ for all $n \in N$ [7]. D.J. Hansen and Jiang Luh [3] proved that every boolean (right) near-ring satisfies (right) weak commutative law: $x y z=x z y$ for all x, y, z. According to Foster, A.L. [9] a boolean like ring is a commutative ring with unity 1 and is of characteristic 2 with $a(1+a)$ $b(1+b)=0$ for all a, b. As per Venkateswarlu, K. et al [5] a boolean like semiring is a (left) near-ring such that $a+a=0$ for all a, and (ii) $a b(a+b+a b)=a b$ for all a, b. As per Subrahmanyam, N.V. [8], a boolean semiring is a (left) boolean near-ring N such that $(N,+)$ is abelian.

Throughout the paper, it will be assumed that the near-rings are (left) near-rings.

Basic definitions and results

We now introduce the concept of a Boolean like near-ring.
Definition 3.1: A near-ring N is said to be a Boolean like near ring if the following conditions hold:
(i) $a+a=0$ for all $a \in N$ (i.e., Characteristic of N is 2)
(ii) $a b(a+b+a b)=b a$, for all $a, b \in N$, and
(iii) $a b c=a c b$, for all $a, b, c \in N$. (right weak commutative law)

It is well known that every Boolean ring with unity is a Boolean like ring and every Boolean like ring is a Boolean like near ring.

Following example shows that every Boolean like near-ring, need not, in general be a Boolean like ring.

Example 3.2 : Let $N=\{0, a, b, c\}$ be the Klein's four group. Addition and multiplication are given in the following tables [3].

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

.			a	b	c
0	0	0	0	0	
a	0	a	0	a	
b		0	0	0	0
c	0		a	0	a

Then N is a Boolean like near ring but not a Boolean like ring.

Let us recall that a near ring N is called a Boolean near ring if $a^{2}=a$, for all $a \in N$.
We show that the conditions (i) and (ii) of def 1.1 are equivalent for boolean near-rings.
Theorem 3.3: A Boolean near-ring N has characteristic 2 if and only if $a b(a+b+a b)$ $=b a$ for $a, b \in N$.

Proof: Hansen and Luh [3] proved that a (left) Boolean near-ring satisfies (left) weak commutative law,
i.e.,

$$
a b c=b a c .
$$

Suppose N has characteristic 2 then

$$
\begin{aligned}
a b(a+b+a b) & =a b a+a b b+a b a b & & \\
& =b a a+a b b+a a b b & & \text { (by left weak commutativity i.e., } a b c=b a c) \\
& =b a+a b+a b & & \\
& =b a & & \text { (since } N \text { has characteristic } 2)
\end{aligned}
$$

Conversly, suppose that $a b(a+b+a b)=b a$, for all $a, b \in N$
By taking $b=a$, we get that

$$
\begin{aligned}
& a a(a+a+a a)=a a \\
\Rightarrow & a a a+a a a+a a a a=a a \\
\Rightarrow & a+a+a=a \\
\Rightarrow & a+a=0
\end{aligned}
$$

Therefore, N is of characteristic ' 2 '.
It is well known that a Booolean ring is a Boolean (left) near-ring satisfying the right weak commutative law. The converse is proved in the following:

Lemma 3.4 : A Boolean near-ring N with right weak commutativity is a Boolean ring.
Proof: By [3], a Boolean near ring satisfies (left) weak commutative law i.e., abc=bac.
Therefore, $a b a=b a a=b a$ by (left) weak commutative law.
Also, $a b=a a b=a b a$ by (right) weak commutative law.
Therefore, $a b=b a$, for all $a, b \in N$.
Hence multiplication in N is commutative.
By using two distributive laws, we have

$$
\begin{align*}
(a+b)(b+a) & =(a+b) b+(a+b) \mathrm{a} \\
& =a b+b b+a a+b a \tag{1}\\
(a+b)(b+a) & =a(b+a)+b(b+a) \\
& =a b+a a+b b+b a \tag{2}
\end{align*}
$$

From (1) and (2),

$$
\begin{aligned}
& & a b+b b+a a+b a & =a b+a a+b b+b a \\
\Rightarrow \quad & & b+a & =a+b
\end{aligned}
$$

Therefore, addition is commutative.
Hence N is a Boolean ring.

