SMARANDACHE-BOOLEAN-NEAR-RINGS AND BOOLEAN-IALGEBRA

Dr. N. KANNAPPA
Associate Professor, PG \& Research Department of Mathematics, T.B.M.L College, Porayar-609 307, Tamil Nadu
AND
Mrs. P. TAMILVANI
Assistant Professor, PG Deptt. of Mathematics, Poompuhar College, Melaiyur-609 107, Tamil Nadu

RECEIVED : 11 July, 2013
In this paper we introduced Smarandache-2-algebraic structure of Boolean-near-ring namely Smarandache-Boolean-near-ring. A Smarandache-2-algebraic structure on a set N means a weak algebraic structure A_{0} on N such that there exist a proper subset M of N, which is embedded with a stronger algebraic structure A_{1}, stronger algebraic structure means satisfying more axioms, by proper subset one understands a subset different from the empty set, from the unit element if any, from the whole set. We define Smarandache-Boolean-near-ring and obtain some of its characterization through Boolean-ring and Lattice Ordered groups II. For basic concept of near-ring we refer to G. Pliz.
KEYWORDS : Boolean ring, Boolean-near-ring, Smarandache-near-ring, Boolean-l-algebra, Lattice ideals and Clans.

Introduction

The study of Boolean-near-ring is one of the generalized structure of rings. The study and research on near-rings is very systematic and continuous. Near-rings newsletters containing complete and updated bibliography on the subject of near-rings are published periodically by a team of editors. Then motivated by several researchers we wish to study and analyse the substructure in Smarandache-near-rings. The substructure in near-rings play vital role in the study of near-rings. Unlike other algebraic structure we see in case of near-rings we have the substructure playing vital role in the study and analyse of near-rings. Apart from the sub near-rings and ideals of near-rings we have special substructure like N-groups, filter and modularity in near-rings. It is these study in the context of Smarandache-Boolean-near-rings will yield several interesting results. Also the Smarandache substructure in Boolean-nearrings will also yield very many results in the direction.

For the study we would be using the book of Pilz Gunter, Near-rings (1997) published by North Holland Press, Amesterdam [10], Special Algebraic Structure by Florentin Smarandache, University of New Mexico, USA (1991) [18], Smarandache Algebraic Structure by Raul Padilla, Universidade do Minho, Portugal (1999) [13], Blackett [3] discusses the nearring of affine transformations on a vector space where the near-ring has a unique maximal ideal. Gonshor [8] defines abstract of affine near-rings and completely determines the lattice of ideals for these near-rings. The near-rings of differential transformations is seen in [4]. For
near-rings with geometric interpretation [10] or [18] and several research papers on Boolean-near-rings. We would first study and characterize the ideals and sub Boolean-near-rings in Smarandache-Boolean-near-rings. Also to study and analyse those Boolean-near-rings, which are Smarandache-Boolean-near-ring and find the conditions for Smarandache-boolean-nearrings. Yet another major substructure in Boolean-near-rings is the notion of filters. We would extend and study the notion of Smarandache filters given in Smarandache-Boolean-near-rings.

Further the notion of Smarandache ideals in near-ring would be studied, characterized and analysed for Smarandache-Boolean-near-rings. Both the notions viz. N -groups and ideals in near-ring and Smarandache-boolean-near-rings would be compared and contrasted. Also the nice notion of modularity in near-rings, which are basically built using concepts of idempotents, will be studied and analysed in Smarandache modularity in Boolean-near-ring.

Finally, Smarandache-Boolean-near-rings has constructed from Boolean-ring by an algorithmic approach through its substructures and Smarandache-Boolean-near-ring has introduced some application.

In order that New notions are introduced in algebra to better study the congruence in number theory by Florentin Smarandache [18]. By <proper subset> of a set A we consider a set P included in A, and different from A, different form the empty set, and from the unit element in A - if any they rank the algebraic structures using an order relationship:

They say that the algebraic structures $S_{1} \ll S_{2}$ if: both are defined on the same set;: all S_{1} laws are also S_{2} laws; all axioms of an S_{1} law are accomplished by the corresponding S_{2} law; S_{2} law accomplish strictly more axioms that S_{1} laws, or S_{2} has more laws than S_{1}.

