
Acta Ciencia Indica, Vol. XLI M, No. 4 (2015) 331 

 ON EXISTENCE RESULT OF IMPULSIVE ANTIPERIODIC 
BOUNDARY VALUE PROBLEM OF FRACTIONAL ORDER  

q  (1, 2) 
 

R. P. PATHAK AND PIYUSHA S. SOMVANSHI
 

Department of Mathematics, National Institute of Mathematics, Raipur-492 001 (Chhattisgarh), India 

RECEIVED : 28 December, 2015 

This paper is motivated from some recent papers on 
impulsive fractional differential equation. In this paper an 
antiperiodic boundary value problem for an impulsive 
fractional differential equation of order q  (1, 2) is studied. 
We develop an effective way to find solution of such type 
of problems. A special hybrid singular type Grownwell 
inequality is established to obtain prior bounds of the 
solution. The sufficient conditions for existence of the 
solutions are established by applying fixed point methods 
under the mixed nonlinear D-contraction condition, 
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INTRODUCTION 

In recent years the subject of fractional calculus gained much momentum and attracted 

many researchers and mathematicians. Considerable interest in field of fractional calculus has 
been developed by the applications to different areas of applied science and engineering like 
physics, biophysics, aerodynamics, control theory, viscoelasticity, capacitor theory, electrical 
circuit, description of memory and hereditary properties etc. Remarkable monographs are 
available which provide the main theoretical tools for the qualitative analysis of fractional 
differential equations, see [l]-[7]. Meanwhile many evolution processes are subject to short 
term perturbations whose duration is negligible in comparison with the duration of processes, 
that is in form of impulses. A strong motivation for studying impulsive fractional differential 
equations comes from the fact they have been proved to be valuable tool in a number of fields 
such as physics, geophysics, regular variation in thermodynamics, electrical circuits etc.       
For more details one can see the monographs and research papers and references therein, see 
[8]-[21]. 

In order to describe mass-spring-damper system subject to abrupt changes as well as other 
phenomena such as earthquake, it is natural to use impulsive fractional differential systems to 
describe such problems. Li, Chen, Li [20] studied generalized antiperiodic boundary value 
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problem of impulsive fractional differential equations. Motivated by their work and mass-
spring-damper system in [22, 23], we will study the following antiperiodic boundary value 
problems for impulsive fractional differential equation. 
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where qc
tD  denotes the Caputo's fractional derivative of order q  (1, 2) with lower limit 

zero. :f J R R    is jointly continuous, ,k kI J R and kt  satisfy 0 = 0 1 2 ... mt t t t     
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( )ku t    represent the right and left limits of ( )u t  at .kt t  

The first purpose of this paper is to find a natural formula of solution for the problem 
(1.1). A better definition of the solution for impulsive fractional differential equation is 
introduced. The second purpose is to establish a sufficient condition for existence of solution 
under the mixed nonlinear 'D-contraction condition, comparison condition, sublinear growth 
condition and nonlinear growth condition via different fixed point methods. Meanwhile we 
emphasize that a new special hybrid singular type Gronwell inequality is given to obtain a 
prior bounds of the solutions. 

MATHEMATICAL PRELIMINARIES 

In this section we introduce notations, definitions and preliminary facts. Throughout this 

paper, let C (J, R) be the Banach space of all continuous functions from J into R with the norm 

sup{ ( ) : }
c

u u t t J   for ( , ).u C J R  We also define PC (J, R) = {u : J   R : u 

1( , ), },k kt t R     k = 0,  l, ... m and there exist ( )ku t  and ( ),ku t k = 1, 2, ... m with 

( ) ( )k ku t u t  with the norm sup{ ( ) : }.
pc

u u t t J   For measurable functions I : J ,R  

define the norm 1/
( , )

( ( ) ) ,
L J R J

l l t dt
    1 .     We denote ( , )L J R  the Banach 

space of all Lebesgue measurable functions l with .
L

l     

Let us recall some more definitions of fractional calculus. For more details see [2]. 

