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Generalization of distributive ideal to convex subsemilattice
is called distributive convex subsemilattice or distributive
subsemilattice. This paper deals with the above concept
and the three characterization theorems (Theorems 3.1,
3.2 and 3.5) for distributive subsemilattice. The relation of
distributive subsemilattice with the distributive ideal,
standard ideal and neutral ideal is also established. Further
its relation with the congruence class is also established. It
is proved that the intersection of two distributive
subsemilattices is either a distributive subsemilattice or it is
empty.

InTRODUCTION

atzer, G., and Schmidt, E.T., have introduced and studied the concept of distributive

ideal, standard ideal and neutral ideal which are distributive elements, standard elements and
neutral elements respectively in the ideal lattice 7 (L) of a lattice L. Gratzer, G., has posed the
problem “Generalize the concept of distributive, standard and neutral ideals to convex
sublattice”. This problem is solved by Natarajan, R., Fried, E., Schmidt, E.T. and Chellappa,
B.

In the case of join semilattice the concept of distributive ideal, standard ideal and neutral
ideal have been introduced and studied by Natarajan, R., and Vairavan, L. Now the problems
posed by Gratzer, G., reduced as “Generalize the concept of distributive, standard and neutral
ideals to convex subsemilattice”.

In this paper the generalization of distributive ideal to convex subsemilattice is
introduced and established through some characterization theorems.

PreLIMINARIES
he necessary definition, theorems and results which are used in this paper are given in
this section.

The symbols <, &, v and A will denote inclusion, non-inclusion, cup or join (least upper

bound) and cap or meet (greatest lower bound) in a lattice (or semilattice) while symbols S,

U, N, €, ¢ and ¢ will refer to set inclusion, union, intersection, membership, non-membership
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and empty set. Small letters a, b, c, ...... will denote elements of a lattice (or semilattice).
Greek letters 0, ¢ will stand for congruence relation on lattice (or semilattice).

Definition 1.1 : A binary relation ‘0’ on a lattice L is said to be a congruence relation if it
satisfies the following conditions

(1) O isreflexive :

x =x(0),forallx e L
(i) 0O is symmetric :

x=y0®)=>y=x(0),forallx,yelL
(iii) O is transitive :

x=y@®andy =z(0)=>x =z(0),forallx,y,ze L
(iv) Substitution property:

x =x(0)andy = y;(0)

=xVy=xvy)(d)
XAY=@Ay)@O),forallx,y x,yel

Theorem 1.1. A reflexive and symmetric binary relation ‘0’ on a lattice L is a congruence
relation if and only if the following three properties are satisfied for all x, y, z in L.

0 x=y®)e=xAy =@ vy (6)
(i) x<y<z,x=y@O@)andy =z(0) =x =z(0)
(i) x =y (©0) andx<y=>xAt = (YA (0)

and xVt = (yVvi1)(0),forallt e L.

Definition 1.2. A join semilattice or semilattice is a non-empty set S with binary
operation ‘ v ’ defined on it and satisfies the following :

(1)  Idempotent law :
aVa=a,foralla e S
(ii)) Commutative law :
avb=bva,forallabeS
(iii)) Associative law :
Av(bve)y=(avb)Vve foralla,b,c,eS

Definition 1.3. A semilattice is a non-empty set S with binary relation ‘<’ defined on it
and satisfies the following:

(i) ‘< isreflexive:
a<a,foralla € S
(i) ‘<’ is antisymmetric:
a<bandb<a=a=b,foralla,besS
(iii) ‘<’ is transitive:
a<bandb<c = a<c,foralla, b,c,eS

(iv) any two elements in S have a least upper bound.
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REesuLr

Ewo definitions for semilattice S are equivalent with respect to the following:
(1) a<bs avb=>
(il)) aV b =least upper bound of @ and b where a, b € S.

Definition 1.4. Let S be a semilattice and /7, a non-empty subset of S. Then 7 is called an
ideal of S if

i) xelyel=xvyel
(i) xelteSandt<x=>tel

Definition 1.5. Let ‘@’ be an element of a semilattice S. Then the set {x € S/x < a} form
an ideal of S and it is called principal ideal generated by ‘a’ and it is denoted by (a].