For example : Semi group \gg Monoid \ll group \ll ring \ll field, or Semi group \ll commutative semi group, ring \ll unitary, ring etc. They define a General special structure to be a structure $S M$ on a set A, different form a structure $S N$, such that a proper subset of A is an structure, where $S M \ll S N>$

Preliminaries

Definition 1.1. A left near-ring A is a system with two binary operations, addition and multiplication, such that
(i) The elements of A form a group $(A,+)$ under addition,
(ii) The elements of A form a multiplicative semi-group,
(iii) $x(y+z)=x y+x z$, for all $x, y, z \in A$

In particular, if A contains a multiplicative semi-group S whose elements generate $(A,+$) and satisfy
(iv) $(x+y) s=x s+y s$, for all $x, y \in A$ and $s \in S$, then we say that A is a distributively generated near-ring.

Definition 1.2. A near-ring $(B,+,$.$) is Boolean-Near-Ring if there exists a Boolean-ring$ $(A,+, \Lambda, 1)$ with identity such that. is defined in terms of,$+ \Lambda$ and 1 , and for any $b \in B$,

$$
b . b=b
$$

Definition 1.3. A near-ring $(B,+,$.$) is said to be idempotent if x^{2}=x$, for all $x \in B$. If $(B,+,$.$) is an idempotent ring, then for all a, b \in B$,

$$
a+a=0 \quad \text { and } \quad a \cdot b=b . a
$$

Definition 1.4. A Boolean-near-ring $(B,+,$.$) is said to be Smarandache-Boolean-near-$ ring whose proper subset A is a Boolean-ring with respect to same induced operation of B.

Definition 1.5. A lattice $A=(A: \cup, \cap)$ with a binary operation '-' is called a Boolean -1algebra if it satisfies the following properties :
(i) $a \cup b-c=(a-c) \cup(b-c)$
(ii) $\quad a-(b \cap c)=(a-b) \cup(a-c)$ and $a-(b \cup c)=(a-b) \cap(a-c)$
(iii) If $a \leq b$ then $c-b=(c-a)-(b-a)$
(iv) If $a \geq b \cup c$ then $a-b \geq a-c$ implies $c \geq b$, for all $a, b, c \in A$

Definition 1.6. A boolean-ring $(B, \cap,+,-)$ is called a Boolean-l-algebra if we define $a-b=a+a \cap b$.

Definition 1.7. Any Dually Residuated lattice Semi-group A is a Boolean-l-algebra if it satisfies the following conditions :
(i) $\quad a-(b \cup c)=(a-b) \cap(a-c)$
(ii) $a \geq b \cup c$ and $a-b \geq a-c$ then $c \geq b$ for all $a, b, c \in A$.

Main theorems on smarandache-boolean-near-ring with boolean-l-algebra

Theorem 2.1. Let $(B ; \cup, \cap,+,-)$ is a Boolean-near-ring, B is a Smarandache-Boolean-near-ring if and only if there exists a proper subset $(A, \cup, \cap,+,-)$ of B with $a-b=a+a \cap b$ satisfies $x \leq a$ implies $x \cap(a-x)=0$

Part I : Assume that $(B ; \cup, \cap,+,-)$ is a Smarandache-Boolean-near-ring, then by definition, there exists a proper subset $(A, \cup, \cap,+,-)$ of B which is a Boolean-ring.

Proof : Since $(A, \cup, \cap,+,-)$ is a Boolean-ring with $a-b=a+a \cap b$, then we have $x \leq a$ implies $x \cap(a-x)=0$.

The first part is clear, automatically.
Part II : Assume that there exists a proper subset $(A, \cup, \cap,+,-)$ of B with $a-b=a+$ $a \cap b$ satisfies $x \leq a$ implies $x \cap(a-x)=0$.

Prove that B is a Smarandache-Boolean-near-ring.
It is enough to prove that A is a Boolean-ring.
Proof: First we will prove that 0 is the least example of A.
Since $x \leq a$, for all $a \in A$
For, $a \leq a$, for all $a \in A$

$$
\begin{aligned}
\Rightarrow \quad 0 & =x \cap(a-x)=a \cap(a-a) \text { [by our hypothesis] } \\
& =a \cap 0
\end{aligned}
$$