Definition 2.1. The fractional integral of order 7 with the lower limit zero for a function   
f : [0, ) R   is defined as 
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provided that right is point-wise defined on [0, ),  where  (.) is the gamma function. 

Definition 2.2.  (See [2]). The Riemann-Liouville derivative of order   with the lower 

limit zero for a function f : [0, ) R   can be written as 



Acta Ciencia Indica, Vol. XLI M, No. 4 (2015) 333 

   
10

1̀ ( )
( ) , 0, 1 .

( ) ( )

n tL
t n n n

d f s
D f t ds t n n

n dt dt t s


 

     
   

  

Next we introduce the Caputo fractional derivative. 

Definition 2.3. (See [2]). Caputo fractional derivative of order   for a function 

: [0, )f R   is defined as 
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Lemma 2.4.  (See [27]). For q > 0 the general solution of fractional differential equation 

( ) 0qc
tD u t   is given by 

     2 1
0 1 2 1( ) ... .n

nu t c c t c t c t 
      

where ,ic R  i = 0, 1, 2, ....., n – 1,  (n = – [– q]) and [q] denotes the integer part of real 

number q > 0. 

Remark 2.5. In view of Lemma 2.4, it follows that 

   2 1
0 1 2 1( ( ) ( ) ...qq c n

t nI D u t u t c c t c t c t 
       

where , 0, 1, 2, ..., 1, ( [ ])ic R i n n q       

Definition 2.6. (See [29]). Let X be a infinite dimensional Banach space with the norm 
||.||. A mapping T : X   X is called D-Lipshitzian if there exists a continuous non-decreasing 

function :T R R    satisfying 

     ( )x y TT T x y     

for all x, y   X with (0)T  = 0. Sometime we call the function T  a D-function of T on X. If 

( )T r r    for some constant   > 0 then T is called a Lipschitzian with a Lipschitz constant 

  and further if   < 1, then T is called a contraction with the contraction constant .  Again 

if T  satisfies ( ) , 0T r r r    then T is called a nonlinear D-contraction on X. 

Remark 2.7. It is clear that every D-contraction implies nonlinear contraction and 
nonlinear contraction implies D-Lipschitzian but the reverse implication may not hold. 

Now following generalized Gronwell inequality which is introduced by Wang et al. [25] 
can be used in the fractional differential equation with initial condition. 

Lemma 2.8.  (Lemma 2, [25]). Let y   C(J, R) is satisfying following inequality 

   1 2
2

1
1 30 0

( ) ( ) ( ) ,
t

cy t c y s ds c y s ds t J
 

     

where 1   [0, 1], 2   [0, 1], 1 2 3, , 0c c c   are contants. Then there exists a constant    M* 

> 0 such that 

     *( ) |y t M 

Using Lemma 2.8, we can obtain a new special hybrid singular type Gronwell inequality. 
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Lemma 2.9. Let ( , )y C J R  is satisfying following inequality 
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It follows from condition (2.1) and Holder's inequality that 
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By lemma 2.8 one can complete the rest proof immediately.  

Now we collect PC-type Arzela-Ascoli theorem. 

Theorem 2.10.  See (Theorem 2.1 [26]).   Let X be a Banach space and W   PC (J, X). 
If the following conditions are satisfied 

(1)  W is uniformly bounded subset of PC (J, X); 

(2)  W is equicontinuous in 1( , ), 0,1, 2 ..., ,k kt t k m   where 0t  = 0 and 1 1;mt    

(3)  W (t) = 1 2{ ( ) : , \{ , , ..., }}, ( ) { ( ): }n k ku t u W t J t t t W t u t u W      and 

      ( ) { ( ) : }k kW t u t u W    are relatively compact sets of X. 
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Then W is a relatively compact subset of PC (J, X). 

NATURAL SOLUTION 

In this section we derive a natural formula of the solution to the impulsive fractional 

differential equation of order q  (1.2). 

Lemma 3.1. A function u is given by 
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      …  (3.1) 

is the unique solution of following impulsive problem 
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where h : J   R is continuous. 

