LI-IDEAL IN COMMUTATIVE I-GROUP IMPLICATION ALGEBRA

R. PUNITHA

Assist. Professor and Head, Deptt. of Mathematics, Thassim Beevi Abdul Kader College for Women, Kilakarai

AND

DR. R. NATARAJAN

Professor and Head (Rtd.), Department of Mathematics, Alagappa University, Karaikudi

RECEIVED : 21 May, 2015

In this paper, the idea of Lattice implicative ideal or *LI*-ideal and quotient commutative *I*-group implication algebra are introduced, fundamental theorem of homomorphism, first isomorphism theorem, second isomorphism theorem are established. Further established set of all *LI*-ideals of a commutative *I*-group implication algebra form a distributive lattice.

KEYWORDS : Lattice implicative ideal or *LI*-ideal, quotient commutative *I*-group implication algebra, and distributive lattice.

INTRODUCTION

Let is well known that a distributed complimented lattice is a Boolean Algebra which is equivalent to Boolean ring with identity. This relation gives a link between Lattice theory and Modern Algebra. The algebraic structure connecting lattice and group is called *l*-group or lattice ordered group. Many common abstractions, namely Dually residuated lattice ordered semi groups, lattice ordered commutative groups, lattice ordered near rings lattice ordered semi rings and commutative *l*-group implication algebra are presented in [6], [3], [1], [5] and [4] respectively. The concept of LI-ideal in lattice implication algebra is introduced in [7].

In this paper to introduced and established the study of LI-ideal in Commutative *l*-group implication algebra.

Preliminaries

In this section are listed a number of definitions and results which are made use of throughout the paper. The symbols $\leq, +, -, \vee, \wedge, \rightarrow$, * and \in will denote inclusion, sum, difference, join (least upper bound), meet (greatest lower bound), implication, symmetric difference and membership in a lattice *L* or commutative *l*-group implication algebra *G*. Small letters *a*, *b*,... will denote elements of the lattice *L* or commutative *l*-group *G*.

Definition 1.1 : A non-empty set G is called an *l*-group iff

- (i) (G, +) is a group
- (ii) (G, \leq) is a lattice

142/M015

(iii) If $x \le y$, then $a + x + b \le a + y + b$, for all a, b, x, y in G.

or

$$(a + x + b) \lor \lor (a + y + b) = (a + x \lor \lor y + b)$$

$$(a + x + b) \land \land (a + y + b) = (a + x \land \land y + b), \quad \text{for all } a, b, x, y \text{ in } G.$$

Definition 1.2: An *l*-group G is called commutative *l*-group if x + y = y + x for all x, y in G.

Definition 1.3:

An implication algebra is a non-empty set L with greatest element I, least element 0, an unary operation " \rightarrow " which satisfies the following axioms:

- $(I1) \quad 1 \to x = x$
- $(I2) \quad x \to x = I$
- (13) $(x \to y) \to y = (y \to x) \to x$
- (I4) $(((y \to z) \to z) \to x) \to x = (((y \to x) \to x) \to z) \to z$
- (I5) $x \to (y \to z) = y \to (x \to z)$
- $(I6) \quad 0 \to x = I$
- (I7) $x \to 0 = x'$ for all $x, y, z \in L$.

Definition 1.4: Let $(L, \lor \lor, \land \land, 0, I)$ be a bounded lattice with an order-reversing involution ', *I* and 0 the greatest and the smallest element of *L* respectively, $\rightarrow : L \times L \rightarrow L$ be a mapping. Then $(L, \lor \lor, \land \land, `, \rightarrow, O, I)$ is called a lattice implication algebra if the following conditions hold for any $x, y, z \in L$:

- $(L_1) \quad x \to (y \to z) = y \to (x \to z),$ $(L_2) \quad x \to x = I,$ $(L_3) \quad x \to y = y' \to x',$ $(L_4) \quad \text{If } x \to y = y \to x = I, \text{ then } x = y,$ $(L_5) \quad (x \to y) \to y = (y \to x) \to x,$
- $(L_6) \quad (x \lor y) \to z = (x \to z) \land (y \to z)$
- (L_7) $(x \land y) \rightarrow z = (x \rightarrow z) \lor (y \rightarrow z).$

The binary operation " \rightarrow " will be denoted by juxt a position. We can define a partial ordering " \leq " on a lattice implication algebra *L* by $x \leq y$ if and only if $x \rightarrow y = 1$.

Theorem 1.1. Definitions 1.3 and 1.4 are equivalent.

Theorem 1.2. In a lattice implication algebra L, the following are hold

- (i) $x \le y$ if and only if $x \to y = 1$
- (ii) $x \le (x \to y) \to y$
- (iii) $0 \rightarrow x = 1$, $1 \rightarrow x = x$ and $x \rightarrow 1 = 1$
- (iv) $x' = x \rightarrow 0$
- (v) $x \to y \le (y \to z) \ (x \to z)$
- (vi) $(x \lor y) = (x \to y) \to y$
- (vii) $x \le y \Longrightarrow y \to z \le x \to z$ and $z \to x \le z \to y$.

Definition 1.5. A non-empty set G is called **commutative** *l***-group implication algebra** if only if

1. (G, +) is a commutative group

2. (G, \rightarrow) is an implication algebra

3.
$$x \le y \Longrightarrow$$
 (i) $a + x \le a + y$
(ii) $(a \to x) \to b \ge (a \to y) \to b$
(iii) $a \to (x \to b) \ge a \to (y \to b)$, for all a, b, x, y in G .

Definition 1.6. A non empty set G is called **commutative** *l***-group implication algebra** if and only if

- 1. (G, +) is a commutative group
- 2. (G, \rightarrow) is an implication algebra

3. (i)
$$a + (x \lor y) = (a + x) \lor (a + y)$$

(ii)
$$a + (x \land y) = (a + x) \land (a + y)$$

(iii) $[a \rightarrow (x \lor y)] \rightarrow b] = [(a \rightarrow x) \rightarrow b] \land [(a \rightarrow y) \rightarrow b]$
 $= a \rightarrow [(x \lor y) \rightarrow b]$

(iv)
$$[a \to (x \land y)] \to b] = [(a \to x) \to b] \lor [(a \to y) \to b]$$

= $a \to [(x \land y) \to b]$ for all x, y, a, b in G .