$\therefore \quad a-0=a$, since $a \geq 0$ then $a-0=a$, for all $a \in A$.
Secondly, we will prove that if $x \leq a$ then $a-x=(a-x)-x$
For if $x \leq a$ then $a-x=(a-x)-\{(a-x) \cap x\}[$ since $a-(a \cap b)=(a \cup b)-b]$

$$
\begin{aligned}
& =\{(a-x)-(a-x)\} \cup\{(a-x)-x\} \\
& =0 \cup\{(a-x)-x\}
\end{aligned}
$$

Therefore, $\quad a-x=(a-x)-x, \quad$ if $x \leq a$.
Next to prove that $x \cup(a-x)=a$, if $x \leq a$.

$$
\left.\begin{array}{l}
\qquad \begin{array}{rl}
\text { For }\{x \cup(a-x)\}-x & =(x-x) \cup\{(a-x)-x\}[\text { since } a \cup(b-c)=(a-c) \cup(b-c)] \\
& =0 \cup\{(a-x)-x\} \\
& =((a-x)-x)[\text { since }(a-x)-x=(a-x), \text { if } x \leq a] \\
& =a-x
\end{array} \\
\therefore \quad\{x \cup(a-x)\}-x
\end{array}\right)=a-x[\text { since } 0 \text { is the least element of } A] \text {. } \begin{aligned}
& \therefore \\
& \text { It follows that, } \quad x \cup(a-x)=a
\end{aligned}
$$

Finally our aim is to show that A is a Boolean-ring.
If A is distributive and let $x<z<y$, then

$$
\begin{aligned}
z \cap\{x \cup(y-z)\} & =(z \cap x) \cup\{z \cap(y-z)\} \text { [since } A \text { is distributive, } a, b, c \in A \text { and } \\
& \quad a \cap(b \cup c)=(a \cap b) \cup(a \cap c) \text {] } \\
& =(z \cap x) \cup 0 \text { [by hypothesis] } \\
& =z \cap x \\
& =x, \text { if } x<z<y
\end{aligned}
$$

and, $z \cup\{x \cup(y-z)\}=x \cup z \cup(y-z)$ [since A is a distributive lattice then $a \cup b=a \cup c$ and $a \cup b=a \cap c$ which implies $b=c$ for all $a, b, c \in A]$

$$
\begin{aligned}
& =x \cup\{z \cup(y-z)\}[\text { since } x \leq a \text { implies } x \cup(a-x)=a] \\
& =y \\
\therefore \quad z \cap\{x \cup(y-z)\} & =\mathrm{y}
\end{aligned}
$$

Hence A is a relatively complemented and therefore A is a Boolean-ring and it follows that B is a Smarandache-Boolean-ring.

Theorem 2.2. Let ($B ; \cup, \cap,+,-$) is a Boolean-near-ring, B is a Smarandache-Boolean-Near-ring if and only if there exists a proper subset of $(A ; \cup, \cap,+,-)$ of B with $a-b=a+$ $a \cap b$ which is a Boolean-l-algebra, for each a and $b \in A$.

Part I : Assume that
(i) B is a Boolean-near-ring and
(ii) There exists a proper subset A of B with $a-b=a+a \cap b$ which is a Boolean-lalgebra.

To prove that, B is a Smarandache-Boolean-Near-ring
It is enough to prove that A is a Boolean ring.
Proof : If $x \leq a$ then $a=a \cup x$

$$
=x \cup(a-x),[\text { since } x \leq a]
$$

Since $(A ; \cup, \cap,+,-)$ is a Boolean-l-algebra and by known theorem 1 ,
"Let $(B ; \cup, \cap,+,-)$ is a Boolean-near-ring, B is a Smarandache-Boolean-near-ring if and only if there exists a proper subset $(A ; \cup \cap,+,-)$ of B with $a-b=a+a \cap b$ satisfies $x \leq a$ implies $x \cap(a-x)=0$ "

```
Also,
\[
a-x=\{x \cup(a-x)\}-x[\text { by theorem 1] }
\]
\[
=(a-x)-\{x \cap(a-x)\}[\text { since }(a \cup b)-a=b-(a \cap b)]
\]
\[
\therefore \quad a-x=(a-x)-\{x \cap(a-x)\}, \text { for each } a \in A .
\]
```

Since, by theorem 1,
If $x \leq a$ implies $x \cap(a-x)=0$ then it follows that A is a Boolean-ring.
Hence B is a Smarandache-Boolean-Near-Ring.
Part II : Suppose $(B ; \cup, \cap,+,-)$ is a Smarandache-Boolean-Near-Ring.
Then to prove that there exists a proper subset $(A ; \cup, \cap,+,-)$ of B with

$$
a-b=a+a \cap b \text { which is a Boolean-1-algebra. }
$$

Proof : Since, there exists a proper subset A of B which is a Boolean-Ring and $x \leq a$ implies $x \cap(a-x)=0$.

