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In this paper we introduced Smarandache-2-algebraic 
structure of Boolean-near-ring namely Smarandache-
Boolean-near-ring.  A Smarandache-2-algebraic structure 
on a set N means a weak algebraic structure A0 on N such 
that there exist a proper subset M of N, which is embedded 
with a stronger algebraic structure A1, stronger algebraic 
structure means satisfying more axioms, by proper subset 
one understands a subset different from the empty set, 
from the unit element if any, from the whole set.  We define 
Smarandache-Boolean-near-ring and obtain some of its 
characterization through Boolean-ring and Lattice Ordered 
groups II. For basic concept of near-ring we refer to G. 
Pliz.  
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INTRODUCTION 

The study of Boolean-near-ring is one of the generalized structure of rings.  The study 

and research on near-rings is very systematic and continuous.  Near-rings newsletters 
containing complete and updated bibliography on the subject of near-rings are published 
periodically by a team of editors. Then motivated by several researchers we wish to study and 
analyse the substructure in Smarandache-near-rings.  The substructure in near-rings play vital 
role in the study of near-rings. Unlike other algebraic structure we see in case of near-rings we 
have the substructure playing vital role in the study and analyse of near-rings.  Apart from the 
sub near-rings and ideals of near-rings we have special substructure like N-groups, filter and 
modularity in near-rings.  It is these study in the context of Smarandache-Boolean-near-rings 
will yield several interesting results.  Also the Smarandache substructure in  Boolean-near-
rings will also yield very many results in the direction.    
 For the study we would be using the book of Pilz Gunter, Near-rings (1997) published by 
North Holland Press, Amesterdam [10], Special Algebraic Structure by Florentin 
Smarandache, University of New Mexico, USA (1991) [18], Smarandache Algebraic Structure 
by Raul Padilla, Universidade do Minho, Portugal (1999) [13], Blackett [3] discusses the near-
ring of affine transformations on a vector space where the near-ring  has a unique maximal 
ideal.  Gonshor [8] defines abstract of affine near-rings and completely determines the lattice 
of ideals for these near-rings.  The near-rings of differential transformations is seen in [4].  For 
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near-rings with geometric interpretation [10]  or  [18] and several research papers on Boolean-
near-rings.  We would first study and characterize the ideals and sub Boolean-near-rings in 
Smarandache-Boolean-near-rings.  Also to study and analyse those Boolean-near-rings, which 
are Smarandache-Boolean-near-ring and find the conditions for Smarandache-boolean-near-
rings.  Yet another major substructure in Boolean-near-rings is the notion of filters.  We would 
extend and study the notion of Smarandache filters given in Smarandache-Boolean-near-rings. 

Further the notion of Smarandache ideals in near-ring would be studied, characterized and 
analysed for Smarandache-Boolean-near-rings.  Both the notions viz. N-groups and ideals in 
near-ring and Smarandache-boolean-near-rings would be compared and contrasted.  Also the 
nice notion of modularity in near-rings, which are basically built using concepts of 
idempotents, will be studied and analysed in Smarandache modularity in Boolean-near-ring. 

Finally, Smarandache-Boolean-near-rings has constructed from Boolean-ring by an 
algorithmic approach through its substructures and Smarandache-Boolean-near-ring has 
introduced some application.  

In order that New notions are introduced in algebra to better study the congruence in 
number theory by Florentin Smarandache [18].  By <proper subset> of a set A we consider a 
set P included in A, and different from A, different form the empty set, and from the unit 
element in A – if any they rank the algebraic structures using an order relationship: 

They say that the algebraic structures S1 << S2 if: both are defined on the same set;: all S1 
laws are also S2 laws; all axioms of an S1 law are accomplished by the corresponding S2 law; 
S2 law accomplish strictly more axioms that S1 laws, or S2 has more laws than S1. 

For example : Semi group >> Monoid << group << ring << field, or Semi group << 
commutative semi group, ring << unitary, ring etc. They define a General special structure to 
be a structure SM on a set A, different form a  structure SN, such that a proper subset of A is an 
structure, where SM << SN > 

PRELIMINARIES  

Definition 1.1. A left near-ring A is a system with two binary operations, addition and 

multiplication, such that 

(i) The elements of A form a group (A, +) under addition, 

(ii) The elements of A form a multiplicative semi-group, 

(iii) x (y + z) = xy + xz, for all x, y, z  A  

In particular, if A contains a multiplicative semi-group S whose elements generate (A, +) 
and satisfy  

(iv) (x + y) s = xs + ys, for all x, y  A and s  S, then we say that A is a distributively 
generated near-ring.      

