
Acta Ciencia Indica, Vol. XL M, No. 1 (2014) 21 

 A NOTE ON ECCENTRIC IRRATIONAL NUMBERS 
 

ANAMOL KUMAR LAL
 

Assistant Professor, Department of Mathematics, Marwari College, Ranchi. Jharkhand (India) 

RECEIVED : 13 May, 2013 

The Problem of approximation of an irrational number ‘’ 
has been discussed on this  paper, by confining the study 
upto approximation of quadratic irrationals only. Three 
theorems have been proved  in order to search for an 
irrational number which defy finite number of  
approximation. These irrational numbers will  be called 
eccentric irrational numbers. 
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NOMENCLATURE 

         = irrational number 

      
p

q
 = any rational number 

         = any positive real  number 

     

n

n

p

q
= thn convergent to  

INTRODUCTION 

Given any irrational number , there arises a natural question that how closely or with 

what degree of accuracy, it can be approximated by rational number. This key question has 
been the subject of Mathematical Research  for over five decades. Hurwitz [1] was Probably 
the first to study about this rational  approximation of irrational numbers. 

The rational approximation of irrational numbers has been studied by many authors. 
Recently M. Abrate et al [2] Studied on Periodic representations and rational approximations 
of square root. M. B. Nathanson et. al. [3] worked  on irrational numbers which are associated  
to sequences without geometric progressions. T. Z. Kalanov [4] analysed critically a problem 
of irrational numbers with Pythagorean theorem. T. Zachariades [5] Studied comprehensively 
about irrational numbers and real numbers in his work entitled “Reflective, Systematic and 
Analytic thinking in real numbers. M. Aigner [6] carried out a descriptive study on 
approximation of irrational numbers. F. Afzal et. al [7] tried to classify different real quadratic 
irrationals. M. A. Malik et al [8] applied modular group action on real quadratic  irrationals. C. 
Elsner [9] obtained a series of error terms for rational approximations of irrational numbers. 
Icoltescu et al [10] developed a new type of continued fraction expansion. 

N. J. Wild Berger [11] studied pell’s equation without irrational numbers. A yavari et al 
[12] did a practical research on randomness of digits of binary expansion of irrational 
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numbers. M. G. Voskoglow et. al. [13] and V. Bilo et. al. [14] studied on the complexity 
which arise in approximating rational and irrational numbers.  

While working on some finite approximation problem we  encountered some irrational 

numbers θ  such that : given any 0,   the inequality. 

     
2

1
;( , ) 1,

p
p q

q q
   


 0q >  

has either infinity of solutions in p/q or no solution in p/q. Solutions p/q are called 
approximations of . So the ’s in reference defy finite (> 0) number of approximations.  We 

call them eccentric irrational numbers. For instance, it can be  easily checked that [ ]0, (2,1)*  is 

a eccentric irrational number where as [ ]0, (1, 2)*  is not an eccentric  irrational. Note that 

[ ]0, (2,1)* [ ]0, (1,2)* .  This means that “eccentric behaviour” is not preserved under 

equivalence of irrational  numbers. This makes it difficult and interesting to characterize the 
eccentric irrationals.. For the sake of convenience we confine to quadratic irrationals only and 
find : 

(a) a necessary condition for a quadratic irrational number to be eccentric. 

(b) a characterization of eccentric quadratic irrational of least period length 2. 

Our findings are :- 

Theorem 1. If   is an eccentric quadratic irrational then the least period of the simple 
continued fraction expansion of  must contain an even number of quotients. 

Theorem 2. [0, (a, b)*] is an eccentric irrational number iff a > b. 

Theorem 3. *
1 2[0. . .............. .( . ) ].p pc c c a b c b    is a eccentric irrational number iff 

  * *" ,  and ( ) [0, ( , ) ] [( , ) ]   = 1, 2, ........,p"p ic b a b M a b b a i       

Or, 

      * *" ,  and ( ) [0, ( , ) ] [( , ) ]   = 1, 2, ........, "p ic b a b M a b b a i p       

where  0 1 2 1 1 1 1 2( [ . , ...... , ........]) [0, , ...... ] [ , .......]i i i i i i iM a a a a a a a a a a        

GROUND WORK 

We use the following three results [15, Theorem 184] on simple continued fraction 

quite often. 