Now, $a-x=(a-x)-0$

$$
\begin{aligned}
& \Rightarrow a-x=(a-x)-\{x \cap(a-x)\} \\
& \Rightarrow a-x=\{x \cup(a-x)\}-x[\text { since } b-(a \cap b)=(a \cup b)-a]
\end{aligned}
$$

Further, if $x \leq a$ then

$$
\begin{aligned}
& a=x \cup(a-x)[\text { by theorem } 1 \text { and } x \leq a] \\
& a=a \cup x
\end{aligned}
$$

It follows that $(A ; \cup \cap,+,-)$ is a Boolean-l-algebra.
Theorem 2.3. Let $(B ; \cup, \cap,+,-)$ is a Boolean-near-ring, there exists a proper subset $(A, \cup, \cap,+,-)$ of B which is a Boolean-l-algebra in which $a-a \cap b \cap c=a$ implies $a \cap b \cap$ $c=0$. Then B is a Smarandache-Boolean-Near-Ring.

Assume that $(B ; \cup, \cap,+,-)$ is a Boolean-near-ring and there exists a proper subset $(A ; \cup \cap,+,-)$ of B which is a Boolean-l-algebra with $a-a \cap b \cap c=a$ implies $a \cap b \cap c=0$.

Then to prove that B is a Smarandache-Boolean-Near-Ring.
It is sufficient to prove that A is a Boolean-ring.
Proof: First we will show that, if $x \leq a$ then $x \cup(a-x)=a$
For, $\{x \cup(a-x)\}-x=(x-x) \cup\{(a-x)-x\}$
[By the result $a \cup(b-c)=(a-c) \cap(b-c)$]

$$
\begin{aligned}
& =0 \cup\{(a-x)-x\} \\
& =\{(a-x)-x\}[\text { By if } x \leq a \text { then }(a-x)-x=a-x] \\
& =a-x \\
\therefore \quad\{x \cup(a-x)\}-x & =a-x \\
\Rightarrow \quad x \cup(a-x) & =a, \text { for all } x \leq a
\end{aligned}
$$

If $0 \leq x \leq a$ then

$$
\begin{aligned}
a-a \cap x \cap(a-x) & =\{a-(a \cap x)\} \cup\{a-(a-x)\} \\
& =(a-x) \cup\{a-(a-x)\} \\
& =(a-x) \cup a \\
& =a, \quad \text { for all } a \in A .
\end{aligned}
$$

By known theorem 1 ,
"Let ($B ; \cup, \cap,+,-$) be a Boolean-near-ring; B is a Smarandache-Boolean-Near-Ring if there exists a proper subset A of B with $a-b=a+a \cap b$ satisfies $x \leq a$ implies $x \cap(a-x)=$ 0 "

Hence $x \cap(a-x)=0$ and so that $x \cup(a-x)=a$.
$\therefore \quad A$ is section complemented and a Boolean-ring.
$\therefore \quad B$ is a Smarandache-Boolean-Near-Ring.
Theorem 2.4. Let $(B ; \cup, \cap,+,-)$ be a Smarandache-Boolean-Near-Ring if and only if there exists $A=(A ; \cup \cap,+,-)$ is a Dually Residuated lattice ordered semi-group with

$$
a-(b \cup c)=(a-b) \cap(a-c), \text { where } A \text { is a proper subset of } B
$$

Part I : Assume A is a Dually Residuated lattice ordered semi-group with

$$
a-(b \cup c)=(a-b) \cap(a-c)
$$

Then to prove that B is a Smarandache-Boolean-Near-Ring.
We need to prove A is a Boolean-ring.
Proof: By theorem 1,
"Let $(B ; \cup, \cap,+,-)$ is a Boolean-near-ring. Then B is a Smarandache-Boolean-Near-Ring if and only if there exists a proper subset $(A, \cup \cap,+,-)$ of B with $a-b=a+a \cap b$ satisfies $x \leq a$ implies $x \cap(a-x)=0$ ".