By the above lemma, we have the following:
Corollary3.5 : A Boolean near-ring satisfies (right) weak commutative law if and only if it is a Boolean ring.

Since every Boolean like near-ring satisfies the (right) weak commutative law, we get the following:

Corollary 3.6 : A Boolean near-ring is a Boolean like near-ring if and only if it is a Boolean ring.

Elementary results

.some interesting results which are useful in proving the main theorem.

In section 3, we mentioned that every Boolean like ring is a Boolean like near-ring with identity. We prove in this section the converse, namely every Boolean like near ring having an identity element is a Boolean like ring.

Lemma 4.1 : If $a \in N$, then a^{2} is an idempotent.
Proof : By def, $a b(a+b+a b)=b a$ for $a, b \in N$.
Substituting $b=a$, we get that $a a(a+a+a a)=a a$ i.e., $a a a a=a a$ and so $a^{4}=a^{2}$
Therefore, $a^{2}=a^{4}=\left(a^{2}\right)^{2}$. Thus a^{2} is an idempotent.
Corollary 4.2: If $a \in N$, then a is nilpotent iff $a^{2}=0$
Proof: If a is nilpotent, then $a^{k}=0$ for some $k>1$.
Choose an even integer $m>1$ such that $a^{m}=0$. Then $m=2 n$, for some $n \geq 1$
Therefore $0=a^{m}=a^{2 n}=\left(a^{2}\right)^{n}=a^{2}$, since a^{2} is an idempotent. Converse is trivial.
Note 4.3: Since characteristic of N is 2, addition in N is commutative.
Lemma 4.4 : For any $a, b \in N, \quad(a+b)^{2}=(a+b)^{2}\left(a^{2}+b^{2}\right)$
Proof : By lemma 4.1 and by using the definition 3.1 repeatedly, we get that

$$
\begin{aligned}
(a+b)^{2} & =(a+b)^{4}=(a+b)^{2}(a+b)^{2}=(a+b)^{2}[(a+b) a+(a+b) b] \\
& =(a+b)^{2}[(a+b) a+b(a+b)] \\
& =(a+b)^{2}\left[a(a+b)[a+a+b+a(a+b)]+(a+b)^{2}[(a+b) b[a+b+b+(a+b) b]\right. \\
& =(a+b)^{2}\left[(a+b) a[b+(a+b) a]+(a+b)^{2}[(a+b) b[a+(a+b) b]\right. \\
& =(a+b)^{2}\left[(a+b) a b+(a+b)^{2} a^{2}\right]+(a+b)^{2}\left[(a+b) b a+(a+b)^{2} b^{2}\right] \\
& =(a+b)^{2}\left[(a+b) a b+(a+b)^{2}\left(a^{2}+b^{2}\right)+(a+b) a b\right] \\
& =(a+b)^{2}\left[(a+b)^{2}\left(a^{2}+b^{2}\right)\right] \\
& =(a+b)^{4}\left(a^{2}+b^{2}\right) \\
& =(a+b)^{2}\left(a^{2}+b^{2}\right)
\end{aligned}
$$

Corollary 4.5: If $a \in N$, then $a+a^{2}$ is nilpotent.
Proof: By lemmas 4.4 and $4.1\left(a+a^{2}\right)^{2}=\left(a+a^{2}\right)^{2}\left(a^{2}+a^{4}\right)=\left(a+a^{2}\right)^{2}\left(a^{2}+a^{2}\right)=0$,
Therefore $\left(a+a^{2}\right)$ is nilpotent.
Corollary 4.6 : If $a, b \in N$, then $\left(a+a^{2}\right)\left(b+b^{2}\right)=0$