Theorem 1.3. The above two definitions for commutative *l*-group implication algebra are equivalent.

Li-ideal in commutative *L*-group implication algebra

In this section to introduced lattice implicative ideal or *LI*-ideal and obtained set of all

LI-ideals in a commutative l-group implication algebra form a distributive lattice.

Definition 2.1: Let G be a commutative l-group implication algebra and I a non-empty subset of G. Then I is called an LI-ideal if and only if

- 1. a, b in I implies a b in I
- 2. a, b in I implies $a \lor b, a \land b$ in I
- 3. 0 < x < a, and a in I implies x in I
- 4. $(x \to y) \in I$ and $y \in I$ imply $x \in I$

In a commutative *l*-group implication algebra, $\{0\}$, *G* are *LI*-ideals of *G*.

Theorem 2.1: If I_1 , I_2 , are two *LI*-ideals of commutative *l*-group implication algebra *G*, then

- (i) $I_1 \lor I_2 = \{ x \in G | x \le x_1 \lor x_2 \text{ for some } x_1 \text{ in } I_1, x_2 \text{ in } I_2 \}$ is an *LI*-ideal
- (ii) $I_1 \wedge I_2 = \{ x \in G | x \text{ in } I_1 \text{ and } x \text{ in } I_2 \}$ is an *LI*-ideal
- (iii) $I_1 + I_2 = \{x \text{ in } G | x \le x_1 + x_2 \text{ for some } x_1 \text{ in } I_1, x_2 \text{ in } I_2\}$ is an *LI*-ideal
- (iv) $I_1 \vee I_2$ is the smallest *LI* ideal containing $I_1 \cup I_2$

Proof: For (i):

```
Let a, b in I_1 \vee I_2
\Rightarrow a, b in G such that a \le a_1 \lor a_2, b \le b_1 \lor b_2 for some a_1, b_1 in I_1, a_2, b_2 in I_2
\implies a-b, a \lor b, a \land b in G such that
   a-b \le (a_1 \lor a_2) - (b_1 \lor b_2) = [a_1 - (b_1 \lor b_2)] \lor [(a_2 - (b_1 \lor b_2)]
            = [(a_1 - b_1) \land (a_1 - b_2)] \lor [(a_2 - b_1) \land (a_2 - b_2)], by property (4) and (5)
            \leq (a_1 - b_1) \vee (a_2 - b_2) with a_1 - b_1 in I_1, a_2 - b_2 in I_2.
a \lor b \leq (a_1 \lor a_2) \lor (b_1 \lor b_2) = a_1 \lor [a_2 \lor (b_1 \lor b_2)] = a_1 \lor [(a_2 \lor b_1) \lor b_2]
= a_1 \vee [(b_1 \vee a_2) \vee b_2] = a_1 \vee [b_1 \vee (a_2 \vee b_2)] = (a_1 \vee b_1) \vee (a_2 \vee b_2) for some a_1 \vee b_1
                                                                                                                    in I_1, a_2 \vee b_2 in I_2
         a \wedge b \leq (a_1 \vee a_2) \wedge (b_1 \vee b_2) = [(a_1 \vee a_2) \wedge b_1] \vee [(a_1 \vee a_2) \wedge b_2]
= [b_1 \land (a_1 \lor a_2)] \lor [b_2 \land (a_1 \lor a_2)] = [(b_1 \land a_1) \lor (b_1 \land a_2)] \lor [b_2 \land a_1) \lor (b_2 \land a_2)]
                                    \leq (a_1 \vee b_1) \vee (a_2 \vee b_2) with a_1 \vee b_1 in I_1, a_2 \vee b_2 in I_2
\implies a-b, a \lor b, a \land b \text{ in } I_1 \lor I_2
Let 0 < x < a and a in I_1 \lor I_2
\implies 0 < x < a and a in G such that a \le a_1 \lor a_2 for some a_1 in I_1, a_2 in I_2
\implies x in G such that x \le a_1 \lor a_2 for some a_1 in I_1, a_2 in I_2 \implies x in I_1 \lor I_2
Let (a \rightarrow b)' \in I_1 \lor I_2, b \in I_1 \lor I_2
\Rightarrow b \rightarrow a \in I_1 \lor I_2, b \in I_1 \lor I_2
\Rightarrow b \rightarrow a \in G such that b \rightarrow a \leq c_1 \lor c_2 for some c_1 \in I_1, c_2 \in I_2
  b \le b_1 \lor b_2 for some b_1 \in I_1, b_2 \in I_2
  a \le b \rightarrow a \le c_1 \lor c_2 for some c_1 \in I_1, c_2 \in I_2
\Rightarrow a \in I_1 \lor I_2
Thus I_1 \vee I_2 is an LI-ideal.
For (ii):
Let a, b in I_1 \wedge I_2
\Rightarrow a, b \text{ in } I_1 \text{ and } a, b \text{ in } I_2 \Rightarrow a-b, a \lor b, a \land b \text{ in } I_1 \text{ and } a-b, a \lor b, a \land b \text{ in } I_2
\implies a-b, a \lor b, a \land b \text{ in } I_1 \land I_2
Let 0 < x < a and a in I_1 \land I_2
\Rightarrow 0 \le x \le a and a in I_1 and a in I_2 \Rightarrow (0 \le x \le a and a in I_1) and (0 \le x \le a and a in I_2)
\Rightarrow x in I_1 and x in I_2 \Rightarrow x in I_1 \land I_2
Let (a \rightarrow b)' \in I_1 \land I_2, b \in I_1 \land I_2
\Rightarrow (a \rightarrow b)' \in I_1 and b \in I_1, and (a \rightarrow b)' \in I_2 and b \in I_2
\Rightarrow a \in I_1 \text{ and } a \in I_2 \Rightarrow a \in I_1 \land I_2
Hence I_1 \wedge I_2 is an LI – ideal
```

For (iii) :