Proof. A general solution u of the 1st equation of (3.2) on each interval , 1( )k kt t   (k = 0, 

1, ..., m) is given by 
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Applying the condition (3.2) we can find that 
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Next, using the right impulsive condition of (3.2), we derive 
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     1k k k k kc c I J t      … (3.6) 
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Applying (3.5) and (3.7), we obtain 
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Applying (3.4), (3.6) and (3.9), we derive 
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Now it is clear that (3.8), (3.11) and (3.13) imply (3.1). 
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MAIN RESULTS  

This section deals with existence and uniqueness of solutions for the problem (1.1). 

Definition 4.1. A function u   PC (J, R) is said to be a solution of the problem (1.1) if    

u (t) = ( )ku t  for t 1( , )k kt t   and 1([0, ], )k ku C t R  satisfies ( ) ( , ( ))qc
t k kD u t f t u t a.e. 

on 1(0, )kt   with the restriction of 1( )ku t  on 1[0, ]kt   is just ( )ku t  and the condition 

( ) ,k ku t J   ( ) ,k ku t I   k = 1, 2, … m with 3u (0) = – u (l) and 3 (0) (1).u u    

Before stating and proving the main result we introduce following hypotheses 

(H1)  : f : f × R   R is jointly continuous. 

(H2) : f satisfies nonlinear D-contraction on the second variable i.e. there exists a 

continuous nondecreasing function : R R    such that  

   ( , ) ( , ) ( )f t u f t v u v     with (0) 0   and ( ) .r r    

Now we are ready to state our first result in this paper. 

Theorem 4.2. Assume that (H1) with (0) 0   and (H2) hold if 
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Clearly F is well defined 

Step 1. We show that ,r rFB B  in fact, for , ,ru B t J    we have 
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Step 2. We show that F is a contraction mapping. For , ru v B  and for each ,t J   we 

get 
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Thus F is a contraction mapping on rB  due to condition (4.1). 

By applying the well known Banach"s fixed point theorem we know thwt the operator F 
has a unique fixed point on .rB  therefore the problem (1.1) has a unique solution. 

Our next result is based on the following well known Kransnoseelkii fixed point theorem. 



Acta Ciencia Indica, Vol. XLI M, No. 4 (2015) 339 

Theorem 4.3. Let M be a closed convex and nonempty subset of a Banach space X. Let P, 
Q be two operators such that 

(1)  Px + Qy   M whenever x, y   M. 

(2)  P is compact and continuous. 

(3)  Q is contraction mapping. 

Then there exists a z   M. such that z = Pz + Qz. 

We introduce a comparison condition for nonlinear term 

(H3)  : There exists a p   (0, q – 1) and a real function 1/ ( , )pL J R  such that 

( , ) ( ),f t u t   for all t   J and u   R. 

Now we are ready to state and prove the following existence result. 

Theorem 4.4. Assume (H1) and (H3) hold.  Then the problem (1.1) has at least one 
solution on J. 

Proof. Let us fix 
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B u P J R u r    We define the operators P and Q on rB  as 
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For any u, v rB  and t   J we find that 
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Thus ,rPu Qv B   it is obviously Q is a contraction with constant zero. On the other 

hand the continuity of  f implies that the operator P is continuous. Also P is uniformly 

bounded on .rB  Since 
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Now we need to prove compactness of operator P. Letting ,rJ B    we can define 
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which tends to zero as 2 1.    This yields that P is equicontinuous on interval 1( , ].k kt t   So 

p is relatively compact on .rB  

By PC-type Arzela-Ascoli theorem (see theorem (2.10)). P is compact on .rB  Thus all 

the assumptions of theorem (4.4) implies that problem (1.1) has at least one solution on J. The 
proof is completed.  

The third result is based on the following Schaefer's fixed point theorem. 

Theorem 4.5. Let X be a Banach space and F : X   X be a completely continuous 

operator. If the set E (F) = { :y X y Fy    for some [0, 1]},  is bounded then F has at 

least a fixed point. 