Definition 1.2. A near-ring (B, +, .) is Boolean-Near-Ring if there exists a Boolean-ring 
(A, +, Λ, 1) with identity such that . is defined in terms of +, Λ and 1, and for any b  B, 

     b.b = b 

Definition 1.3. A near-ring (B, +, .) is said to be idempotent if x2 = x, for all x  B.  If    
(B, +, .) is an idempotent ring, then for all a, b  B, 

     a + a = 0    and    a.b = b.a 
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Definition 1.4.  A Boolean-near-ring (B, +, .) is said to be Smarandache-Boolean-near-
ring whose proper subset A is a Boolean-ring with respect to same induced operation of B. 

Definition 1.5. A lattice A = (A : , ) with a binary operation ‘–’ is called a Boolean -l-
algebra if it satisfies the following properties : 

(i) a  b – c = (a – c)  (b – c) 

(ii) a – (b  c) = (a – b)  (a – c) and  

  a – (b  c) = (a – b)  (a – c) 

(iii) If a ≤ b then c – b = (c – a) – (b – a) 

(iv) If a ≥ b  c then a – b ≥ a – c implies c ≥ b, for all a, b, c  A 

Definition 1.6. A boolean-ring (B, , +, –) is called a Boolean-l-algebra if we define       
a – b = a + a  b. 

Definition 1.7. Any Dually Residuated lattice Semi-group A is a Boolean-l-algebra if it 
satisfies the following conditions : 

(i) a – (b  c) = (a – b)  (a – c) 

(ii) a ≥ b  c and a – b ≥ a – c then c ≥ b for all a, b, c  A. 

MAIN THEOREMS ON SMARANDACHE-BOOLEAN-NEAR-RING WITH 

BOOLEAN-L-ALGEBRA 

Theorem 2.1. Let (B; , , +, –) is a Boolean-near-ring, B is a Smarandache-Boolean-

near-ring if and only if there exists a proper subset (A, , , +, –)  of B with a – b = a + a  b 
satisfies x ≤ a implies x  (a – x) = 0 

Part I : Assume that (B; , , +, –) is a Smarandache-Boolean-near-ring, then by 
definition, there exists a proper subset (A, , , +, –) of B which is a Boolean-ring. 

Proof : Since (A, , , +, –) is a Boolean-ring with a – b = a + a  b, then we have x ≤ a 
implies x  (a – x) = 0. 

The first part is clear, automatically. 

Part II : Assume that there exists a proper subset (A, , , +, –) of B with a – b = a +     
a  b satisfies x ≤ a implies x  (a – x) = 0. 

Prove that B is a Smarandache-Boolean-near-ring. 

It is enough to prove that A is a Boolean-ring. 

Proof: First we will prove that 0 is the least example of A. 

Since x ≤ a, for all a A 

For, a ≤ a,  for all a  A 

      0 = x  (a – x) = a  (a – a) [by our hypothesis] 

               = a ∩ 0 

 a – 0 = a, since a ≥ 0 then a – 0 = a, for all a A. 

 Secondly, we will prove that if x ≤ a then a – x = (a – x) – x 

For if x ≤ a then   a – x = (a – x) – {(a – x)  x} [since a – (a  b) = (a  b) – b] 
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               = {(a – x) – (a – x)} {(a – x) – x} 

               = 0  {(a – x) – x} 

Therefore,            a – x = (a – x) – x,    if x ≤ a.  

Next to prove that x  (a – x) = a, if x ≤ a. 

    For {x  (a – x)} – x = (x – x)  {(a – x) – x} [since a  (b – c) = (a – c)  (b – c)] 

             = 0  {(a – x) – x} 

                       = ((a – x) – x) [since (a – x) – x = (a – x), if x ≤ a]  

             = a – x 

 {x  (a – x)} – x = a – x [since 0 is the least element of A] 

It follows that,  x  (a – x) = a 

Finally our aim is to show that A is a Boolean-ring. 