Let a, b in $I_1 + I_2$ \Rightarrow a, b in G such that $a \le a_1 + a_2$, $b \le b_1 + b_2$, for some a_1, b_1 in I_1, a_2, b_2 in I_2 $\Rightarrow a - b, a \lor b, a \land b$ in G such that $a-b \le (a_1+a_2)-(b_1+b_2)=(a_1-b_1)+(a_2-b_2)$ with a_1-b_1 in I_1, a_2-b_2 in I_2 $a \lor b \le (a_1 + a_2) \lor (b_1 + b_2) \le [(a_1 \lor b_1) + (a_2 \lor b_2] \lor [(a_1 \lor b_1) + (a_2 \lor b_2)]$ $= (a_1 \lor b_1) + (a_2 \lor b_2)$ for some $a_1 \lor b_1$ in $I_1, a_2 \lor b_2$ in I_2 $a \wedge b \leq (a_1 + a_2) \wedge (b_1 + b_2) \leq (a_1 + a_2)$ for some a_1 in I_1 , a_2 in I_2 $\Rightarrow a-b, a \lor b, a \land b \text{ in } I_1 + I_2$ Let 0 < x < a and a in $I_1 + I_2$ \Rightarrow 0 < x < a and a in G such that $a \le a_1 + a_2$ for some a_1 in I_1, a_2 in I_2 \implies $x < a_1 + a_2$ for some a_1 in I_1 , a_2 in I_2 $\implies x \text{ in } I_1 + I_2$ Let $(a \rightarrow b)' \in I_1 + I_2$, $b \in I_1 + I_2$ $\implies b \rightarrow a \in I_1 + I_2, b \in I_1 + I_2$ $\Rightarrow a < b \rightarrow a \le c_1 + c_2$ for some $c_1 \in I_1, c_2 \in I_2$ $\Rightarrow a \in I_1 + I_2$ Hence $I_1 + I_2$ is an *LI*-ideal of *G*. For (iv): To prove (1) $I_1 \cup I_2 \subset I_1 \lor I_2$ (2) If $I_1 \cup I_2 \subset I$ then $I_1 \vee I_2 \subset I$ for any *LI*-ideal *I* of *G*. For (1) : Let $x \in I_1 \cup I_2$ be arbitrary $\Rightarrow x \in I_1 \text{ or } x \in I_2 \text{ or } x \in I_1 \cap I_2$ **Case (i) :** Suppose $x \in I_1$ $\Rightarrow x \leq x \lor 0$ with $x \in I_1, 0 \in I_2$ $\Rightarrow x \in I_1 \lor I_2$ **Case (ii) :** Suppose $x \in I_2$ $\Rightarrow 0 \leq 0 \lor x \text{ with } 0 \in I_1, x \in I_2$ $\Rightarrow x \in I_1 \lor I_2$ **Case (iii) :** Suppose $x \in I_1 \cap I_2$ $\Rightarrow x \in I_1 \text{ and } x \in I_2$ $\Rightarrow x \le x \lor x$ with $x \in I_1$, $x \in I_2 \Rightarrow x \in I_1 \lor I_2$ Hence in all cases $x \in I_1 \cup I_2 \implies x \in I_1 \lor I_2$ \Rightarrow $I_1 \cup I_2 \leq I_1 \vee I_2$ For (2): Suppose $I_1 \cup I_2 \subset I$ for any *LI*-ideal *I* of *G*

Then we claim that $I_1 \lor I_2 \subset I$ Let $x \in I_1 \lor I_2$ be arbitrary \Rightarrow $x \le x_1 \lor x_2$ for some x_1 in I_1, x_2 in $I_2 \Rightarrow x \le x_1 \lor x_2, x_1$ in $I_1 \cup I_2 \subset I, x_2$ in $I_1 \cup I_2 \subset I$ $\Rightarrow x \leq x_1 \lor x_2, x_1 \lor x_2 \text{ in } I \Rightarrow x \in I$ Therefore $I_1 \lor I_2 \subset I$ Hence $I_1 \vee I_2$ is the smallest LI – ideal containing $I_1 \cup I_2$ **Theorem 2.2:** Let G be a commutative *l*-group implication algebra and I (G), set of all *LI*-ideals of G. Then I(G) is a lattice. Proof : ⇔ First to claim that $(I(G), \leq)$ is a poset Let I_1 , I_2 , I_3 in I(G) be arbitrary. Define a relation \leq on I(G) by $I_1 \leq I_2 \Leftrightarrow I_1 \subseteq I_2$ where I_1 , I_2 in I(G). ' \leq ' is reflexive: $I_1 \leq I_1$, for all I_1 in I(G)Then $I_1 \subseteq I_1 \Longrightarrow I_1 \leq I_1$ Thus $I_1 \leq I_1$ for all I_1 in I(G). ' \leq ' is anti symmetric: If $I_1 \leq I_2$ and $I_2 \leq I_1$ then $I_1 = I_2$ for all I_1, I_2 in I(G)Suppose $I_1 \leq I_2$ and $I_2 \leq I_1 \Longrightarrow I_1 \subseteq I_2$ and $I_2 \subseteq I_1 \Longrightarrow I_1 = I_2$ Thus if $I_1 \leq I_2$ and $I_2 \leq I_1$ for all I_1 , I_2 in I(G)' \leq ' is transitive: If $I_1 \leq I_2$ and $I_2 \leq I_3$ then $I_1 \leq I_3$ for all I_1, I_2, I_3 in I(G)Suppose $I_1 \leq I_2$ and $I_2 \leq I_3$ \implies $I_1 \subseteq I_2$ and $I_2 \subseteq I_3 \implies$ $I_1 \subseteq I_3 \implies$ $I_1 \leq I_3$ Thus if $I_1 \leq I_2$ and $I_2 \leq I_3$ then $I_1 \leq I_3$ for all I_1, I_2, I_3 in I(G). Thus $(I(G), \leq)$ is a poset. Next to claim that any two elements in I(G) have a l.u.b and g.l.b in I(G) \Rightarrow I_1, I_2 are LI-ideals of $G \Rightarrow I_1 \lor I_2, I_1 \land I_2$ are LI-ideals of G, by previous theorem \implies $I_1 \lor I_2$, $I_1 \land I_2$ in I(G)...(1) We have $I_1 \subset I_1 \lor I_2$, $I_2 \subset I_1 \lor I_2 \Longrightarrow I_1 \le I_1 \lor I_2$, $I_2 \le I_1 \lor I_2$...(2) Suppose I_3 is any other upper bound of I_1 and I_2 in I(G) \implies $I_1 \leq I_3, I_2 \leq I_3 \implies I_1 \subset I_3, I_2 \subset I_3 \implies$ $I_1 \cup I_2 \subset I_3$ \implies $I_1 \lor I_2 \subset I_3$, since $I_1 \lor I_2$ is the smallest LI-ideal containing $I_1 \cup I_2$ Thus $I_1 \leq I_3$, $I_2 \leq I_3$ implies $I_1 \vee I_2 \leq I_3$...(3) From (1), (2) and (3), any two elements I_1 and I_2 in I(G) have a l.u.b $I_1 \vee I_2$ in I(G). We have $I_1 \wedge I_2 \subset I_1$, $I_1 \wedge I_2 \subseteq I_2 \implies I_1 \wedge I_2 \leq I_1$, $I_1 \wedge I_2 \leq I_2$...(4) Suppose I_3 is any other lower bound of I_1 and I_2 in I(G) \Rightarrow $I_3 \leq I_1$, $I_3 \leq I_2 \Rightarrow$ $I_3 \subset I_1$, $I_3 \subseteq I_2 \Rightarrow$ $I_3 \land I_3 \subset I_1 \land I_2 \Rightarrow$ $I_3 \leq I_1 \land I_2$ Thus $I_3 \leq I_1$, $I_3 \leq I_2$ implies $I_3 \leq I_1 \wedge I_2$... (5) From (1), (4) and (5) we have any two elements I_1 and I_2 in I(G) have a g.l.b $I_1 \wedge I_2$ in I(G).