Proof: We know that $x y(x+y+x y)=y x$, for all $x, y \in N$.
Therefore

$$
\begin{aligned}
\left(a+a^{2}\right)\left(b+b^{2}\right) & =\left(b+b^{2}\right)\left(a+a^{2}\right)\left(b+b^{2}+a+a^{2}+\left(b+b^{2}\right)\left(a+a^{2}\right)\right) \\
& =\left(b+b^{2}\right)^{2}\left(a+a^{2}\right)+\left(b+b^{2}\right)\left(a+a^{2}\right)^{2}+\left(b+b^{2}\right)^{2}\left(a+a^{2}\right)^{2}=0
\end{aligned}
$$

since $\left(c+c^{2}\right)^{2}=0$, for all $c \in N$, by corollaries 4.5 and 4.2.
We now prove that every Boolean like near-ring with identity is a boolean like ring.
Corollary 4.7 : If N has the identity 1 , then N is a Boolean like ring.
Proof : By definition, $a b c=a c b$ for $a, b, c \in N$. Then $1 b c=1 c b$ and this implies that $b c=c b$.

Thus multiplication is commutative. Since the characteristic of N is $2,(N,+)$ is an abelian group.

So, N is a commutative ring with 1 .
For $\quad a, b \in N, a(1+a) b(1+b)=\left(a+a^{2}\right)\left(b+b^{2}\right)=0 \quad$ [by cor.4.6]
Therefore N is a Boolean like ring.
Corollary 4.8 : If a and b are nilpotent elements in N, then $a b=0$
Proof : Since a and b are nilpotent, by corollary 4.2, $a^{2}=0$ and $b^{2}=0$
Again by corollary 4.6, $\left(a+a^{2}\right)\left(b+b^{2}\right)=0$ and this implies that $a b=0$.
Lemma 4.9: If N has no nonzero idempotent elements, then $a b=0$ for all $a, b \in N$
Proof: If $a \in N$, then by lemma 4.1, a^{2} is an idempotent. By hypothesis, $a^{2}=0$
Therefore a is nilpotent. Thus, every element of N is nilpotent. Hence
If $a, b \in N$, then a and b are nilpotent elements and by corollary $4.8, a b=0$.
Therefore, $a b=0$ for $a, b \in N$.
Corollary 4.10: If N has no nonzero idempotent elements, then N is a trivial ring.

Main theorem

In this section, N stands for a Boolean like near-ring. We prove in the section that the set I of all nilpotent elements of N is an ideal and N / I is a Boolean ring. Main result of the section is that every Boolean like near-ring is a commutative ring.

From now onwards, we consider nontrivial near-rings. So, by cor. 4.10, we may assume that N contains nonzero idempotent elements.

We now prove the main theorem. Before that we prove some results.
Lemma 5.1: For any $b \in N, b^{2}$ is a central idempotent.
Proof : By lemma $4.1 b^{2}$ is an idempotent element.
By def 3.1 $a c(a+c+a c)=c a$, for all $a, c \in N$.
Substituting $c=b^{2}$ in this equation, we get that $a b^{2}\left(a+b^{2}+a b^{2}\right)=b^{2} a$. Then $a b^{2} a+a b^{4}+a b^{2} a b^{2}=\mathrm{b}^{2} a$, and by lemma 4.1, this implies that $a^{2} b^{2}+a b^{2}+a^{2} b^{2}=b^{2} a$. Thus, $a b^{2}=b^{2} a$.

Theorem 5.2 : The map $\varphi: N \rightarrow N$ defined by $\varphi(a)=a^{2}$ for all $a \in N$ is a near-ring homomorphism.

Proof : For $a, b \in N \varphi(a+b)=(a+b)^{2}$.
By using lemma 4.4, lemma 5.1, def 3.1(iii) and note 4.3
We get that