Theorem 1.2. If / (S) denote set of all ideals of a semilattice S then 7 (S) is a lattice with
respect to the following

0 LsLhelhch

1) L v L= {xeS| x <x1 Vv x, for some, x; € I, x; € I}
(i) I AN L= {xeS| xel,andx € I}

where I, I, e 1(5).
Theorem 1.3. If S is a semilattice and a, b in S then (aV b] = (a] v (b]

Definition 1.6. Let S be a semilattice and F, a non-empty subset of S. Then F' is called
dual deal or filter of S if

(1) xe€F,ye F=thereexistsz € Fsuchthatz<x,z<y
(i) xeF,teSandt>2x=>teF

Then we observe that if J(S) denote set of all filters of S then I (S) is a lattices with
respect to the following:

()F,<F, = F EF,

Q)F,v F, ={fe SIf > fi,f, forsome f| € F\, f, € F>}

B)YFiA F, ={xeSxeF, and x € Fy}

where F, F, in 3(S).

Definition 1.7. An ideal D of a semilattice S is called distributive ideal if
DvXAY)=(DvX) A (DvY),forallX,Y e I(S)

Theorem 1.4 (Characterization theorem for distributive ideal)

Let D be an ideal of a semilattice S. Then the following conditions are equivalent

(i) D is distributive

(i) Themap ¢ : X— Dv X is a homomorphism of / (S) onto

[D)=1{XinI(S)| X=D}
(iii)) The binary relation 6 on 7 (S) is defined by
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“X=Y(©p) < Dv X=Dv Ywhere X, YinI(S)”
is a congruence relation.
Definition 1.8. An ideal D of a semilattice S is called standard ideal if
XADv)=(XAD)yv XA, forallk,Y, el(S)
Theorem 1.5 (Characterization theorem for standard ideal)
Let D be an ideal of a semilattice S. Then the following conditions are equivalent
(i)  Dis standard
(i)  The binary relation 6, on / (S) defined by
“X=YOp) iff X AY) v Dy=X v Y, for some D, < D”
is a congruence relation.
(iii) D is a distributive and for all X, Y € 1 (S)
DAX=D AY, DvX=Dv Yimples X=7.
Definition 1.9. An ideal D of a semilattice S is called neutral ideal if
DVvIOAX VAT vD)=(DAX)v XA Y)v (YAD),
forall X, Y, € 1 (S).
Theorem 1.6. (Characterization theorem for neutral ideals)
Let D be an ideal of a semilattice S. Then the following conditions are equivalent.
(i) D isneutral

(i) D is distributive, D is dually distributive and DAX=DAY, DV X=DV Y for all
X, Y € I(S) implies X =Y.

DlSTRlBUTlVE SUBSEMILATTICE

n this section a generalization of distributive ideal for convex subsemilattice called

distributive convex subsemilattice or distributive subsemilattices have been introduced and
established some examples.

Definition 2.1. Let S be a semilattice and D a non-empty subset of S. Then D is called a
convex subsemilattice if

i) abeD=avbeD
(i) x,yeD,ceSandx<c<y=ceD.

Definition 2.2. A convex subsemilattice is generated by a subset 4 of a semilattice S will
be denoted by < 4 >

For any two non-empty subsets 4 and B of a semilattice S, it is defined that
Av B=< {avb| ac A beB}>
AnB=<{teS| t<a,t<b,acAd,beB}>

That is, 4 v B and 4 A B are convex subsemilattice of S generated by the element av b
and ¢ (where t < a,t<b,a € A, b € B) respectively.
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Definition 2.3. If X and Y are convex subsemilattices of a semilattice S, then < X, Y > is
the smallest convex subsemilattice generated by X and Y and

<X, Y>={teSu<t<xvywithueS,uix,y,xeX,yel}

Definition 2.4. A convex subsemilattice D of a semilattice S is called distributive
subsemilattice if

<D, XANY>=<D,X>A<D,Y>
<D, Xv Y>=<D,X> v <D, Y>
hold for any pair of convex subsemilattices X and Y of S whenever D N X# ¢ and D N Y = ¢.

Theorem 2.1. For each d € S, {d} is a distributive subsemilattice of S.
Proof: Take D = {d}

Suppose DnX#o,DNY=¢
DNnX#p =>deX

=><D,X>=X .. (D)
DNnY#p =>deY

=<D,Y>=Y .. @

deX,deY =>deXAY deXVvY
=><D,XAY>=XVvY
<D, XAY>=XAY ...%
Using (1) and (2) in (3) we get
<D, XAY>=<D,X>A<D,Y>
<D, XvY>=<D,X> v <D, Y>
whenever DN X#¢, DN Y#¢.
Thus {d} is a distributive subsemilattice of S.