Hence I(G) is a lattice.

Theorem 2.3: If I(G), set of all *LI*-ideals of a commutative *l*-group implication algebra *G* then I(G) is a distributive lattice.

Proof : From the previous theorem I(G) is a lattice. Then claim that $I_1 \vee (I_2 \wedge I_3) = (I_1 \vee I_2) \wedge (I_1 \vee I_3)$ for all I_1 , I_2 , I_3 in I(G). For let I_1 , I_2 , I_3 in I(G) be arbitrary Then we have $I_1 \vee (I_2 \wedge I_3) \leq (I_1 \vee I_2) \wedge (I_1 \vee I_3)$...(1) Let x in $(I_1 \vee I_2) \wedge (I_1 \vee I_3)$ be arbitrary $\Rightarrow x$ in $I_1 \vee I_2$ and x in $I_1 \vee I_3 \Rightarrow x \leq a_1 \vee a_2$ and $x \leq a_3 \vee a_4$ where a_1 , a_3 in I_1 , a_2 , a_4 in I_3 . $\Rightarrow x \leq a \vee a_2$ and $x \leq a \vee a_4$ where $a = a_1 \vee a_3 \Rightarrow x \leq (a \vee a_2) \wedge (a \vee a_4)$ $= a \vee [a_2 \wedge a_4]$ with a in I_1 , $a_2 \wedge a_4$ in $I_2 \wedge I_3$ $\Rightarrow x$ in $I_1 \vee (I_2 \wedge I_3)$ Therefore $(I_1 \vee I_2) \wedge (I_1 \vee I_3) \leq I_1 \vee (I_2 \wedge I_3)$...(2) From (1) and (2) we get

 $I_1 \lor (I_2 \land I_3) = (I_1 \lor I_2) \land (I_1 \lor I_3)$ for all I_1, I_2, I_3 in I(G).

Hence I(G) is a distributive lattice.

QUOTIENT COMMUTATIVE *L*-GROUP IMPLICATION ALGEBRA

In this section we introduced equivalence relation, equivalence class and commutative *l*-group implication algebra.

Definition 2.1: Let *I* be an *LI*-ideal of a commutative *l*-group implication algebra *G*.

We define a binary reflection \sim on G as follows:

 $x \sim y \iff (x \rightarrow y)' \in I$ and $(y \rightarrow x)' \in I$ for all $x, y \in G$.

Then \sim is an equivalence relation on G.

Definition 2.3 : We denote by I_x , the equivalence class containing x and by G/I the set of all equivalence classes of G with respect to "~". That is

$$I_x = \{y \in G/x \sim y\}$$
$$G/I = \{I_x | x \in G\}$$

Theorem 2.4 : If *I* is an *LI*–ideal of commutative *l*–group implication algebra *G*, then G/I is a commutative *l*–group implication algebra.

This commutative *l*-group implication algebra G/I is called quotient commutative *l*-group implication algebra.

Proof: Given G is a commutative l-group implication algebra, I, an LI-ideal of G and "~" is an equivalence relation defined above.

Denote $G/I = \{I_x | x \in G\}$.

Then it is easy to prove G/I is a commutative *l*-group implication algebra with respect to

(i)
$$I_x + I_y = I_{x+y}$$
 (ii) $I_x \vee I_y = I_{x \vee y}$
(iii) $I_x \wedge I_y = Ix \wedge y$ (iv) $I_x \rightarrow I_y = I_{x \rightarrow y}$
(v) $I_{x'} = I_x'$

with greatest element I_1 and least element I_0 .

Homomorphism, isomorphism theorems

In this section homomorphism, kernal of homomorphism and isomorphism are introduced and established fundamental theorem of homomorphism, first isomorphism theorem and second isomorphism theorem.

Definition 4.1: Let G_1 , G_2 be two commutative *l*-group implication algebras. A map ϕ : $G_1 \rightarrow G_2$ is called homomorphism if

- (i) $\phi(a+b) = \phi(a) + \phi(b)$
- (ii) $\phi(a \lor b) = \phi(a) \lor \phi(b)$
- (iii) $\phi(a \wedge b) = \phi(a) \wedge \phi(b)$
- (iv) $\phi(a \rightarrow b) = \phi(a) \rightarrow \phi(b)$
- (v) $\phi(a') = [\phi(a)]'$ for all $a, b \in G$.

Definition 4.2: Let ϕ : $G_1 \rightarrow G_2$ be a homomorphism of commutative *l*-group implication algebra. Then the kernel of ϕ is defined by Ker $\phi = \{x \in G_1 | \phi(x) = 0\}$

Theorem 4.1: Let $\phi : G_1 \to G_2$ be a homomorphism of commutative *l*-group implication algebra. Then Ker ϕ is an *LI*-ideal of *G*.