$$
\begin{aligned}
(a+b)^{2} & =(a+b)^{2}\left(a^{2}+b^{2}\right)=(a+b)^{2} a^{2}+(a+b)^{2} b^{2} \\
& =a^{2}(a+b)^{2}+b^{2}(a+b)^{2} \\
& =a^{2}[(a+b)(a+b)]+b^{2}[(a+b)(a+b)] \\
& =a^{2}[(a+b) a+(a+b) b]+b^{2}[(a+b) a+(a+b) b) \\
& =a\left[a^{2}(a+b)+a b(a+b)\right]+b\left[b a(a+b)+b^{2}(a+b)\right] \\
& =a\left[a^{3}+a^{2} b+a^{2} b+a b^{2}\right]+b\left[b a^{2}+b^{2} a+b^{2} a+b^{3}\right] \\
& =\left[a^{4}+a^{2} b^{2}\right]+\left[b^{4}+b^{2} a^{2}\right] \\
& =\left[a^{4}+a^{2} b^{2}+b^{4}+b^{2} a^{2}\right]=a^{4}+b^{4}=a^{2}+b^{2}=\varphi(a)+\varphi(b)
\end{aligned}
$$

Therefore, $\quad \varphi(a+b)=\varphi(a)+\varphi(b)$
Also $\varphi(a b)=(a b)^{2}=(a b)(a b)=a b a b=a^{2} b^{2}=\varphi(a) \varphi(b)$
Therefore φ is a homomorphism.
Lemma 5.3 : If $a \in N$, then a can be represented uniquely as $a=n+e$, where n is nilpotent and e is an idempotent.

Proof : By corollaries $4.5,4.1$ and def $3.1, a=\left(a+a^{2}\right)+a^{2}$ where $\left(a+a^{2}\right)$ is nilpotent and a^{2} is an idempotent.

Suppose $a=n+e$, where n is nilpotent and e is an idempotent.
By lemma 5.1, e is a central element.
Then, $\quad a^{2}=(n+e)^{2}=(n+e)^{2}\left(n^{2}+e^{2}\right)=(n+e)^{2} e^{2}=[e(n+e)]^{2}=(e n+e)^{2}$

$$
\begin{aligned}
& =(e n+e)(e n+\mathrm{e})=(e n+e) e n+(e n+e) e=e n(e n+e)+e(e n+e) \\
& =e^{2} n^{2}+e^{2} n+e^{2} n+e^{2}=e
\end{aligned}
$$

Therefore, $e=a^{2}$. Also, $\left(a+a^{2}\right)+a^{2}=n+a^{2}$ and this implies that $a+a^{2}=n$.
Thus, the representation is unique.
The following result follows from the above lemma.
Corollary 5.4 : If N is Boolean like near ring without nonzero nilpotent elements, then N is a Boolean ring.

Theorem 5.5 : The set I of all nilpotent elements of a Boolean like near-ring N forms an ideal and N / I is a boolean ring.

Proof : By cor. 4.2, an element $a \in N$ is nilpotent iff $a^{2}=0$. Therefore, $I=\left\{a \in N / a^{2}=0\right\}$
$\Rightarrow I=\operatorname{ker} \varphi$, where φ is the near-ring homomorphism defined in theorem 5.2. Hence I is an ideal. Since N is a Boolean like near-ring, N / I is also a boolean like near-ring. Further N / I has no nonzero nilpotent elements. By corollary 5.4., N / I is a boolean ring.

Corollary 5.6 :The set of all idempotent elements of N form a boolean ring.
Proof: By lemma 4.1, for any $a \in N, a^{2}$ is an idempotent. Therefore $\left\{a^{2} / a \in N\right\}$ is the set of all idempotents. Hence $\left\{a^{2} / a \in N\right\}=\varphi(N)$, where φ is the homomorphism defined in
theorem 5.2. But $N / I \cong \varphi(N)$. By theorem 5.5, N/I is a boolean ring and so $\varphi(N)$ is also boolean ring.

We now prove the main theorem.
Theorem 5.7 : Every Boolean like near ring is a commutative ring.
Proof : Let N be a Boolean like near ring.
Since $(N,+)$ is abelian, it suffices to prove that multiplication in N is commutative.
Let $x, y \in N$. By lemma 5.3, $x=n+e, y=m+f$ where n, m are nilpotent elements and e, f are idempotent elements.