Example 2.1. Consider the semilattice S = {ay, ay, ........ , dn, a, b, c, 1} of the figure 2.1.
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Take D = {ay, aj............ a,, a}
Then D is a subsemilattice but not distributive.
Consider X={ay, ay........ a,, b}
Y= {ay, aj........ e
Then XA Y={ay a....... a,}
<D, X NY>={ay, aj........ an, a}
<D, X>=S§
<D, Y>=§

<D, X>AN<D,Y>=§
From (1) and (2) we get
<D, XAY>#<D,X> A <D, Y>

Thus it is not a distributive subsemilattice.

CﬂARACTERlZATlON THEOREM

(D)

Q)

n this section to established some characterization theorems for distributive

subsemilattice.

It is evident that

Proposition 3.1. If X, Y are subsets of a semilattice S then (X v Y] = (X] v (Y], where (X]

denotes the ideal generated by X.

Proof: Wehave X< (X, Y<(Y]=X v Y<(X] v (Y],

Thus XvYI=X] v (Y]

Let¢ € (X] v (Y] be arbitrary
=t<a v bforsomea e (X],b € (Y]
=t<avbforsomea<x,xe X,b<y,yeY
=>t<avbavbe (X VvY]

=>teXvY]
Therefore Xlv 12X v 7]
From (1) and (2) we have

XV Y] =] v (7]

Proposition 3.2. If 4 and B are convex subsemilattice of a semilattice S, then
i) A Bl=(] A (B]
(i) <4, (B]>=(4] v (B]
Proof : For (i)
We have A4<(A4],B<(B]
= AAB<(A] A (B]
= A Bl<4] A (B]

(D

Q)

e
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Letx € (4] A (B] be arbitrary
= x € (4] and x € (B]
= x < a,, for some a, € 4 and
x < by, for some b, € B

= x<a,bwitha e€Ad,bed

=>xe (4 A B]
Thus (4] A (B]£(AAB] .. @
From (1) and (2) we have

(4] A (B]=(4 A B]
For (ii)
We have 4 < (4] and B < (B]
= <A4,(B]> £ <], (B]>=(4] v (B]
Therefore <A,(B]> £ (4] v (B] ...3
Letx € (A] v (B] be arbitrary.
= x<av b, forsomea € (4], b € (B]

A

IA

= x<avbh,forsomea<a,a €Ad,be (B]

= x<a, v b,forsomea; € 4,b € (B]

= t<x<a v b,witht<a,t<b

=>xe<4 (B]>
Therefore (4] v (B] £ <4 .(B]> ..®
From (3) and (4) we have

<A,(B]>=(4] v (B]
Theorem 3.1. An ideal D of a semilattice S is distributive iff it is a distributive
subsemilattice of S.

Proof: Assume that an ideal D is a distributive ideal of a semilattice S.

To prove D is a distributive subsemilattice.

Let X and Y be two arbitrary convex subsemilattice of S.

Then <D, XAY)=Dv (X AY],since <X, (¥Y]>=(X] v (¥]
=D v [(X] A (Y]], since (X A ¥]=(X] A (Y]
=D v XD A (D v (Y]), by our assumption
=<D,X> A<D, V>

Claim: <D, Xv Y>=<D,X>v <D, Y>

We have
D<<D,X> D<<D,Y>

=>DvD<<D X>v<DY>
=D <D, X>v <D, Y> .. (D
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Also X< <D, X>Y< <D, V>
=>XvY<<D X>v <D, Y> ...(2)
From (1) and (2) we have
<D, XvY>< <D X>v <D, Y> ...3

Clearly < D, X > v < D, Y > is a convex subsemilattice generated by the elements of the
form (d; v x1) v (dyv yy) where dy, d, € D, x; € (X], y1 € (Y]

Now,
x € X], yie(?]
=>x <x,y<ywithxeX,yeVt
=>xvyi<xvy xvyeXvY
=>xvyeXv Y]
=>xivyre<D,XvY>since<D,XvY>=Dv(XvY]
Also d,dyeD =d vd,eD
=>dvdye<D Xv7Y>,
Therefore (divdy) v (xvy)e<D,XvY>