Proof: Given ϕ : $G_1 \rightarrow G_2$ is a homomorphism of commutative *l*-group implication algebra and Ker ϕ or $K_{\phi} = \{x \in G_1/\phi (x) = 0 \text{ in } G_2\}$

To prove Ker ϕ is an *LI*-ideal

i.e., to prove (1) Ker $\phi \neq \phi$, Ker $\phi \leq G_1$

- (2) $x, y \in \text{Ker } \phi \implies x y, x \lor y, x \land y \in \text{Ker } \phi$
- (3) $0 \le a \le x, x \in \text{Ker } \phi \implies a \in \text{Ker } \phi$
- (4) $(x \rightarrow y) \in \text{Ker } \phi$, $y \in \text{Ker } \phi \implies x \in \text{Ker } \phi$

For (1) :

We have $0 \in G_1$ such that $\phi(0) = 0$

 $\implies 0 \in K_{\varphi} \implies \text{Ker } \phi \neq \phi$

Let $x \in K_{\phi}$ be arbitrary

 \Rightarrow $x \in G_1$ such that $\phi(x) = 0 \Rightarrow x \in G_1$

Therefore Ker $\phi \subseteq G_1$

For (2) :

Let $x, y \in K_{\phi}$

- \Rightarrow x, y \in G₁ such that $\phi(x) = 0, \phi(y) = 0$
- \Rightarrow $x y, x \lor y, x \land y \in G$, such that

$$\phi (x - y) = \phi [x + (-y)] = \phi (x) + \phi (-y) = \phi (x) - \phi (y) = 0 - 0 = 0$$

$$\phi (x \lor y) = \phi (x) \lor \phi (y) = 0 \lor 0 = 0$$

$$\phi (x \land y) = \phi (x) \land \phi (y) = 0 \land 0 = 0$$

$$\Rightarrow x - y, x \lor y, x \land y \in \text{Ker } \phi$$

For (3) :

Let $0 < a < x, x \in \text{Ker } \phi$ $\Rightarrow 0 < a < x, x \in G$, such that $\phi(x) = 0 \Rightarrow a \in G$, such that $\phi(a) < \phi(x) = 0$ $\Rightarrow a \in G$, such that $\phi(a) = 0 \Rightarrow a \in \text{Ker } \phi$. For (4): Let $(x \rightarrow y)' \in \text{Ker } \phi$, $y \in \text{Ker } \phi$ $\Rightarrow (x \rightarrow y)' \in G$, such that $\phi[(x \rightarrow y)'] = 0$ $y \in G$, such that $\phi(y) = 0$ $\Rightarrow \phi[(x \rightarrow y)'] = \phi[(x \rightarrow y)]' = [\phi(x) \rightarrow \phi(y)]' = [\phi(x) \rightarrow 0]' = \{[\phi(x)]'\}'$ $= \phi(x)$ with $x \in G$,

 $\Rightarrow x \in \text{Ker } \phi$

Hence Ker ϕ is an *LI*-ideal of *G*.

Theorem 4.2: Let $\phi : G \to \{0, 1\}$ be an onto homomorphism of commutative *l*-group implication algebra. Then the kernel of ϕ , K_{ϕ} is a maximal *LI*-ideal of *G*.

Proof: Given ϕ : $G \rightarrow \{0, 1\}$ is an onto homomorphism of commutative *l*-group implication algebra and $K_{\phi} = \{x \in G/\phi(x) = 0\}$

 \implies $K_{\phi} \neq \phi$ since ϕ is onto \implies K_{ϕ} is an *LI*-ideal of *G*

To prove K_{ϕ} is a maximal *LI*-ideal.

Suppose K_{ϕ} is not maximal

Then there is a proper LI–ideal I containing K_{ϕ}

- \implies there exists $x, y \in G$ such that $x \in G I, y \in I K_{\phi}$
- $\Rightarrow f(x) = f(y) = 1 \Rightarrow f(x \rightarrow y) = f(x) \rightarrow f(y) = 1 \rightarrow 1 = 1$
- $\implies f[(x \to y)'] = [f(x \to y)]' = [f(x) \to f(y)]' = 1' = 0 \implies (x \to y)' \in K_{\phi}$
- $\Rightarrow K_{\phi} \subset I, y \in I$

 \implies *x* \in *I* which is a contradiction.

Hence K_{ϕ} is a maximal *LI*-ideal of *G*.

Definition 4.3 : Let $\phi : G_1 \to G_2$ be a homomorphism of commutative *l*-group implication algebra. Then ϕ is called an isomorphism if ϕ is 1 - 1 and onto. G_1 is isomorphic to G_2 if there exist an isomorphism.

Theorem 4.3 : (Fundamental theorem of homomorphism). Let G be a commutative l-group implication algebra and I an LI-ideal of G. Then the quotient commutative l-group implication algebra G/I is a homomorphic image of a commutative l-group implication algebra G. Conversely let G_1 and G_2 be commutative

l-group implication algebra and let ϕ : $G_1 \rightarrow G_2$ be an onto homomorphism. Then

 G_1 / Ker ϕ is isomorphic to G_2 .

Proof:

First part:

Given G is a commutative *l*-group implication algebra and I an LI-ideal of G.

Then G/I is a commutative *l*-group implication algebra.

To prove G/I is the homomorphic image of G.

Define : $f: G \to G/I$ by $f(x) = I_x$ for all x in G.

f is well-defined :

 $x = y \implies f(x) = f(y)$ where x, y in G

Suppose x = y

$$\Rightarrow x - y = 0, \ 0 \in \ker f \Rightarrow x - y \in \ker f \Rightarrow f(x - y) = 0 \Rightarrow f(x) + f(-y) = 0$$
$$\Rightarrow f(x) - f(y) = 0 \Rightarrow f(x) = f(y)$$

f is a homomorphism :

Let x, y in G be arbitrary.

Then
$$f(x + y) = I_{x+y} = I_x + I_y = f(x) + f(y)$$

 $f(x \lor y) = I_x \lor_y = I_x \lor I_y = f(x) \lor f(y)$
 $f(x \land y) = I_{x\land y} = I_x \land I_y = f(x) \land f(y)$
 $f(x \rightarrow y) = I_{x \rightarrow y} = I_x \rightarrow I_y = f(x) \rightarrow f(y)$
 $f(x') = I_{x'}' = (I_x)' = [f(x)]'$

f is onto:

Take any element I_x in G/I

$$\Rightarrow x \text{ in } G \Rightarrow f(x) = I_x$$

Hence f is homomorphic to G to G/I.