Then $x y=(n+e)(m+f)=(n+e) m+(n+e) f=(n+e) m+n f+e f$, since f is central.
Similarly, $y x=(m+f)(n+e)=(m+f) n+(m+f) e=(m+f) n+m e+f e$
Clearly $\quad e f=f e, \quad$ since e, f are central elements.
To show $x y=y x$, it suffices to show that $(n+e) m+n f=(m+f) n+m e$
Consider, $\quad(n+e) m=m(n+e)[m+(n+e)+m(n+e)]$

$$
\begin{aligned}
& =m^{2}(n+e)+m(n+e)^{2}+m^{2}(n+e)^{2}(\text { by def } 3.1(\text { iii })) \\
& =m(n+e)^{2}, \text { since } m^{2}=0 \\
& =m\left(n^{2}+e^{2}\right), \text { by theorem } 5.2 \\
& =m e
\end{aligned}
$$

Similarly $(m+f) n=n f$. Therefore $(n+e) m+n f=m e+n f=n f+m e=(m+f) n+m e$.
This completes the proof.
According to Venkateswarlu, K., et al [5] a Boolean like semiring is a near-ring N such that
(i) $a+a=0$ for all $a \in N$, and (ii) $a b(a+b+a b)=a b$ for all $a, b \in N$

Corollary 5.8 : Every Boolean like near-ring is a Boolean like semiring.
Proof : If N is a Boolean like near-ring, then N is a commutative ring, by theorem 5.7
Therefore, $a b(a+b+a b)=b a \quad($ by definition $)$
$=a b \quad$ (since multiplication is commutative)
Therefore, N is a Boolean like semiring.
But every boolean like semiring need not, in general, be a boolean like near-ring. This can be seen from the following example [5].

Example 5.9 : Let $K=\{0, a, b, c\}$ be the Klein's four group operations + and . are defined as follows:

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

.	0	a	b	c								
0	0	0	0	0								
a	0	0	a	a								
	b	0							0		b	b
c	0		a	b	c							

K is a Boolean like semi ring but not a boolean like near-ring, since $c a b \neq c b a$

Special boolean-luke rings

We introduce, in the section, the concept of a special boolean-like ring and prove that this concept is equivalent to the concept of a boolean like near-ring.

Definition 6.1: A commutative ring R is called a special boolean-like ring if
(i) $r+r=0$ for all $r \in R$
(ii) Every element $a \in R$ can be expressed as $a=n+e$, where n is a nilpotent element and e is an idempotent element.
(iii) $\quad n_{1} n_{2}=0$ for all nilpotent elements n_{1}, n_{2} in R.

Note 6.2 : (1) Every boolean ring is a special boolean ring.
(2) By (ii) of the above definition, we get that every special boolean-like ring with no nonzero nilpotent elements is a boolean ring.
(3) If n is a nilpotent element of R, then by taking $n_{1}=n_{2}=n$ in (iii) of the above definition we get that $n^{2}=0$.

By theorem 5.6, lemma 5.4 and corollary 6.8, we get the following
Theorem 6.3: Every Boolean - like near-ring is a special Boolean-like ring.
We now prove the converse of the above result
Theorem 6.4 : Every special Boolean-like ring is a Boolean-like near-ring.
Proof : Let R be a special Boolean-like ring. To prove the theorem, it suffices to prove that $x y(x+y+x y)=y x$ for all $x, y \in R$. If $x, y \in R$, then by definition, $x=n+e, y=m+f$ where n, m are nilpotent elements and e, f are idempotents. Since the characteristic of R is 2 ,
$x+x^{2}=(n+e)+(n+e)^{2}=(n+e)+\left(n^{2}+e^{2}\right)=(n+e)+e=n$, as $n^{2}=0$ by note $6.2(2)$,
Similarly, one can prove that $y+y^{2}=m$.
Hence $\left(x+x^{2}\right)\left(y+y^{2}\right)=m n=0$, by (iii) of the definition 6.1 and this implies that $x y+x y^{2}+x^{2} y+x^{2} y^{2}=0$
$\Rightarrow x y^{2}+x^{2} y+x^{2} y^{2}=x y=y x$, since R is commutative
$\Rightarrow x y(x+y+x y)=y x$.
This completes the proof.
By combining the above two theorems, we get the following.
Theorem 6.5 : Let N be a near-ring. Then N is a boolean like near-ring if and only if N is a special boolean-like ring.