Then we have, A is a Boolean-ring. Hence B is a Smarandache-Boolean-Near-Ring.
Part II : Assume that B is a Smarandache-Boolean-Near-Ring.
Proof: Since $(A ; \cup, \cap,+,-)$ is a Dually Residuated lattice ordered semi-group then $(A ; \cup, \cap,+,-)$ is a Boolean-l-algebra.

Then we need to prove A is a Boolean-l-algebra, using A is clean.
Let $\Sigma=\{(a, b) \in A \times A / a \leq b\}$ and let $\sigma: \Sigma \rightarrow A$ be defined by $\sigma(a, b)=b-a$.
And, let $C_{1}, C_{2}, C_{3}, C_{4}$ and C_{7} are satisfied in A by using clan [9].
$\therefore \quad A$ is a Boolean-l-algebra.
Theorem 2.5. Let B is a Boolean-l-algebra with $a-(b \cup c)=(a-b) \cap(a-c)$, there exist a proper subset A is a Boolean-ring. Then B is a Smarandache-Boolean-Near-Ring, if it following are equivalent :
(i) $\quad B$ is a Boolean-ring.
(ii) $(a, b, c) A$ iff $(a, b, c) B$
(iii) $(a, b, c) B$ and $(a, c, b) B$ imply $b=c$
(iv) Metric betweenness has transitivity t_{1}.

Proof : Proof for (i) \Rightarrow (ii) :
We can assume $a \geq c$, then $a=(a-c)+c=a^{*} b+b^{*} c+c$

$$
\geq(b-a)+(b-\mathrm{c})+c \geq(b-a)+b .
$$

and by using definition $6,0-(b-a)=b-\{b+(b-a)\} \geq b-a$ (or) $a \geq b$.
So that by the property (iv) of definition $6, b \geq c$, since $a-c \geq a-b$ (or) (a, b, c) A
Let $a \cup c \geq b \geq a \cap c$, then,

$$
\begin{aligned}
a^{*} c & =a \cup c-a \cap c \\
& =(a \cup c-b)+(b-a \cap c) \\
& =\left(a \cup c^{*} b\right)+\left(b^{*} a \cap c\right) \\
& =a^{*} b+b^{*} c[\operatorname{By} \operatorname{using}(a, b, c) B \Leftrightarrow(a \cup c, b, a \cap c) B]
\end{aligned}
$$

Hence $(a, b, c) B$.
Proof of (ii) \Rightarrow (iv) :
This proof is obvious.
Proof of (i) \Rightarrow (iii) :
Assume that B is a Boolean-ring.
Prove that $(a, b, c) B$ and $(a, c, b) B \Rightarrow b-c$.
Let $(a, b, c) B$ and $(a, c, b) B$, we need to prove $b=c$.
Then $a \cup c \geq b \geq a \cap c$ and $a \cup b \geq c \geq a \cap b$
Hence $a \cup b=a \cup c$ and $a \cap b=a \cap c$ so that $b=c$.
Proof of (iii) \Rightarrow (i) :
Let $a \geq b \cup c$ and $a-b \geq a-c$
Since $(a, b, b \cap c) A$, we have

$$
\begin{aligned}
a^{*} b \cap c+b \cap c^{*} b & =a-(b \cap c)+(b-b \cap c) \\
& =(a-b)+b-b \cap c \\
& =a^{*} b+b^{*} b \cap c\left[\text { since }(a, b, c) B \Rightarrow a^{*} b+b^{*} c=a^{*} c\right] \\
& =a^{*} b \cap c \\
& =a-(b \cap c) \\
& =a-b \\
& =a^{*} c, \text { so that }(a, b \cap c, b) B \\
b \cap c & =b \text { (or) } c \geq b
\end{aligned}
$$

Hence
Therefore, the condition (iv) of definition 1, holds in A and consequently, A is a Booleanring.

Some definitions and theorems on smarandache-boolean-near-rings

Definition 3.1. A normal sub group $(I,+)$ of $(B,+)$ is a left ideal if $B I \subseteq I$ and is an ideal If $(I,+,$.$) is the kernel of a near-ring homomorphism.$

Definition 3.2. A Special Boolean-near-ring $(B,+,$.$) and b \in B$, define

$$
P(b)=\{a \in B / a \cap b=a\}
$$

If $A \subseteq B$ and $b \in B$, define $A(b)=\{a \cap b / a \in A\}$ and $A(b) \subseteq P(b)$.
Theorem 3.3. Let $(B,+, \cap, 1)$ be a Boolean-near-ring whose proper subset $(A,+, \cap, 1)$ be a Boolean-ring with identity. Fix $x \in B$ and define a multiplication on B by $a . b=(a \cup x) \cap b$.