(R.1) Suppose 0 1 2[ , . ,............., ...............]na a a a  . Then 
2

1

( )

n

n n n

P

q M q
 


  

where           0 1 2[ , , ,........., ]n
n

n

P
a a a a

q
  the thn  convergent to    

and   1 1 1 2( )  [0,  , ,....., ] [ ,  ,.......]n n n n nM a a a a a    
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(R.2) If θ  is an irrational number, 2  and 
2

1p

q q
  


 with 0q >  and ( ,  ) 1p q =  

then  
p

q
 must be a convergent to .  

(R.3)  If k is even and k ka b  then 

  0 1 2 1 1 0 1 2 1 1[ , , ,...., , , ,....] [ , , ,...., , , ,....]k k k k k ka a a a a a a a a a b b     & if k is odd  

and   k ka b  then 0 1 2 1 1 0 1 2 1 1[ , , ,...., , , ,....] [ , , ,...., , , ,....]k k k k k ka a a a a a a a a a b b     

For given irrational number ,  let us introduce a constant ( )c   to mean that 

2

1

( )

p

q c q
  


 has exactly one solution in p/q with q > 0 and (p, q) = 1. Clearly ( )c   

exists if and only if  is not a  eccentric irrational number. 

We now state below the contraposed version of theorem 1, 2 and 3 which we shall prove 
in the next section. 

Theorem 1+ : If the least period of simple continued fraction expansion of   has an  odd 

number of quotients then ( )c   exists. 

Theorem 2+ :  For [0, ( , )*], ( ); ( )a b a b c     exists iff  a < b. 

Theorem 3+ : *
1 2  [0,  ,  ......... , ( ,  ) ],  p pc c c a b c b   is an eccentric irrational number 

iff. 

  * *" ,   and ( ) [0,  ( ,  ) ] [( ,  ) ] " 1, 2,........,  "p ic b a b M a b b a i p       

Or, 

  * *" ,   and ( ) [0,  ( ,  ) ]  [( ,  ) ]   1, 2,........,  "p ic b a b M a b b a i p        

where  0 1 2 1 1 1 1 2 (   [ , , ,...... ,  ....])  [0,  ,  .... ]  [ . ,....]i i i i i i iM a a a a a a a a a a        

Our proof requires a better understanding of ( ).c   And hence the following lemma.  

Lemma : Suppose 0 1 2[ , , ,......., ........].na a a a  . If ( )c   exists then ( ) 2c    and  

( ) max   ( )n
n

c M    

Proof  : As obtained in [1], If θ  is equivalent to 
(3 5)

[0,  (1)*],  ( )  2.
2

c


    So if 

( ) 2c    then for infinitely many values of   k, 1 2ka    

     ( ) 2kM     

     ( ) ( )kM c      

     
2 2

1 1

( ) ( )k

Pk

qk M qk c qk
   

 
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This contradicts the definition of ( )c   and hence ( ) 2.c    Now (R. 2) implies that any 

solution of  
2

1

( )

P

q c q
  


 must be a convergent to .  So ( ) max   ( ).n

n
c M    

PROOF OF THE THEOREM  

Proof of theorem 1+ : Suppose  

   1 2 1 2 2 1 2 1[0, , ,....... , ( , ,..... )*], ( ).p r p rb b b a a a b a      

Consider the Sequence 1 2( ),   ( ),  ..... ( ),.........p p p mM M M      We now subdivide this 

sequence in 4 2r    

Sub sequences : (0) (1) (2) (4 -3)
1 1 1 1{ } ,   { } ,   { } ,.....  { } .r

m m m m m m m ms s s s     

Here  ( ) ( )
(4 2) 1 2( )   0,  1,  2,.......,  4 3j jj

m p r m jS M F F j r          

where  ( )
2 1............. 2 1............. 1 2 1,......, 1 2 2 11 [0,  , ,  ,  ( ) , ,...., ]j

r j r r m pF a a a a a b b      

and ( )
1,........, 1, 1 2,........ 2 12   [ ,  ( ,  , )*]j

j j rF c c c a a a  where < 1,........, 1,,  j jc c c   is the portion of 

1st  j terms of the sequence 2  - 1 2 -2 1 2 1 2 -2 1 ,  ,......., ,  ,  ,.......,  .r r r ra a a a a a   

Since pb  is an odd quotient of (0)
1 ,F  if 2 1p rb a   the sequence (0){ }mS  monotonically 

decrease. Also since pb  become alternately an even and odd quotient in (1)
1 ,F (1)

2 ,F  etc.., the 

sequence (1){ },mS  the sequence (0){ },mS  (1){ }mS  and so on, alternately increase and decrease. 