Corollary 6.6 : If a special boolean -like ring R has the identity 1 then it is a booleanlike ring.

Proof: By the theorem 6.4, R is a Boolean like near-ring. Since R has 1 , the result follows by Corollary 4.7.

By (III theorem 2.19.11) we have the following.
Theorem 6.7 : If R is a special Boolean-like ring such that $R^{2}=R$, then every maximal ideal in R is prime.

We now prove the converse. Before that, we prove a lemma.

Lemma 6.8 : Let B be a Boolean ring $\neq(0)$. If B has no nonzero zero divisors, then B is a field.

Proof : Let $u \neq 0$ be an arbitrary but a fixed element in B. For any $r \in B, x(r+u r)=0$.
By hypothesis, $r+u r=0$, i.e., $u r=r$. Thus, u is the identity element in B, which we denote by 1 .

For $a \in B, a(1+a)=0$ and hence either $a=0$ or $a=1$.
$\therefore B=\{0,1\}$ is a two element field.
Theorem 6.9: Let R be a special Boolean-like ring. If P is a prime ideal in R such that $P \neq R$, then P is a maximal ideal.

Proof : Since P is a prime ideal, R / P has no nonzero zero divisors, since $(x+P)(y+P)=$ P
$\Rightarrow x y+P=P$
$\Rightarrow x y \in P \Rightarrow x \in P$ or $y \in P \Rightarrow x+P=P$ or $y+P=P$.
Since R is a special Boolean like ring, R / P is also a special Boolean-like ring. By note 6.2(1) R / P is a Boolean ring. By lemma $6.8, R / P$ is a field. Thus, P is a maximal ideal of R.

By combining the above two theorems, we get the following.
Theorem 6.10 : Let R be a special Boolean-like ring such that $R^{2}=R$. Then an ideal $P \neq R$ is maximal in R if and only if P is prime in R.

References

1. Clay, James R. and Lawver, Donald, A., Boolean near-rings, Canad. Math. Bull., 12, 265-273 (1969).
2. Foster, A.L., The theory of Boolean like rings, Trans. Amer. Math. Soc., Vol. 59, 166-187 (1946).
3. Hansen, D.J. and Jiang, Luh, Boolean near rings and weak commutativity, J. Aust. Math. Soc., (series A) 103-107 (1989).
4. Heatherly, Henry E., Near-rings without nilpotent elements, Publ. Math Debrecan, 20, 201-205 (1973).
5. Venkateswarlu, K., et al., Boolean like semirings, Int. J. Contemp. Math. Sciences, Vol. 6, No. 13, 619-635 (2011).
6. Ligh, Steve, On Boolean near-rings, Bull. Austral. Math. Soc., 1, 3756-379 (1969).
7. Pilz, G., Near-rings (Revised Edition) North Holland, Amsterdam (1983).
8. Subrahmanyam, N.V., Boolean semi rings, Math Annalen, 148, 395-401 (1962).
9. Swaminathan, V., On Foster's Boolean-like rings, Math. Seminar Notes, Kobe University, Japan, Vol 8, No. 2, 347-367(1980).
10. Szasz, G., Introduction to Lattice Theory ($3^{\text {rd }}$ revised edition), Academic press, New York (1963).
11. Thomas, N., Hungerford, Algebra, Holt, Rimehart and Winston, Inc. (1974).
12. Ali, Asma, et al., Decomposition theorem for Periodic near-rings, Randovi Mathematiki, 12, 5-11 (2003).
13. Ashraf, M., Structure of certain periodic rings and near-rings, Rand. Sem. Mat. Univ. Pol. Torino., 53-1, 61-67 (1995).
14. Swaminathan, V., Geometry of Boolean-like rings, Math. Sem. Notes Kobe Univ., 9, No. 1, 195-214 (1981).
15. Foster, A.L., The idempotent elements of a commutative ring from a Boolean algebra; ring duality and transformation theory, Duke Math. J., Vol. 12, 143-152 (1945).
