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INTRODUCTION 

An explicit representation for the Konhauser biorthogonal polynomials, ��
�(�; �)as 

introduced by Knohauser [1] was given by Carlitz [2] in the following form: 
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where(�)� is the pochhammer symbol [3; p-273] 

In a recent paper [6], the present authors have proved the following theorem on bilateral 
generating relations involving biorthogonal polynomials, ��

�(�; �). 

Theorem 1. If there existsa unilateral generating relation of the form 
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The aim at presenting this paper is to generalise the above bilateral generating relation 
into mixed trilateral generating relation by the group-theoretic method. A particular cases of 
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interest is also discussed in this paper. The main results of our investigation are stated in the 
form of the following theorems: 

Theorem 2. If there exists a generating relation of the form 

�(�, �, �) = �����
�(x; k)	��(�)	�
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,																															… (1.3) 

where ��(�) is an arbitrary polynomial of degree � and left hand  series have formal power 
series expansion, then 
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OPERATOR AND EXTENDED FORM OF THE GROUP 

At first, we seek a linear partial differential operator � of the form: 
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where each ��(� = 0, 1, 2, 3) is a function of �, � and � which is independent of �, �	such that  
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where �(�, �) is a function of �, �and is independent of �, � and �. 

Using (2.1) and with the help of the differential recurrence relation: 
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We easily obtain the following linear partial differential operator: 
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Such that 
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The extended form of the group generated by � is given by 
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where�(�, �, �) is an arbitrary function and � is an arbitrary constant. 

Now we proceed to prove the Theorem 2. 
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PROOF OF THEOREM 2 

Let us consider the generating relation of the form: 
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Replacing �by		���  and multiplying both sides of (3.1) by ��  and finally operating ��� 
on both sides, we get 
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Now the left member of (3.2), with the help of (2.4), reduces to 
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The right member of (3.2), with the help of (2.3), becomes 
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Now equating (3.3) and (3.4) and then substituting � = � = 1, we get 
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This completes the proof of the theorem and does not seem to have appeared in the earlier 
works. 

Special case : If we put	� = 1, then	��
�(�; �) reduces to the generalized Laguerre 

polynomials, ��
�(�). Thus putting � = 1 in the above theorem, we get the following theorem 

on generalised Laguerre polynomials. 

Theorem 3. If there exists a generating relation of the form 
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which is found derived in [4, 5]. 
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CONCLUSIONS 

1. From the above discussion,  it is clear that whenever one knows a  bilateral generating 

relation of the form (1.3, 3.6) then the corresponding trilateral generating relation can at once 
be written down from (1.4, 3.7). So one can get a large number of trilateral generating 
relations by attributing different suitable values to �� in (1.3, 3.6). 

2. Also many applications of our theorem-3 are given in [4]. 
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