Second part:

Given $\phi : G_1 \to G_2$ is an onto homomorphism of commutative *l*-group implication algebra and Ker $\phi = K = \{x \in G_1 | \phi(x) = 0\}$

Then *K* is a *LI* – ideal of *G* and G_1/K is a commutative *l*-group implication algebra To prove G_1/K is isomorphic to G_2

Define $f: G_1/K \to G_2$ by $f(K_x) = \phi(x)$ where $x \in G_1, K_x \in G_1/k$

Then we claim that f is a well defined isomorphism of G_1/K onto G_2

f is well defined; $K_x = K_y \implies f(K_x) = f(K_y)$, where $K_x, K_y \in G_1/k$

Suppose $K_x = K_y \implies x = y \implies \phi(x) = \phi(y) \implies f(K_x) = f(K_y)$

f is one-one: $f(K_x) = f(K_y) \implies K_x = K_y$ where $K_x, K_y \in G_1/k$

Suppose $f(K_x) = f(K_y) \Longrightarrow \phi(x) = \phi(y) \Longrightarrow \phi(x) - \phi(y) = 0 \Longrightarrow \phi(x) + \phi(-y) = 0$

 $\Rightarrow \phi [x + (-y)] = 0 \Rightarrow \phi (x - y) = 0 \Rightarrow x - y = 0 \Rightarrow x = y \Rightarrow K_x = K_y$

f is onto:

Take any $x_2 \in G_2$

 $\Rightarrow \text{ there exist } x_1 \in G_1 \text{ such that } \phi(x_1) = x_2 \implies Kx_1 \in G_1/K$ $F(Kx_1) = \phi(x_1) = x_2$

Thus for any $x_2 \in G_2$ there exist $K_{x_1} \in G_1/K$ such that $f(K_{x_1}) = x_2$

f preserves +, \lor , \land , \rightarrow , ':

Let
$$K_a, K_b \in G_1/K$$
 be arbitrary $\Longrightarrow a, b \in G$
Then $f(K_a + K_b) = f(K_{a+b}) = \phi(a + b) = \phi(a) + \phi(b) = f(K_a) + f(K_b)$
 $f(K_a \lor K_b) = f(K_{a \lor b}) = \phi(a \lor b) = \phi(a) \lor \phi(b) = f(K_a) \lor f(K_b)$
 $f(K_a \land K_b) = f(K_{a \land b}) = \phi(a \land b) = \phi(a) \land \phi(b) = f(K_a) \land f(K_b)$
 $f(K_a \to K_b) = f(K_{a \to b}) = \phi(a \to b) = \phi(a) \to \phi(b) = f(K_a) \to f(K_b)$
for all $K_a, K_b \in G_1/K$

Thus *f* is an onto isomorphism

 \Rightarrow G_1/K isomorphic to G_2

Theorem 4.4: Let G_1 , G_2 and G_3 be commutative *l*-group implication algebras. $H: G_1 \to G_2$ an onto homomorphism and $g: G_1 \to G_3$ homomorphism with non-empty kernals.

If Ker $(h) \subseteq$ Ker (g) then there is a unique homomorphism $f: G_2 \rightarrow G_3$ satisfying $f \circ h = g$

Proof: Given $h: G_1 \to G_2$ is an onto homomorphism and $g: G_1 \to G_3$ a homomorphism with non-empty kernals of commutative *l*-group implication algebras.

Suppose Ker $(h) \subseteq$ Ker (g)

Then to prove (i) There is a unique homomorphism $f: G_2 \to G_3$

(ii) $f \circ h = g$

Take any $y \in G_2$

 \implies there exist $x \in G_1$, such that h(x) = y

For the element $x \in G_1$, put $z = g(x) \in G_3$

Define $f: G_2 \to G_3$ by f(y) = z

Claim (1) f is well defined

(2) f o h = g

(3) *f* is a homomorphism

(4) f is unique.

For 1:

 $y_1 = y_2 \Longrightarrow f(y_1) = f(y_2)$ where $y_1, y_2 \in G_2$ $y_1 = h(x_1), y_2 = h(x_2)$ where $x_1, x_2 \in G_1$

Suppose $y_1 = y_2$

$$\Rightarrow h(x_1) = h(x_2) = y \text{ (say)}$$

$$y = h(x_1) = h(x_2) \text{ for } x_1, x_2 \in G_1$$

$$1 = h(x_1) \to h(x_2) = h(x_1 \to x_2)$$

$$0 = [h (x_1 \rightarrow x_2)]' = h (x_1 \rightarrow x_2)'$$

$$(x_1 \rightarrow x_2)' \in \text{Ker } (h) \subseteq \text{Ker } (g)$$

$$\Rightarrow \quad 0 = g [(x_1 \rightarrow x_2)'] = g (x_1 \rightarrow x_2)' = [g (x_1) \rightarrow g (x_2)]' \Rightarrow g (x_1) \rightarrow g (x_2) = 1$$

$$\Rightarrow g (x_1) < g (x_2)$$
Similarly,
$$g (x_2) < g (x_1)$$
Therefore
$$g (x_1) = g (x_2)$$

For 2 :

Let $x \in G_1$ be arbitrary, then

$$(f \circ h)(x) = f[h(x)] = f[y] = z = g(x)$$
 for all $x \in G$

 \Rightarrow foh = g

For 3 : f is a homomorphism

Let $y_1, y_2 \in G_2$ be arbitrary

Then
$$f(y_1 \to y_2) = z_1 \to z_2 = f(y_1) \to f(y_2)$$

 $f(y_1 \lor y_2) = z_1 \lor z_2 = f(y_1) \lor f(y_2)$
 $f(y_1 \land y_2) = z_1 \land z_2 = f(y_1) \land f(y_2)$
 $f(y_1 + y_2) = z_1 + z_2 = f(y_1) + f(y_2)$

For 4 : f is unique:

Suppose there exist f_1, f_2 such that

$$f_1 \circ h = g, \quad f_2 \circ h = g$$

$$\Rightarrow \quad f_1 \circ h = f_2 \circ h \Rightarrow (f_1 \circ h) (x) = (f_2 \circ h) (x), \quad x \in G$$

$$\Rightarrow \quad f_1 [h (x)] = f_2 [h (x)] \Rightarrow f_1 [y] = f_2 [y] \text{ for all } y$$

$$\Rightarrow \quad f_1 = f_2$$
Therefore, fix unique

Therefore f is unique.