If A is distributive and let x < z < y, then 

         z  {x  (y – z)} = (z  x)  {z  (y – z)} [since A is distributive, a, b, c  A and                                                   

      a  (b  c) = (a  b)  (a  c)] 

                        = (z  x)  0 [by hypothesis] 

                        = z  x 

                      = x, if x < z < y 

and, z  {x   (y – z)} = x  z  (y – z) [since A is a distributive lattice then a  b = a  c 
and a  b = a  c which implies b = c for all a, b, c  A] 

     = x  {z  (y – z)} [since x  ≤  a implies x  (a – x) = a] 

                = y 

 z  {x  (y – z)} = y  

Hence A is a relatively complemented and therefore A is a Boolean-ring and it follows 
that B is a Smarandache-Boolean-ring. 

Theorem 2.2. Let (B; , , +, –) is a Boolean-near-ring, B is a Smarandache-Boolean-
Near-ring if and only if there exists a proper subset of (A; , , +, –) of B with a – b = a +     
a  b which is a Boolean-l-algebra, for each a and b  A. 

Part I : Assume that  

(i)  B is a Boolean-near-ring and  

(ii) There exists a proper subset A of B with a – b = a + a  b which is a Boolean-l-
algebra. 

To prove that, B is a Smarandache-Boolean-Near-ring 

It is enough to prove that A is a Boolean ring. 

Proof : If x ≤ a then  a = a  x 

     =  x  (a – x), [since x ≤ a] 

Since (A; , , +, –) is a Boolean-l-algebra and by known theorem 1, 
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“Let (B; , , +, –) is a Boolean-near-ring, B is a Smarandache-Boolean-near-ring if and 
only if there exists a proper subset (A; , , +, –) of B with a – b = a + a  b satisfies x ≤ a 
implies x  (a – x) = 0” 

Also,                    a – x = {x  (a – x)} – x [by theorem 1] 

     = (a – x) – {x  (a – x)} [since (a  b) – a = b – (a  b)] 

                     a – x = (a – x) – {x  (a – x)}, for each a  A. 

Since, by theorem 1, 

If x ≤ a implies x  (a – x) = 0 then it follows that A is a Boolean-ring. 

Hence B is a Smarandache-Boolean-Near-Ring. 

Part II : Suppose (B; , , +, –) is a Smarandache-Boolean-Near-Ring. 

Then to prove that there exists a proper subset (A; , , +, –) of B with  

                    a – b = a + a  b which is a Boolean-l-algebra. 

Proof : Since, there exists a proper subset A of B which is a Boolean-Ring and x ≤ a 
implies x  (a – x) = 0. 

Now,   a – x = (a – x) – 0 

        a – x = (a – x) – {x  (a – x)} 

        a – x = {x  (a – x)} – x [since b – (a  b) = (a  b) – a] 

Further, if x ≤ a then 

     a = x  (a – x) [by theorem 1 and x ≤ a] 

     a = a  x 

It follows that (A; , , +, –) is a Boolean-l-algebra. 

Theorem 2.3. Let (B; , , +, –) is a Boolean-near-ring, there exists a proper subset     
(A, , , +, –) of B which is a Boolean-l-algebra in which a – a  b  c = a implies a  b  
c = 0. Then B is a Smarandache-Boolean-Near-Ring. 

Assume that (B; , , +, –)  is a Boolean-near-ring and there exists a proper subset       
(A; , , +, –) of B which is a Boolean-l-algebra with a – a b  c = a implies a  b  c = 0. 

Then to prove that B is a Smarandache-Boolean-Near-Ring. 

It is sufficient to prove that A is a Boolean-ring. 

Proof: First we will show that, if  x ≤ a then  x  (a – x) = a 

For,   {x  (a – x)} – x = (x – x)  {(a – x) – x}  

[By the result a  (b – c) = (a – c)  (b – c)] 

     = 0 {(a – x) – x} 

     = {(a – x) – x} [By if  x ≤ a then (a – x) – x = a – x] 

     = a – x 

       {x  (a – x)} – x = a – x 

               x  (a – x) = a, for all x ≤ a 

If 0 ≤ x ≤ a then 
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      a – a  x  (a – x) = {a – (a  x)}  {a – (a – x)} 

            = (a – x)  {a – (a – x)} 

            = (a – x)  a 

            = a,      for all a  A. 

By known theorem 1, 

“Let (B; , , +, –) be a Boolean-near-ring; B is a Smarandache-Boolean-Near-Ring if 
there exists a proper subset A of B with a – b = a + a  b satisfies x ≤ a implies x  (a – x) = 
0” 

Hence x  (a – x) = 0 and so that x  (a – x) = a. 