Similarly if 2 1p rb a   it can be checked that the sequence  (0){ },mS   (1){ },mS  etc. alternately 

increase and decrease. So in (4 2)r   sub sequences  listed above (2 1)r   sub sequence are 

monotonically decreasing and the rest are monotonically increasing. Further it can be easily 

checked that the sequence (1){ }mS  and ( 2 1){ }i r
mS + -  where 0 2 2,i r    One sequence 

monotonically increase and other monotonically decreases to the same limit. We not pick the 

first term of each of (2 1)r -  decreasing sub sequences noted above. 

Let they be 0 1 2 2λ , λ , ...., .rλ -  Then 

                           0 1 2 2λ  max (λ , λ  ....., λ )r  

         
1

max  { ( )}n p
n

M 


   

So max 1 2{ ,  ( ),  ( ),  ......,   ( ) } max{ ( )} ( )p n
n

M M M M c         

This proves 1+  and hence theorem 1. 

Proof of theorem 2+ : Suppose   = *[0, ( , ) ],a b  (a ≠ b). 

Then         2 1( ) [0,  ,  ,  ( ,  ) ] [( ,  )*]m mM b a b a a b    
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and 2 1 1( ) [0,  ,  ( ,  ) ] [( ,  )*].m mM a b a b a     Clearly the sequence {M2m ( )}  monotonically 

increases to [(a, b)*] + [(b, a)*] = K (say) and the sequence {M2m ( )}  monotonically 

decreases to [0, (a, b)*] + [(b, a)*] = L (say) as m  .  We argue via two cases: 

Case 1. a > b. Then K > 2, K > L and M2 ( )  > M1 ( )  and hence ( )   1.nM K n     

So 
2

1n

n n

P

q Kq
    does not hold for any n   1. Since K > L. We infer that 

2

1P

q Kq
    has not solution in .

p

q
 But as all members of the sequence   2mM  from 

some point on, exceed ,K    0   however small, it follows that 
2

1

( )

p

q K q
  

 
 holds  

for infinitely many values of n or 
2

1

( )

p

q K q
  

 
 has infinitely many solution in .

p

q
 

Thus in this case ( )c   does not exists. 

Case 2. ,a b<  Then we have .K L<  So every term of the sequences 2 1{ ( )}mM    is 

greater than all the terms of 2{ ( )}.mM θ  Therefore in this case 1( ) max   ( )n
n

M θ M θ=  proving 

( )c θ  exists. 

This proves theorem 2+ and hence theorem 2 

Prove of Theorem 3+ : Suppose  *
1 2[0,  ,  ......... , ( ,  ) ];  (  and )p pc c c a b a b c b     

Let us consider the sequence 1 2( ),  ( ),...........p pM M   and its subsequences 

2{ ( )}p mM    and 2 1{ ( )};  1,  2 ...........p mM m     clearly.  

   * *
2 1( ) [0,  ( ,  ) ]  [( ,  ) ]p mM b a a b K      as m   

   * *
2 1( ) [0,  ( ,  ) ]  [( ,  ) ]p mM a b b a L      as m   

Now two cases arise : case (1) pc b and Case (2) pc b  

In case (1), the sequence  2{ ( )}p mM    monotonically decreases to K and

2 1{ ( )}p mM     monotonically increases to L. So if a > b, then K > L and

2
1

( ) max { ( )}p p n
n

M M 


    i.e. 1 2max ( ) max{ ( )....., ( ), ( )}n p p
n

M M M M       proving the 

existence of ( ),c   Otherwise if a < b, we have K < L and 2 1( ) ( ).P PM M     So max 

1 2 3{ ( ),  ( ),  ( ),........}P P PM M M      does not exist. Further if 1( ),  ....... ( )pM M   be each 

less than L, obviously max 1 1{ ( ),  .......... ( ),  ( ).......... ( ),........}p p nM M M M     does not 

exist disproving the existence of ( ).c   But if ( ),  ( ),....... j KM M   and ( )qM   exceed L 
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where { ,   ,...,  }  {1,  2,  .... }j k q p  than max { ( )}n
n

M   equals max 

{ ( ),  ( ),... ( )}j K qM M M    and then ( )c   exists. 

Case (2) requires the exactly similar treatment. This completes the proof of theorem.  
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