Then $(B,+,$.$) is a Smarandache-Boolean-Near-ring if any only if x=0$.
Part I: Assume that $(B,+,$.$) is a Smarandache-Boolean-near-ring.$
(i.e.) A Boolean-near-ring $(B,+,$.$) which is a Boolean-ring.$

We want to show that $x=0$. For a, b and $c \in B$, we have

Proof:

$$
\begin{aligned}
a .(b . c) & =(a \cup x) \cap[(b \cup x) \cap c] \\
a .(b . c) & =[(a \cup x) \cap(b \cup x)] \cap c \text { and } \\
(a . b) . c & =\{[(a \cup x) \cap b] \cup x\} \cap c \\
& =\{(a \cup x) \cap(b \cup x)\} \cap c
\end{aligned}
$$

So that $\quad a .(b . c)=(a . b) . c$
Also to show that the distributive under multiplication :

$$
\text { (i.e.) to show that } a .(b+c)=(a . b)+(a . c)
$$

For all a, b and $c \in B$, then

$$
\begin{aligned}
a \cdot(b+c) & =(a \cup x) \cap(b+c) \\
& =[(\mathrm{a} \cup \mathrm{x}) \cap \mathrm{b}]+[(\mathrm{a} \cup \mathrm{x}) \cap \mathrm{c}] \\
& =(\mathrm{a} . \mathrm{b})+(\mathrm{a} . \mathrm{c}) \\
\Rightarrow \quad a \cdot(b+c) & =(a . b)+(a . c), \text { for all } a, b, c \in B,
\end{aligned}
$$

Hence $x=0$.
Part II : Consider $x=0$, for all $x \in B$.
Then to prove that $(B,+,$.$) is a Smarandache-boolean-near-ring.$
If $x=0$ then to prove that $(B,+,)=.(B,+, \cap, 1)$.
It is enough to prove that the proper subset A of B is a Boolean-ring.
Proof : Since by the definition of idempotent and idempotent ring then for $x \in B$, an arbitrary idempotent element.

$$
\begin{aligned}
& (x+x) \cdot x=0 . x \text { (Since by definition of idempotent ring) } \\
& =(0 \cup x) \cap x \\
& =(x \cap x) \\
& \Rightarrow \quad(x+x) \cdot x=x \\
& \text { and } \quad(x . x)+(x, x)=x+x \\
& \Rightarrow \quad(x+x) \cdot x=0
\end{aligned}
$$

Hence the right distributivity under multiplication is satisfied,
so that

$$
(B,+, .) \text { is not a ring, if } x \neq 0
$$

$$
\begin{array}{cl}
\text { Also } & \\
\Rightarrow & b \cdot b=(b \cup x) \cap b \\
\Rightarrow & b \cdot b=b, \text { for all } x \in B
\end{array}
$$

Hence $(B,+,$.$) is a Smarandache-Boolean-near-ring.$
Theorem 3.4. Let I be an Ideal of Boolean-near-ring $(B,+,$.$) . Then B$ is a Smarandache-Boolean- near-ring if and only if $P(x) \subseteq I$.

Part I: We assume that B is a Smarandache-Boolean-near-ring.
Proof : Since B is a Smarandache-Boolean-near-ring, then by the definition, a proper subset is Boolean-ring, B / I is such a proper subset.

Therefore, B / I is a Boolean-ring.
Then the right distributive law holds so that,

$$
\begin{equation*}
[(a+I)+(b+I)](c+\mathrm{I})=[(a+I)(c+I)]+[(b+I)(c+I) \tag{1}
\end{equation*}
$$

Thus,

$$
(a+b) \cdot c+I=(a \cdot c+b \cdot c)+I
$$

If a, b and $c \in B$, then

$$
(a+b) \cdot c+a \cdot c+b \cdot c=\{[(a+b) \cup x+(a \cup x)+(b \cup x)]\} \cap c
$$

