ON Pgpr α -CLOSED SETS, Pgpr α -OPEN SETS AND Pgpr α -CONTINUOUS MAP WITH TOPOLOGICAL SPACES

S. SHIV KUMAR

Asstt. Prof. of Mathematics, Shree Raghavendra Arts & Science College, Keezhamoongiladi–608102 (T.N.), India N. SELVI

Asstt. Prof. of Mathematics, A.D.M. College for Women (Autonomous), Nagapattinam-611001 (T.N.), India

AND

R. APPARSAMY

Asstt. Prof. of Mathematics, Shree Raghavendra Arts & Science College, Keezhamoongiladi–608102 (T.N.), India RECEIVED : 26 April, 2013

A set *A* in a topological space (X, τ) is said to be a regular generalized α -closed if $\alpha cl(A) \subset U$. Whenever $A \subset U$ and *U* is a regular α -open in *X*. In this paper we introduce $pgpr \alpha$ - closed sets, pgpr α -open sets from a topological spaces.

KEYWORDS : $pgpr \alpha$ -closed sets, $pgpr \alpha$ -open sets and $pgpr \alpha$ -continuous functions.

INTRODUCTION

Regular closed set have been introduced and studied by Palaniappan [6]. On pre generalized pre regular closed sets have been introduced an studied by Anitha [1]. On *pgpr* Regular and *pgpr* normal spaces have been introduced and Studied by Gnanachandra [2]. Generalized closed maps were introduced and studied by Malghan [5]. We also obtain some properties of *pgpr* α -closed mappings.

Let us recall the following which we shall require later.

Definition 1.1. A subset A of a space (X, τ) is called generalized closed set (briefly gclosed) [4] if Cl $(A) \subseteq U$. Whenever $A \subseteq U$ and U is open in X.

Definition 1.2. Regular generalized closed set (briefly *rg*-closed [6] if Cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

Definition 1.3. Generalized pre regular closed set (briefly *gpr*-closed) [3] if $pCl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

P*gpr* α -closed sets and *pgpr* α -open sets

We introduce the following definitions

Definition 2.1. Let (X, τ) be a topological space and $A \subseteq U$. Then A is pre generalized pre regular α -closed (briefly *pgpr* closed) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is *rg* α -open.

Definition 2.2. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called *pgpr* α -open if the image of each open set in *X* is a *pgpr* α -open set in *Y*.

Definition 2.3. If $f: (X, \tau) \to (Y, \sigma)$ then f is $pgpr \alpha$ -continuous if for each open subset V of y the set $f^{-1}(V)$ is an $pgpr \alpha$ -open subset of X.

Example: Let $X = Y = Z = \{a, b, c\}, = P(X), \sigma = \{Y, \emptyset, \{e\}, \{a, b\}\},$

 $\eta = \{Z, \phi, \{a\}, \{b\}, \{a, b\}\}.$

Define $f:(X,\tau) \to (Y,\sigma)$ by f(a) = a, f(b) = b, f(c) = c and $g:(Y,\sigma) \to (Z,\eta)$ be the identity map. Then f and g are pgpr α -closed maps, but their composition $g \cdot f:(X,\tau) \to (Z,\eta)$ is not pgpr α -closed map because $F = \{a\}$ is closed in (X,τ) but $g \cdot f(F) = g.f(\{a\}) = g(f(\{a\})) = g(\{a\}) = \{a\}$ which is not pgpr α -closed in (Z,η) .

Theorem 1. If $f:(X,\tau) \to (Y,\sigma) pgpr \alpha$ -open iff for any subset S of (Y,σ) and any closed set F of (X,τ) containing $f^{-1}(S)$ there exist a pgpr α -closed set K of (Y,σ) containing S such that $f^{-1}(K) \subset F$.

Proof: Suppose *f* is *pgpr* α -open set. Let *S* be a subset of (Y, σ) and *F* be a closed set of (X, τ) such that $f^{-1}(S) \subset F$. Then *X*-*F* is open in (X, τ) since *f* is *pgpr* α - open in (Y, σ) . That implies $f[(X - f)]^C$ is *pgpr* α - closed in (Y, σ) .

Take
$$K = [f(X - f)]^C$$
. Then K in a pgpr α -close set in (Y, σ) . Now $f^{-1}(S) \subset F$
 $\Rightarrow X - F \subset [f^{-1}(S)]^C = f^{-1}(S^C)$. $\Rightarrow f(X - F) \subset f(f^{-1}(S^C)) \subset S^C$.
 $\Rightarrow S \subset [f(X - F)]^C = K$.
Also $f^{-1}(K) = f^{-1}[f(X - F)]^C = f^{-1}[Y - f(X - F)] = X - f^{-1}[f(X - F)] \subset F$,

conversely let U be a open set of (X, τ) . Then V is closed in (X, τ) and $f^{-1}[f(U)^C] \subset U^C$. By hypothesis there exist a *pgpr* α -closed set K of (Y, σ) . Such that $[f(U)]^C \subset K$ and $f^{-1}(K) \subset U^C$.

Now
$$[f(U)^c] \subset K \Longrightarrow K^c \subset f(U)$$
 ... (1)

Also

$$f^{-1}(K) \subset U^{\mathcal{C}} \Longrightarrow U \subset [f^{-1}(K)]^{\mathcal{C}} = f^{-1}(K^{\mathcal{C}})$$
$$\Longrightarrow f(U) \subset f[f^{-1}(K^{\mathcal{C}})] \subset K^{\mathcal{C}} \qquad \dots (2)$$

From (1) and (2) $f(U) = K^{C}$.