We introduce the following sublinear growth condition for nonlinear term. 
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(H3') : There exist constant L > 0 and 
1

0,
p

 
  

 
 for some p (q – 2) + 1 > 0 with p > 

1. such that ( , ) (1 )f t u L


    for each t J  and all u   R. 

Theorem 4.6. Assume that (H1) and (H3') hold. Then the problem (1.1) has at least one 
solution. 

Proof. Consider the operator F : PC (J, R)   PC (J, R) defined as (4.2). For the sake of 
convenience we subdivide the proof into several steps. 

Step 1. F is continuous. Let { }nu be a sequence such that nu u  in PC (J, R) then for 

each t   J we have 
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Due to (H1), f is jointly continuous, then we have 0n PC
Fu Fu   as .n   

Step 2. F maps bounded sets into bounded sets in PC (J, R). Indeed, it is enough to show 

that for any 0  there exists a l > 0 such that for each { ( , ): ,
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u B u PC J R u    
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which implies that 
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Step 3.  F maps bounded sets into equicontinuous sets of PC (J, R) for interval 

1 1 2 1[0, ], 0 , ,rt s s t u B     using (H3'), we have 
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As 2 1,s s  the right hand side of the above inequality tends to zero, therefore F is 

equicontinuous on interval 1[0, ].t  In general, for the time interval 1( , ),k kt t   we similarly 

obtain the following inequality 
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This yields that F is equicontinuous on the interval 1( , ].k kt t   As a consequence of step 

1– 3 together with PC-type Arzela-Ascoli theorem (theorem (2.10)) in case of X = R, we can 

conclude that B B   is continuous and completely continuous. 

Step 4. A priori bounds. 
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by lemma (2.9), there exists a * 0kM   such that 
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This shows that E (F) is bounded. 

As the consequence of Schaefer's fixed point theorem, we deduce that F has a fixed point 
which is a solution of the problem (1.1). The proof is completed.  

EXAMPLES 

In this section we give some illustrations to prove usefulness of main result.  

Example 5.1. Let us consider the first impulsive anti-periodic problem. 
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Set f (t, u) = t, (t, u)   [0, 1] × R. Obviously f is a nonlinear D-contraction on u. One can 
arrive at following inequality 
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Thus the assumptions in Theorem (4.2) are satisfied.   Hence the problem (5.1) has at 
least one solution on [0, 1], 

Example 5.2. Let us consider the second impulsive anti-periodic problem.  
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  Thus all the 

assumptions of Theorem (4.4) are satisfied. Hence the problem (5.2) has at least one solution 
on [0, 1]. 

Example 5.3. Let us consider the third impulsive anti-periodic problem. 
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Thus all the assumptions of Theorem (4.6) are satisfied. Hence the problem (5.3) has at 
least one solution on [0.1]. 

A large number of fractional models on theoretical physics have been reported by Tarasov 
[28]. In order to show that our theory results can be applied to solve some physical models, we 
turn to consider the following generalized impulsive spring-pot model with anti-periodic 
boundary value conditions. 

  

 3/ 5

1 1 1 1

1
( ) ( ) ( ), [0,1] \

2

1 1 1 1
, , , 0

2 2 2 2

(0) (1), (0) (1).

c
tD t t t t

I J I J
   


     


        

               
        

      

v v

v v v v

v v v v

 … (5.4) 

where  is stress, v is strain, 
1

2
 is possible impulsive perturbed time, and 1 1,I J  are 

impulsive perturbed constants. Similar to discussion in example (5.1), the results in above 
section can be used to solve the model (5.2). 

CONCLUSION 

An anti-periodic boundary value problem for impulsive fractional differential equations 

involving Caputo fractional derivative has been studied. A better formula and definition of 
solutions for such problem is introduced. Many existence theorem of solutions are presented 
under some general and different mixed conditions such as nonlinear D-contraction condition, 
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comparison condition, sublinear growth condition via hybrid singular type Gronwell 
inequality and fixed point technique. 
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