Theorem 4.5 : First Isomorphism theorem

Let $\phi : G \to G_1$ be an onto commutative *l*-group implication algebra homomorphism with $K_{\phi} = S$. If I_1 is an *LI*-ideal of G_1 , then

 $I = \phi^{-1}(I_1) = \{x \text{ in } G/\phi(x) \text{ in } I_1\}$ is an *LI*-ideal of *G* and *S* is a subset of *I*. Conversely if *I* is an *LI*-ideal of *G* containing *S*, then

 $I_1 = \phi(I) = \{x_1 \text{ in } G_1/x_1 = \phi(x), \text{ for some } x \text{ in } I\}$ is an *LI*-ideal of G_1 and $G/I \cong G_1/I_1$ Moreover, $G/I \cong (G/S)/(I/S)$.

Proof:

First part : Given $\phi : G \to G_1$ is an onto commutative *l*-group implication algebra homomorphism with $K_{\phi} = S$ and I_1 is an *LI*-ideal of G_1

To prove $I = \phi^{-1}(I_1) = \{x \text{ in } G/\phi(x) \text{ in } I_1\}$ is an *LI*-ideal of *G* and $S \subset I$.

Clearly, $I \neq \phi$, since $0 \in G$ such that $\phi(0) = 0$ in I_1

(i) Let x. y in I be arbitrary

 \Rightarrow x, y in G such that $\phi(x), \phi(y)$ in I_1

$$\Rightarrow x + y, x \lor y, x \land y, x \to y, x' \text{ in } G \text{ such that}$$

$$\phi (x + y) = \phi (x) + \phi (y) \text{ with } \phi (x) + \phi (y) \text{ in } I_1$$

$$\phi (x \lor y) = \phi (x) \lor \phi (y) \text{ with } \phi (x) \lor \phi (y) \text{ in } I_1$$

$$\phi (x \land y) = \phi (x) \land \phi (y) \text{ with } \phi (x) \to \phi (y) \text{ in } I_1$$

$$\phi (x \to y) = \phi (x) \to \phi (y) \text{ with } \phi (x) \to \phi (y) \text{ in } I_1$$

$$\phi (x') = [\phi (x)]' \text{ with } [\phi (x)]' \text{ in } I_1$$

$$\Rightarrow x + y, x \lor y, x \land y, x \to y, x' \text{ in } G \text{ such that } \phi (x + y), \phi (x \lor y), \phi (x \land y),$$

$$\phi (x \to y), \phi (x') \text{ in } I_1$$

$$\Rightarrow 0 < \phi (x) < \phi (a), \phi (a) \text{ in } I_1$$

$$\Rightarrow \phi (x) \text{ in } I_1 \Rightarrow x \text{ in } I_1$$
(iii) Let x in S be arbitrary
$$\Rightarrow x \in K_{\phi}$$

$$\Rightarrow x \text{ in } G \text{ such that } \phi (x) = 0 \text{ in } I_1$$

$$\Rightarrow \phi (x) \text{ in } I_1 \Rightarrow x \text{ in } I$$

Therefore, $S \subset I$

Second Part:

Given $\phi: G \to G_1$ is an onto commutative *l*-group implication algebra homomorphism. *I* is an *LI*-ideal of *G* and

 $I_1 = \phi(I) = \{x_1 \text{ in } G_1 | x_1 = \phi(x), \text{ for some } x \text{ in } I\}$

Clearly $I_1 \neq \phi$, since $0 \in G_1$, $0 = \phi(0)$

To prove:

 $I_{I} \text{ is an } LI - \text{ ideal of } G_{1}.$ (i) Let $a_{1}, b_{1} \text{ in } I_{1}$ be arbitrary $\Rightarrow a_{1}, b_{1} \text{ in } G_{1} \text{ such that } a_{1} = \phi(a), b_{1} = \phi(b) \text{ for some } a, b \text{ in } I$ $\Rightarrow a_{1} - b_{1}, a_{1} \vee b_{1}, a_{1} \wedge b_{1}, a_{1} \rightarrow b_{1}, a_{1}' \text{ in } G_{1} \text{ such that}$ $a_{1} - b_{1} = \phi(a) - \phi(b) = \phi(a - b) \text{ with } \phi(a - b) \text{ in } I_{1}, a - b \in I$ $a_{1} \vee b_{1} = \phi(a) \vee \phi(b) = \phi(a \vee b) \text{ with } \phi(a \wedge b) \text{ in } I_{1}, a \wedge b \in I$ $a_{1} \wedge b_{1} = \phi(a) \wedge \phi(b) = \phi(a \wedge b) \text{ with } \phi(a \wedge b) \text{ in } I_{1}, a \wedge b \in I$ $a_{1} \rightarrow b_{1} = \phi(a) \rightarrow \phi(b) = \phi(a \rightarrow b) \text{ with } \phi(a \rightarrow b) \text{ in } I_{1}, a \rightarrow b \in I$ $a_{1}' = \phi(a') = [\phi(a)]' \text{ with } [\phi(a)]' \text{ in } I_{1}, a' \in I$ $\Rightarrow a_{1} - b_{1}, a_{1} \vee b_{1}, a_{1} \wedge b_{1}, a_{1} \rightarrow b_{1}, a_{1}' \text{ in } I_{1}$ Let $0 < x_{1} < a_{1}$ and a_{1} in I_{1} $\Rightarrow 0 < x < a \text{ and } a \text{ in } I \Rightarrow x \text{ in } I \Rightarrow x_{1} = \phi(x), \ \phi(x) \in I_{1} \Rightarrow x_{1} \in I_{1}$ Therefore I_{1} is an LI-ideal of G_{1} Third Part:

To prove $G/I \cong G_1/I_1$ Define $g: G_1 \rightarrow G/I$ by $g(x_1) = I_x$, $x_1 = \phi(x)$ g is well defined: Suppose $I_x = I_y$ $\implies x = y \implies \phi(x) = \phi(y) \implies I_{\phi(x)} = I_{\phi(y)} \implies g(I_x) = g(I_y)$ Therefore g is well defined. g is a homomorphism : Let $x_1, y_1 \in G_1$ be arbitrary. \Rightarrow $x_1 = \phi(x), y_1 = \phi(y)$ where $x, y \in G$. Then, $g(x_1 + y_1) = I_{x+y} = I_x + I_y = g(x_1) + g(y_1)$ $g(x_1 \lor y_1) = I_{x \lor y} = I_x \lor I_y = g(x_1) \lor g(y_1)$ $g(x_1 \wedge y_1) = I_{x \wedge y} = I_x \wedge I_y = g(x_1) \wedge g(y_1)$ $g(x_1 \rightarrow y_1) = I_{x \rightarrow y} = I_x \rightarrow I_y = g(x_1) \rightarrow g(y_1)$ $g(x_1') = I_{x'} = (I_x)' = [g(x_1)]'$ Ker $g = I_1$: Let $x_1 \in \ker g$ be arbitrary \Rightarrow $x_1 \in G_1$ such that $g(x_1) = I_0 \Rightarrow x_1 = \phi(0), \phi(0) \in I_1$ $\implies x_1 \in I_1$ Therefore Ker $g \subset I_1$ Conversely, let $x_1 \in I_1$ be arbitrary $\implies x_1 = \phi(x), x \in I$ $\implies x_1 = \phi(0), \quad 0 \in I$ \implies $g(x_1) = I_0 \implies x_1 \in \text{Ker } g$ Therefore $I_1 \subset \operatorname{Ker} g$ Hence $I_1 = \text{Ker } g$ Hence we have g is an onto homomorphism with Ker $g = I_1$ \implies $G_1/I_1 \cong G/I$ by previous theorem \Rightarrow $G/I \cong G_1/I_1$ Take $G_1 = G/S$ and $I_1 = I/S$ We get $G/I \cong (G/S)/(I/S)$ Theorem 4.6: Second isomorphism theorem If I_1 and I_2 are two LI-ideals of a commutative l-group implication algebra G, then $I_1/I_1 \wedge I_2 \cong I_1 + I_2/I_2$ **Proof** : Given I_1 and I_2 are *LI*-ideals of *G*. Then $I_1 + I_2$, $I_1 \wedge I_2$ are *LI*-ideals of *G*. To prove $I_1/I_1 \wedge I_2 \cong I_1 + I_2/I_2$

Consider a map $\phi : I_1 \rightarrow I_1 + I_2/I_2$ by $\phi(a_1) = Ia_1$ where a_1 in I_1

Then we claim that ϕ is a well defined onto homomorphism with Ker $\phi = I_1 \wedge I_2$

ϕ is well defined:

Suppose $a_1 = a_2$ where a_1, a_2 in I_1 $\Rightarrow a_1 - a_2 = 0$ in I_1 $\Rightarrow Ia_1 = Ia_2 \Rightarrow \phi(a_1) = \phi(a_2)$

Therefore ϕ is well defined

$\boldsymbol{\phi}$ is onto :

```
Take any I_a in I_1 + I_2 / I_2

\Rightarrow a \text{ in } I_1 + I_2 \Rightarrow a = a_1 + a_2 \text{ for some } a_1 \text{ in } I_1, a_2 \text{ in } I_2

\Rightarrow I_a = I(a_1 + a_2) = Ia_1 + Ia_2 = Ia_1

\phi(a) = Ia_1
```

Therefore ϕ is onto.

\phi is a homomorphism :

Let a_1 , a_2 in I_1 be arbitrary.

Then,

$$\phi (a_1 + a_2) = I_{(a1 + a2)} = I_{a1} + I_{a2} = \phi (a_1) + \phi (a_2)$$

$$\phi (a_1 \lor a_2) = I_{(a1 \lor a2)} = I_{a1} \lor I_{a2} = \phi (a_1) \lor \phi (a_2)$$

$$\phi (a_1 \land a_2) = I_{(a1 \land a2)} = I_{a1} \land I_{a2} = \phi (a_1) \land \phi (a_2)$$

$$\phi (a_1 \to a_2) = I_{(a1 \to a2)} = I_{a1} \to I_{a2} = \phi (a_1) \to \phi (a_2)$$

$$\phi (a_1') = I (a_1') = (Ia_1)' = [\phi (a_1)]' \text{ for all } a_1, a_2 \text{ in } I_1$$

Therefore ϕ is a homomorphism

Ker $\phi = I_1 \cap I_2$: Let *a* in $I_1 \cap I_2$ be arbitrary \Rightarrow a in I_1 and a in I_2 \Rightarrow a in I_1 and $I_0 = I_2$ \Rightarrow a in I_1 such that $\phi(a) = I_2$ \Rightarrow a in ker ϕ Therefore, $I_1 \wedge I_2 \subseteq \text{Ker } \phi$...(1) Conversely, let a_1 in Ker ϕ be arbitrary \Rightarrow a_1 in I_1 such that $\phi(a_1) =$ zero element in $I_1 + I_2/I_2$ \Rightarrow a_1 in I_1 such that $\phi(a_1) = I_0 = I_2 \Rightarrow a_1$ in I_1 and a_1 in $I_2 = I_0 \Rightarrow a_1$ in $I_1 \land I_2$ $\operatorname{Ker} \phi \subseteq I_1 \wedge I_2$ Therefore, ...(2) Ker $\phi = I_1 \wedge I_2$ From (1) and (2) we get, Hence $\phi : I_1 \rightarrow I_1 + I_2/I_2$ is an onto homomorphism with Ker $\phi = I_1 \wedge I_2$. $\implies I_1/I_1 \wedge I_2 \cong I_1 + I_2/I_2$ by previous theorem.

References

1. Ayyappan, M., and Natarajan, R., Lattice ordered near ring, *Acta Ciencia Indica*, Vol. XXXVIII, No. 4, 727 (2012).

- 2. Birkhoff, G., Neutral elements in general lattices, Bull. Amer. Math. Soc., 46, 702-705 (1940).
- 3. Natarajan, R. and Vimala, J., Distributive *l*-ideals in commutative *l*-group, *Acta Ciencia Indica*, Vol. XXXIII M, No. 2, 517-526 (2007).
- 4. Punitha, R. and Natarajan, R., Commutative Lattice Ordered Group Implication Algebra, *Acta Ciencia Indica* (Accepted for publication).
- 5. Ranga Rao, P., Lattice ordered semi rings, Mathematics Seminar Notes, 9, 119-149 (1981).
- 6. Swamy, K.L.N., Dually residuated lattice ordered semigroups I, Annalen, 159, 105-115 (1965).
- 7. Xu, Y., Lattice Implication Algebras, J. Southwest Jiaotong University, 1, 20-27 (1993).