Hence f(U) is pgpr α -open in (Y, σ) and hence f is pgpr α -open.

Theorem 2. Let *X* and *Y* be topological spaces If $f: x \to y$ then the following are

- 1. f is $pgpr \alpha$ -continuous.
- 2. For every subset A of $X(\overline{A}) \subset \overline{f(A)}$.
- 3. For every closed set B of Y the set $f^{-1}(B)$ pgpr α -closed in X.
- 4. For Each $x \in X$ and each neighbourhood V of f(x) there is a neighbourhood U of x such that $f(U) \subset V$. For the point x of X we say that f is pgpr α -continuous at the point x.

Proof: (1) \Rightarrow (2) Assume that f is $pgpr \alpha$ -continuous. Let A be a subset of X we show that if $x \in \overline{A}$ then $(x) \in \overline{f(A)}$. Let V be neitghbourhood of f(x). The $f^{-1}(V)$ is an $pgpr \alpha$ -open set of X containing x it must intersect A in some point y. Then V intersects f(A) in the point f(y) so that $f(x) \in \overline{f(A)}$.

(2) \Rightarrow (3) Let *B* be *pgpr* α -closed in *Y* and Let $A = f^{-1}(B)$. We prove that *A* is *pgpr* α -closed in *X*. We show that $\overline{A} = A$. We have $f(A) = f[f^{-1}(B)] \subset B$.

$$\therefore \quad \text{if } x \in \overline{A}. \ f(x) \in f(\overline{A}) \subset \overline{f(A)} \subset \overline{B} = B. \text{ So that } x \in f^{-1}(B) = A. \text{ Thus } \overline{A} \subset A.$$

So that $\overline{A} = A$

 $(3) \Longrightarrow (1)$. Let *V* an open set of *Y*.

Set B = Y - V. Then $f^{-1}(B) = f^{-1}(Y) - f^{-1}(V) = X - f^{-1}(V)$

Now B is a pgpr α -closed set of Y. Then $f^{-1}(B)$ is pgpr α -closed in X. So that $f^{-1}(V)$ is pgpr α -Open in X.

(1) \Rightarrow (4). Let $x \in X$ and let V be a neighbourhood of f(x) then the set

 $U = f^{-1}(V)$ is neighbourhood of x such that $f(U) \subset V$.

(4) \Rightarrow (1). Let V be a open set of Y. Let x be a point of $f^{-1}(V)$ then $f(x) \in V$

 $U_x \subset f^{-1}(V)$ If follows that $f^{-1}(V)$ can be union of open set U_x is pgpr α -open.

Theorem 3: If $f: (X, \tau) \to (Y, \sigma)$ is closed map and $g: (Y, \sigma) \to (Z, \eta)$ is pgpr α -closed then the composition. If $g \cdot f: (X, \tau) \to (Z, \eta)$ is pgpr α -closed map.

Proof: Let *F* be any closed set in (X, τ) . Since *f* is closed map f(F) is closed set in (Y, σ) . Since g is *pgpr* α -closed map g[f(F)] is *pgpr* α -closed set in (Z, η) .

i.e. g.f(F) = g[f(F)] is $pgpr \alpha$ -closed and g.f is $pgpr \alpha$ -closed map.

Theorem 4: Let $(X, \tau), (Z, \eta)$ be topological spaces and (Y, σ) be Topological Spaces where every *pgpr* α -closed subset is closed. Then the composition $g \cdot f: (X, \tau) \to (Z, \eta)$ of the *pgpr* α -closed maps $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ is *pgpr* α -closed.

Proof: Let A be a closed set of (X, τ) . Since f is $pgpr \alpha$ -closed. f(A) is $pgpr \alpha$ -closed in (Y, σ) . Then by hypothesis. f(A) is closed. Since g is $pgpr \alpha$ -closed. g(f(A)) is $pgpr \alpha$ -closed in (Z, η) and $g(f(A)) = g \cdot f(A)$. $\therefore g \cdot f pgpr \alpha$ -closed.

Conclusion

In this paper $pgpr \alpha$ -closed sets, $pgpr \alpha$ -open sets and the $pgpr \alpha$ -continuous map. Can be further characterized by using concept of Topological Spaces.

Reference

- Anitha, M. and Thangavel, P., On pre-generalized. Pre-regular closed sets, *Acta Ciencia Indica*, XXXI M, No. 4, 1035-1040 (2005).
- Gnanachandra and Thangavelu, P., On pgpr Regular and pgpr-normal spaces, Acta Ciencia Indica, XXXVIII M, No. 1, 19-25 (2012).
- Gnanambal, Y. and Balachandran, K., On gpr continuous functions in topological spaces, Indian J. Pure Appl. Math, 30(6), 581-593 (1999).
- 4. Levine, N., Generalized Closed in Topology, Rend. Circ. Mat. Palermo, 19, 89-96 (1970).
- 5. Malghan, S.R., Generalized Closed Maps, J. Karnatk Univ. Sci., 27, 82-88 (1982).
- Palaniappan, N. and Rao, K.C., Regular Generalized Closed Sets, *Kyungpook. Maltes J.*, 33, 211-219 (1993).
- 7. Vadivel, V. and Vairamanickam, $rg \alpha closed$ sets and $rg \alpha$ -open sets in Topological Spaces, *Int. Journal of Math Analysis*, Vol. **3**, No. **37**, 1803-1819 (2009).