Now,
$(a+b) \cup x+(a \cup x)+(b \cup x)=(a+b) x+\left\{\left[(a \cup x) \cap b^{\prime} \cap x^{\prime}\right) \cup\left(a^{\prime} \cap x \cap(b \cup x)\right]\right\}$

$$
=(a+b) x+(a+b) \cap x^{\prime}
$$

$$
=\left\{[(a+b) x] \cap\left[(a+b) \cap x^{\prime}\right]\right\} \cup\left\{[(a+b) x]^{\prime} \cap\left[(a+b) \cap x^{\prime}\right]\right\}
$$

$$
=\left\{\left[(a+b) \cap\left[(a+b)^{\prime}\right] x\right\} \cup\left\{[(a+b) x]^{\prime} \cap\left[(a+b) \cap x^{\prime}\right]\right\}\right.
$$

$$
=(0 \cup x) \cup\left(0 \cap x^{\prime}\right)
$$

$$
\begin{equation*}
=x \tag{2}
\end{equation*}
$$

Hence $(a+b) . c+a . c+b . c=x \cap c \in I$
Since c is arbitrary, we have $P(x) \subseteq I$
Then to prove that B is a Smarandache-Boolean-near-ring.
Proof : Let B / I is proper subset of Boolean-near-ring $(B,+,$.
To prove that B / I is a Boolean-ring.
Since $P(x) \subseteq I$, then the equation (1) is valid if any only if $(a+b) . c+a . c+b . c \in I$
Hence B / I is a Boolean-ring.
Thus, every proper subset of B is a Boolean- ring and therefore B is a Smarandache-Boolean- near- ring.

References

1. Barkley, Rosser J., "Boolean Algebra", Pure and Applied Mathematics, Vol. 31, Pages 12-33 (1969).
2. Birkhoff, G., "Lattice theory", Amer. Math. Soc. (1948).
3. Blackett, D.W., "The near-ring of affine transformations", Proc. Amer. Math. Soc., Vol. 7 (1956).
4. Blackett, D.W., "Simple near-rings of differentiable transformations", Proc. Amer. Math. Soc., Vol. 7 (1956).
5. Clark, G.D., Harding, J. and Janowitz, M.F., "Boolean products of lattices order", Vol. 13, Pages 175-205 (1996).
6. Davey, B.A. and Priestley, H.P., "Introduction to lattices and Order", 2 nd edition, Cambridge Uni. Pre. (2002).
7. Everett, Pitcher and Smiley, M.F., "Transitivities of Betweeness", T. Amer. Math. Soc., 52, Pages 95-114 (1942).
8. Gonshor, H.,"On abstract affine near-rings", Pacific. J. Math., Vol. 14 (1964).
9. James, R. Clay and Donald, A. Lawver, "Boolean-near-rings", Canadian Math., 12 (1969).
10. Jipsen, P., "Generalizations of Boolean products for lattice order algebra", Annals of Pure and Applied Logic, Vol. 161, 2, Pages 228-234 Nov. (2009).
11. Kannappa, N. and Tamilvani, "On some characterization of Smarandache-Boolean-near-rings", International Conference on Mathematics and Statistics, HICAMS, Pages 88-92 (2012).
12. Kannappa, N. and Tamilvani, P., "On some Characterization of Smarandache-Boolean-near-rings with ideals", International conference on Mathematics in Eng. and Business Management, Vol-II, Pages: 156-158 (2012).
13. Pilz, G., "Near-rings", North Holland Press, Amsterdam (1982).
14. Ramo Rao, V.V., "On a Common Abstraction of Boolean-rings and Lattice Ordered Groups II", Monat. Fur. Math. (1969).
15. Ramo Rao. V.V., "On a common Abstraction of Boolean-rings and Lattice Ordered groups I", Monat. Fury Math., 73 (1969).
16. Raul, Paddilla, "Smarandache Algebraic Structures", Universidade-do Minho, Portugal (1999).
17. Raul, Paddilla, "Smarandache Algebraic Structure", Delhi, India, Vol. 17E (1998).
18. Raul, Paddilla, "Smarandache Algebraic Structures", USA,, Vol. 9 Summer (1998).
19. Maddux, Roger D., "Boolean algebras", Studies in logic and foundations of Mathematics, Vol. 150, Pages 233-288 (2006).
20. Turkey, Houssein El., "Generalizations of Boolean rings", The American University of Beirut, Lebanon, June (2008).
21. Smarandache, Florentin, "Special Algebraic Structures", University of New Mexico, USA (1991).
22. Wyler, O., "Clans", Comp. Math., 17.
