ONMIXED TRILATERAL GENERATING RELATIONS FOR BIORTHOGONAL POLYNOMIALS SUGGESTED BY LAGUERRE POLYNOMIALS

K.P. SAMANTA AND A.K. CHONGDAR
Department of Mathematics, Engineering and Science University, Shibpur-711 003 (W.B.), India

RECEIVED : 13 September, 2013

Abstract

In this note, we have obtained some novel mixed trilateral generating functions involving Konhauser biorthogonal polynomials $Y_{n}^{\alpha}(x ; k)$ by group theoretic method. As special cases, we have obtained the corresponding results on generalised Laguerre polynomials.

KEYWORDS : Laguerre polynomials, biorthogonal polynomials, generating functions.

AMS-2000 Subject Classification Code: 33C 45, 33C 47.

Introduction

An explicit representation for the Konhauser biorthogonal polynomials, $Y_{n}^{\alpha}(x ; k)$ as introduced by Knohauser [1] was given by Carlitz [2] in the following form:

$$
Y_{n}^{\alpha}(x ; k)=\frac{1}{n!} \sum_{i=0}^{n} \frac{x^{i}}{i!} \sum_{j=0}^{i}(-1)^{j}\binom{i}{j}\left(\frac{j+\alpha+1}{k}\right)_{n}
$$

where $(a)_{n}$ is the pochhammer symbol [3; p-273]
In a recent paper [6], the present authors have proved the following theorem on bilateral generating relations involving biorthogonal polynomials, $Y_{n}^{\alpha}(x ; k)$.

Theorem 1. If there existsa unilateral generating relation of the form

$$
\begin{equation*}
G(x, w)=\sum_{n=0}^{\infty} a_{n} Y_{n}^{\alpha}(\mathrm{x} ; \mathrm{k}) w^{n} \tag{1.1}
\end{equation*}
$$

then

$$
\begin{align*}
(1+k w)^{\frac{(1+\alpha-k)}{k}} \exp (x[1 & \left.\left.-(1+k w)^{\frac{1}{k}}\right]\right) G\left(x(1+k w)^{\frac{1}{k}}, w v\right) \\
& =\sum_{n=0}^{\infty} w^{n} \sigma_{n}(x, v) \tag{1.2}\\
\sigma_{n}(x, v) & =\sum_{p=0}^{n} a_{p} k^{n-p}\binom{n}{p} Y_{n}^{\alpha+k p-n k}(\mathrm{x} ; \mathrm{k}) v^{p}
\end{align*}
$$

where

The aim at presenting this paper is to generalise the above bilateral generating relation into mixed trilateral generating relation by the group-theoretic method. A particular cases of
interest is also discussed in this paper. The main results of our investigation are stated in the form of the following theorems:

Theorem 2. If there exists a generating relation of the form

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} Y_{n}^{\alpha}(\mathrm{x} ; \mathrm{k}) g_{n}(u) w^{n} \tag{1.3}
\end{equation*}
$$

where $g_{n}(u)$ is an arbitrary polynomial of degree n and left hand series have formal power series expansion, then

$$
\begin{align*}
(1+k w)^{\frac{(1+\alpha-k)}{k}} & \exp \left(x\left[1-(1+k w)^{\frac{1}{k}}\right]\right) G\left(x(1+k w)^{\frac{1}{k}}, u, w v\right) \\
& =\sum_{n=0}^{\infty} w^{n} \sigma_{n}(x, u, v) \tag{1.4}\\
\sigma_{n}(x, u, v) & =\sum_{m=0}^{n} a_{m} k^{n-m}\binom{n}{m} Y_{n}^{\alpha+m k-n k}(x ; k) g_{m}(u) v^{m}
\end{align*}
$$

where

Operator and extended form of the group

At first, we seek a linear partial differential operator R of the form:

$$
R=A_{1}(x, y, z) \frac{\partial}{\partial x}+A_{2}(x, y, z) \frac{\partial}{\partial y}+A_{3}(x, y, z) \frac{\partial}{\partial z}+A_{0}(x, y, z)
$$

where each $A_{i}(i=0,1,2,3)$ is a function of x, y and z which is independent of n, α such that

$$
\begin{equation*}
R\left[Y_{n}^{\alpha}(x ; k) y^{\alpha} z^{n}\right]=c(n, \alpha) Y_{n+1}^{\alpha-k}(x ; k) y^{\alpha-k} z^{n+1} \tag{2.1}
\end{equation*}
$$

where $c(n, \alpha)$ is a function of n, α and is independent of x, y and z.
Using (2.1) and with the help of the differential recurrence relation:

$$
\begin{equation*}
x \frac{d}{d x}\left[Y_{n}^{\alpha}(x ; k)\right]=k(n+1) Y_{n+1}^{\alpha-k}(x ; k)+(x+k-\alpha-1) Y_{n}^{\alpha}(x ; k) \tag{2.2}
\end{equation*}
$$

We easily obtain the following linear partial differential operator:

$$
R=x y^{-k} z \frac{\partial}{\partial x}+y^{-(k-1)} z \frac{\partial}{\partial y}-(x+k-1) y^{-k} z
$$

Such that

$$
\begin{equation*}
R\left(Y_{n}^{\alpha}(\mathrm{x} ; \mathrm{k}) y^{\alpha} z^{n}\right)=k(n+1) Y_{n+1}^{\alpha-k}(x ; k) y^{\alpha-k} z^{n+1} \tag{2.3}
\end{equation*}
$$

The extended form of the group generated by R is given by

$$
\begin{align*}
e^{w R} f(x, y, z)=\left(1+k w y^{-k} z\right)^{\frac{1-k}{k}} & \exp \left(x-x\left(1+k w y^{-k} z\right)^{\frac{1}{k}}\right) \\
& \times f\left(x\left(1+k w y^{-k} z\right)^{\frac{1}{k}}, y\left(1+k w y^{-k} z\right)^{\frac{1}{k}}, z\right) \tag{2.4}
\end{align*}
$$

where $f(x, y, z)$ is an arbitrary function and w is an arbitrary constant.
Now we proceed to prove the Theorem 2.