Now,
xivyr £ (dyvx) v (dy v y),since<D, X>=Dv (X]
and<D,Y>=Dv (Y]
<(dvx) Vv (dyvy),sincex; <x,y <y, xeX,yeY
=d\ v (x v (dyV y)
=di v (xvd) vy)
=dy v ((dy vx) vy)
=(d v d) v (xvy)
Hence, xivyr £ (dyvx) v (dyvy) < (divdy) v (xvy)

withx, v yi, (divdy) v (xvy)e <D, XvY>
= (d,vx) v (dyvy) € <D, X v Y>by convexity
Therefore <D, X> v <D Y>< <D Xv Y> ... (4
From (3) and (4) we have
<D, XvY>=<D,X> v <D Y>
Thus <D, XAY>=<D,X> A<D, Y>
<D, XvY>=<D,X> v<<DY>
whenever DnX=¢d, DNY=#¢.
Hence D is a distributive subsemilattice of S.
Conversely, assume that an ideal D is a distributive subsemilattice of S.
To prove D is a distributive ideal.
Let X and Y be two arbitrary ideals of S.
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Then X and Y are convex subsemilattice of S.
Moreover DN X2 {0} and DN Y2 {0}
=>DnNnX#dandDNY=¢d

They by our assumption

<D, XAY>=<D,X>A<D,Y> ... (5
<D, XvY>=<D,X> v <D, Y> ... (6)

whenever DnX#0,DNY#¢
We have <X, Y>=Xv7Y .. (D

Using (7) in (5) we get

Dv XAN=Dv X)ADv Vforall X, Y e I(S)

= D is distributive ideal.
Corollary 3.1. Every standard ideal in a semilattice is a distributive subsemilattice.
Proof : Follows from theorem 1.5 and 3.1.
Corollary 3.2. Every neutral ideal in a semilattice is distributive subsemilattice.
Proof : Follows from theorem 1.6 and 3.1.

Theorem 3.2. A dual ideal D of a semilattice S is distributive if any only if it is
distributive subsemilattice.

Proof : Follows dually.

Theorem 3.3. If D is a distributive subsemilattice of a semilattice S then the binary
relation 0 defined by

“x=y(0p) iffxv=yvt, for some t € D”
is a congruence relation on S.
Proof : (i) 0) is reflexive :
Let x € S be arbitrary
Thenx v t=x v t, forsomet e D
= x=x(0p), forallx € S
(ii) Op is symmetric : Let x,y € S be arbitrary
Suppose x=y(0p)
=>xvit=yvt forsomete D
=>yvit=xv tforsometeD
= y=x(0p), forallx,y e S
Thus x=y (0p) > y=x(0p), forallx, y € S.
(iii) O is transitive : Let x, y,z € S be arbitrary
Suppose x =y (6p) and y =z (0p)
= x v t;=yvt, forsomet € Dand

YV h=zvt, forsomet,e D
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= xv(v h=xv ) Vv b
=z v (v t) forsomet,v t,e D
= x=z(0p), forallx,y,z e S.
Thus x=y (Bp) and y=z (0p) > x=z(0p), forallx, y,z € S.
(iv) Substitution Property : Let x, x, y, y; € S be arbitrary.
Suppose x = x1(6p) and y = y; (6p)
= x Vv 4= x V t, forsome t; € D and
YV b=y v t, forsomet,e D
=>xvy)yvveo=xviyv Vvl
=(x;vy)Vv(tVvt), forsomet; v e D
=xVvy=x Vv y(0p), forallx,y,x,y, €S
Thus x = x; (0p) and y = y; (0p)
=>x Vv y=x Vv yi(0p)
Hence 0p is a congruence relation.

Theorem 3.4. If D is a convex subsemilattice of S such that the relation 0 is defined by
“x=y(0p)iffx v t=y v tfor some ¢t € D” is a congruence relation then D is a distributive
subsemilattice S.

Proof: Let D be a convex subsemilattice of .S with the relation 6, is defined by “x =y (0p)
iff x v t=y v tforsomet e D” is a congruence relation.