 A is section complemented and a Boolean-ring. 

 B is a Smarandache-Boolean-Near-Ring. 

Theorem 2.4. Let (B; , , +, –) be a Smarandache-Boolean-Near-Ring if and only if 
there exists A = (A; , , +, –) is a Dually Residuated lattice ordered semi-group with             
         a – (b  c) = (a – b)  (a – c), where A is a proper subset of B. 

Part I : Assume A is a Dually Residuated lattice ordered semi-group with  

     a – (b  c) = (a – b)  (a – c) 

Then to prove that B is a Smarandache-Boolean-Near-Ring. 

We need to prove A is a Boolean-ring. 

Proof: By theorem 1, 

“Let (B; , , +, –) is a Boolean-near-ring. Then B is a Smarandache-Boolean-Near-Ring 
if and only if there exists a proper subset (A, , , +, –) of B with a – b = a + a  b satisfies    
x ≤ a implies x  (a – x) = 0”. 

Then we have, A is a Boolean-ring. Hence B is a Smarandache-Boolean-Near-Ring. 

Part II : Assume that B is a Smarandache-Boolean-Near-Ring. 

Proof: Since (A; , , +, –) is a Dually Residuated lattice ordered semi-group then       
(A; , , +, –) is a Boolean-l-algebra. 

Then we need to prove A is a Boolean-l-algebra, using A is clean. 

Let Σ = {(a, b)  A × A/a ≤ b} and let σ : Σ  A be defined by σ (a, b) = b – a. 

And, let C1 , C2, C3, C4 and C7 are satisfied in A by using clan [9]. 

  A is a Boolean-l-algebra. 

Theorem 2.5. Let B is a Boolean-l-algebra with a – (b  c) = (a – b)  (a – c), there exist 
a proper subset A is a Boolean-ring. Then B is a Smarandache-Boolean-Near-Ring, if it 
following are equivalent : 

(i) B is a Boolean-ring. 

(ii) (a, b, c) A iff (a, b, c) B 

(iii) (a, b, c) B and (a, c, b) B imply b = c 

(iv) Metric betweenness has transitivity t1. 
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Proof : Proof  for (i)   (ii) : 

We can assume a ≥ c, then a = (a – c) + c = a*b + b*c + c  

             ≥ (b – a) + (b – c) + c ≥ (b – a) + b. 

and by using definition 6, 0 – (b – a) = b – {b + (b – a)} ≥ b – a (or) a ≥ b. 

So that by the property (iv) of definition 6, b ≥ c, since a – c ≥ a – b (or) (a, b, c) A 

Let a  c ≥ b ≥ a  c, then, 

                       a*c = a  c – a  c 

                     = (a  c – b) + (b – a  c) 

                     = (a  c*b) + (b*a  c) 

                     = a*b + b*c [By using (a, b, c) B   (a  c, b, a  c) B] 

Hence (a, b, c) B. 

Proof of (ii)   (iv) : 

This proof is obvious. 

Proof of (i)   (iii) : 

Assume that B is a Boolean-ring.  

Prove that (a, b, c) B and (a, c, b) B   b – c. 

Let (a, b, c) B and (a, c, b) B, we need to prove b = c. 

Then a  c ≥ b ≥ a  c and a  b ≥ c ≥ a  b 

Hence a  b = a  c  and a  b = a  c so that b = c. 

Proof of (iii)   (i) : 

Let a ≥ b  c and a – b ≥ a – c 

Since (a, b, b  c) A, we have 

       a*b  c + b  c*b = a – (b  c) + (b – b  c) 

          = (a – b) + b – b  c 

          = a*b + b*b  c [since (a, b, c) B   a*b + b*c = a*c] 

           = a*b  c  

           = a – (b  c) 

           = a – b 

           = a*c, so that (a, b  c, b) B 

Hence                  b  c = b (or) c ≥ b  

Therefore, the condition (iv) of definition 1, holds in A and consequently, A is a Boolean-
ring. 

SOME DEFINITIONS AND THEOREMS ON SMARANDACHE-BOOLEAN-

NEAR-RINGS 

Definition  3.1. A normal sub group (I, +) of (B, +) is a left ideal if B I  I and is an 

ideal If (I, +, .) is the kernel of a near-ring homomorphism. 