Proof of theorem 2

Let us consider the generating relation of the form:

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} Y_{n}^{\alpha}(x ; k) g_{n}(u) w^{n} . \tag{3.1}
\end{equation*}
$$

Replacing w by $w v z$ and multiplying both sides of (3.1) by y^{α} and finally operating $e^{w R}$ on both sides, we get

$$
\begin{equation*}
e^{w R}\left(y^{\alpha} G(x, w v z)\right)=e^{w R}\left(\sum_{n=0}^{\infty} a_{n}\left(Y_{n}^{\alpha}(x ; k) y^{\alpha} z^{n}\right) g_{n}(u)(w v)^{n}\right) \tag{3.2}
\end{equation*}
$$

Now the left member of (3.2), with the help of (2.4), reduces to

$$
\begin{equation*}
\left(1+k w y^{-k} z\right)^{\frac{(1+\alpha-k)}{k}} \exp \left(x-x\left(1+k w y^{-k} z\right)^{\frac{1}{k}}\right) y^{\alpha} G\left(x\left(1+k w y^{-k} z\right)^{\frac{1}{k}}, u, w v z\right) \ldots \tag{3.3}
\end{equation*}
$$

The right member of (3.2), with the help of (2.3), becomes

$$
\begin{equation*}
=\sum_{n=0}^{\infty} \sum_{p=0}^{n} a_{n-p} k^{p}\binom{n}{p} Y_{n}^{\alpha-k p}(x ; k) y^{\alpha-k p}(w z)^{n} g_{n-p}(u) v^{n-p} \tag{3.4}
\end{equation*}
$$

Now equating (3.3) and (3.4) and then substituting $y=z=1$, we get

$$
\begin{align*}
& (1+k w)^{\frac{(1+\alpha-k)}{k}} \exp \left(x-x(1+k w)^{\frac{1}{k}}\right) G\left(x(1+k w)^{\frac{1}{k}}, u, w v\right) \\
& =\sum_{n=0}^{\infty} w^{n} \sigma_{n}(x, u, v) \tag{3.5}
\end{align*}
$$

where

$$
\sigma_{n}(x, u, v)=\sum_{p=0}^{n} a_{p} k^{n-p}\binom{n}{p} Y_{n}^{\alpha+k p-k n}(x ; k) g_{p}(u) v^{p}
$$

This completes the proof of the theorem and does not seem to have appeared in the earlier works.

Special case : If we put $k=1$, then $Y_{n}^{\alpha}(x ; k)$ reduces to the generalized Laguerre polynomials, $L_{n}^{\alpha}(x)$. Thus putting $k=1$ in the above theorem, we get the following theorem on generalised Laguerre polynomials.

Theorem 3. If there exists a generating relation of the form
then
ren

$$
\begin{gather*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} L_{n}^{(\alpha)}(x) g_{n}(u) w^{n} \tag{3.6}\\
\left.(1+w)^{\alpha} \exp (-w x)\right) G(x(1+w), u, w v)=\sum_{n=0}^{\infty} w^{n} \sigma_{n}(x, u, v) \tag{3.7}\\
\sigma_{n}(x, u, v)=\sum_{p=0}^{n} a_{p}\binom{n}{p} L_{n}^{(\alpha+p-n)}(x) g_{p}(u) v^{p} \tag{0.1}
\end{gather*}
$$

where
which is found derived in $[4,5]$.

Conclusions

1From the above discussion, it is clear that whenever one knows a bilateral generating relation of the form $(1.3,3.6)$ then the corresponding trilateral generating relation can at once be written down from (1.4, 3.7). So one can get a large number of trilateral generating relations by attributing different suitable values to a_{n} in $(1.3,3.6)$.
2. Also many applications of our theorem-3 are given in [4].

References

1. Konhauser, J.D.E., Biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math., 21, 303-314 (1967).
2. Carlitz, L., A note on certain biorthogonal polynomials, Pacific J. Math., 24, 425-430 (1968).
3. Andrews, L.C., Special for Engineers and Applied Mathematicians, Macmillan Publishing Company, Page 273.
4. Sharma, R. and Chongdar, A.K., Some generating functions of Laguerre polynomials from the lie group view point, Bull. Cal. Math. Soc., 82, 527-532 (1990).
5. Alam, S. and Chongdar, A.K., On generating functions of modified Laguerre polynomials, Rev. Real Academia de Ciencias Zaragoza, 62, 91-98 (2007).
6. Samanta, K.P. and Chongdar, A.K., On generating functions of biorthogonal polynomials suggested by the Laguerre polynomials, Communicated (2013).