To prove that D is a distributive subsemilattice of S.
It is sufficient to verify that
i) <D, XAY>=<D,X>An <D, Y>
(i) <D, Xv Y>=<D,X>v <D, Y>
for any two convex subsemillattice X, ¥ of S whenever D N X# ¢, D N Y # ¢.
For (1) : We have
D< <D X> D<L<D,Y>
=>D< <D, X>v <D, Y>

Also X<<DX> Y< <D, Y>
=>Xv VY<<D X>v <D Y>
Therefore <D, Xv Y>< <D X>v <D, Y> ... (D)

Letp € <D, X> v <D, Y> be arbitrary.
= p=av bwhereae<D,X>be<D,Y>
= p=av bwhereg<a<d, vx whereq<d,d e€D,q<x,
xreX,r<b<d, v yywherer<d,,dye D,r<y,y €Y.
= p=av bwhereq v r<av b v d)v (x;Vvyy)

withg v r<dy v dy,(dyvd)eD gvr<xyvy,xxvyeXvyY
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= p=avbavbe<DXvY>

= pe<D,Xv Y>
Thus <D, X>v <D, Y><<D,Xv Y> ...(2)
From (1) and (2) we have

<D, Xv Y>=<D,X>v <D, Y>
For (2): Wehave D < <D,X> D <<D,Y>

=D <D,X>nA<D,Y>

Also, X< <D, X> Y< <D, V>
> XAY S <D X>A<D,Y>
Therefore <D, XAY>< <D, X>A<D,Y> ...(3)

Letp e <D,X> A <D, Y> be arbitrary
=>pe<D,X>and pe<D,Y>
=>g<p<d v xywhereqg<d,d eD, g<x,xe€X
and r<p<d,v y,wherer<d,,dye D,r<y,y;eY
=@ v rsps(dvx)v(hvy)=@ vd)vx
with x=x;=y, x e X A Y
=@ v rN<p<dvx withd=d,v dy, div dyeD, xe XA Y
=(@v r<p<dv x,whereq v r<d,deD,qv r<x,xe X AY
=>pe<D,XAY>
Therefore <D, X> A<D, Y><<D, XA Y> ... @
From (3) and (4) we have
<D, XANY>=<DX>A<D,Y>
Thus D is a distributive convex subsemilattice.
From theorem 3.3 and 3.4 we have
Theorem 3.5. A convex subsemilattice D is a distributive subsemilattice of S
& 0p is a congruence relation defined above.

Corollary 3.3.If D is a distributive subsemilattice of a semilattice S then D is a
congruence class by a congruence relation 6.

Proof: Let x=y(©p), x<y
We have to prove that if one of these elements belongs to D then both are in D.
Assume that xeD
To prove yeD
By the definition of 6p, x v =y v, forsome t € D
x,teD =>xviteD
Wehave, x<y<y v ¢<xvtwithxvieD xeD

=y € D, by the convexity of D
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Hencex=y (6p),x<yandxe D = yeD
Thus D is a congruence class by a congruence relation 0,

Corollary 3.4. If D, and D, are two distributive subsemilattices then D; N D, is either a
distributive subsemilattice or it is empty.

Proof : Let D and D, are two distributive subsemilattices.

To prove that D; N D, is either a distributive subsemilattice or it is empty.
Suppose Din Dy#¢

Assume ueDiND,

Let x=y(0p1 M Op)

= x=y(0p)and x=y (6py)

= xvih=yvt forsometie Diandx v t,=y v , for some t, € D,
withty) Su, t, <u

xv (Vv ih)y=yv( vty)forsomet; v t, <u
xv(ivi)=yv (v h)withty v beD ND,

x=y (0p1 N p2)

D, D, is a distributive subsemilattice.

A

Corollary 3.5. The meet of a distributive ideal and distributive dual ideal is a convex
subsemilattice (provided it is non-empty)

Proof: We know that all distributive ideals and distributive dual ideals are distributive
subsemilattices. Hence by the above corollary we get this result.

Proposition 3.1. Let D be a distributive subsemilattice and / be an arbitrary convex
subsemilattice such that 7 m D # ¢. Then / N D is not a distributive convex subsemilattice.

Proof: By an example, consider the following lattice figure

Fig. 3.1
Take D= {(l], bl, bz, b}

I = {al’ a, dz, bl,X,y, a}
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Then I N D = {ay, b1} # ¢ is not a distributive convex subsemilattice.

Let X=A{ay, a, x}
Y={ay, ay, y}
Then XA Y= {a),a}
<IND,XAY> ={ay, a, by} - (D)
<IND,X> ={ay, a, a3, x, ¥, by}
<IND,Y> ={ay, a as, x,, by}
<IAD,X> A <IAD,Y>={ay, a, asx,y, b} - (2)
From (1) and (2) we get

<IND,XAY>#<IND,X> A<INnD,Y>

Hence I n D is not a distributive convex subsemilattice.

ConcLusion

En the case of distributive ideal Gratzer’s problem is solved.
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