Definition  3.2. A Special Boolean-near-ring (B, +, .) and b  B, define  
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     P(b) = {a  B/a  b = a} 

If A  B  and b  B, define A (b) = {a  b/a  A} and A (b)  P(b). 

Theorem 3.3. Let (B, +, , 1) be a Boolean-near-ring whose proper subset (A,+, , 1) be 
a Boolean-ring with identity.  Fix x  B and define a multiplication on B by a.b = (a  x)  b. 

Then (B, +, .) is a Smarandache-Boolean-Near-ring if any only if x = 0. 

Part I : Assume that (B, +, .) is a Smarandache-Boolean-near-ring. 

(i.e.) A Boolean-near-ring (B, +, .) which is a Boolean-ring. 

We want to show that x = 0.  For a, b and c  B, we have 

Proof : 

                         a.(b.c)  =  (a  x)  [(b  x)  c] 

                          a.(b.c) = [(a  x)  (b  x)]  c   and, 

                          (a.b).c = {[(a  x)  b]  x}  c 

     =  {(ax) (b x)}  c 

 So that              a.(b.c) = (a.b).c 

Also to show that the distributive under multiplication : 

  (i.e.) to show that a.(b + c) = (a.b) + (a.c) 

For all a, b and c  B, then 

                       a.(b + c) = (a  x)  (b + c) 

     =  [(ax) b]+ [(ax) c] 

     =  (a.b)+ (a.c) 

             a.(b + c)  = (a.b) + (a.c), for all a, b, c  B, 

Hence x = 0. 

Part II : Consider x = 0, for all x  B. 

Then to prove that (B, +, .) is a Smarandache-boolean-near-ring. 

If x = 0 then to prove that (B, +, .)  =  (B, +, , 1). 

It is enough to prove that the proper subset A of B is a Boolean-ring. 

Proof : Since by the definition of idempotent and idempotent ring then for x  B, an 
arbitrary idempotent element. 

               (x + x).x = 0.x (Since by definition of idempotent ring) 

     = (0  x)  x 

     = (x  x) 

     (x + x).x = x 

and                   (x.x) + (x.x) = x + x 

     (x + x).x = 0 

Hence the right distributivity under multiplication is satisfied,  

so that     (B, +, .) is not a ring, if x ≠ 0 
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Also     b.b = (b  x)  b 

     b.b = b,  for all x  B 

Hence (B, +, .) is a Smarandache-Boolean-near-ring.  

Theorem  3.4. Let I be an Ideal of Boolean-near-ring (B, +, .).  Then B is a Smarandache-
Boolean- near-ring if and only if P (x)  I. 

Part I : We assume that B is a Smarandache-Boolean-near-ring. 

Proof : Since B is a Smarandache-Boolean-near-ring, then by the definition, a proper 
subset is Boolean-ring, B/I is such a proper subset. 

Therefore, B/I is a Boolean-ring. 

Then the right distributive law holds so that, 

 [(a + I) + (b + I)] (c + I) = [(a + I) (c + I)] + [(b + I) (c + I) … (1) 

Thus, 

              (a + b).c + I = (a.c + b.c) + I 

If a, b and c  B, then 

  (a + b).c + a.c + b.c = {[(a + b)  x + (a  x) + (b  x)]}  c 

Now, 

(a + b)  x + (a  x) + (b  x) = (a + b) x + {[(a  x)  b  x)  (a  x  (b  x)]} 

     = (a + b) x + (a + b)  x 

     = {[(a + b) x]  [(a + b)  x]}  {[(a + b) x]  [(a + b)  x]} 

     = {[(a + b)  [(a + b)] x}  {[(a + b) x] [(a + b)  x]} 

     = (0  x)  (0  x) 

     = x 

Hence (a + b).c + a.c + b.c = x  c  I … (2) 

Since c is arbitrary, we have  P (x)  I 

Then to prove that B is a Smarandache-Boolean-near-ring. 

Proof : Let B/I is proper subset of Boolean-near-ring (B, +, .) 

To prove that B/I is a Boolean-ring. 

Since P (x)  I, then the equation (1) is valid if any only if (a + b).c + a.c + b.c  I 

Hence B/I is a Boolean-ring. 

Thus, every proper subset of B is a Boolean- ring and therefore B is a Smarandache- 
Boolean- near- ring. 
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