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INTRODUCTION 

It is well known that a distributed complimented lattice is a Boolean Algebra which is 

equivalent to Boolean ring with identity. This relation gives a link between Lattice theory and 
Modern Algebra. The algebraic structure connecting lattice and group is called l-group or 
lattice ordered group. Many common abstractions, namely Dually residuated lattice ordered 
semi groups, lattice ordered commutative groups, lattice ordered near rings lattice ordered 
semi rings and commutative l-group implication algebra are presented in [6], [3], [1], [5] and 
[4] respectively. The concept of LI-ideal in lattice implication algebra is introduced in [7]. 

In this paper to introduced and established the study of LI-ideal in Commutative l-group 
implication algebra. 

PRELIMINARIES 

In this section are listed a number of definitions and results which are made use of 

throughout the paper. The symbols ≤, +, −, ∨, ∧ , →, ∗ and ∈ will denote inclusion, sum, 
difference, join (least upper bound), meet (greatest lower bound), implication, symmetric 
difference and membership in a lattice L or commutative l-group implication algebra G. Small 
letters a, b,…. will denote elements of the lattice L or commutative  l-group G.      

Definition  1.1 : A non-empty set G is called an l-group iff 

(i) (G, +) is a group 

(ii) (G, ≤) is a lattice 
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(iii) If x ≤ y, then a + x + b ≤ a + y + b, for all a, b, x, y in G. 

or 

                      (a + x + b) ∨ ˅ (a + y + b) = (a + x ˅ ∨ y + b) 

                    (a + x + b) ˄ ∧ (a + y + b) = (a + x ˄ ∧ y + b),      for all a, b, x, y in G. 

Definition 1.2: An l-group G is called commutative l-group if x + y = y + x for all x, y in 
G. 

Definition  1.3: 

An implication algebra is a non-empty set L with greatest element I, least element 0, an 
unary operation “ ’ ” and a binary operation  “→” which satisfies the following axioms: 

  (I1)    1 → x = x 

  (I2)    x → x = I 

  (I3)    (x → y) → y = (y → x) → x 

  (I4)    (((y → z) → z) → x) → x = (((y → x) → x)→ z) → z 

  (I5)     x → (y → z) = y → (x → z) 

  (I6)     0 → x = I    

  (I7)    x → 0 = x’  for all x, y, z  ∈  L. 

Definition 1.4:  Let (L, ˅ ∨, ˄ ∧, 0, I) be a bounded lattice with an order-reversing 
involution ′, I and 0 the  greatest and the smallest element of L respectively,  → : L × L → L be 
a mapping. Then  (L, ∨ ˅, ˄ ∧, ’, →, O, I) is called a lattice implication algebra if the following 
conditions hold  for any  x, y, z  ∈ L: 

  (L1)     x → (y → z) = y → (x → z),                       

  (L2)     x → x = I,                                                     

  (L3)     x → y = y′ → x′,                                          

  (L4)     If x → y = y → x = I, then x = y,  

  (L5)     (x → y) → y = (y → x) → x, 

  (L6)     (x ∨ y) → z = (x → z) ∧ (y → z) 

   (L7)     (x ∧ y) → z = (x → z) ∨ (y → z). 

      The binary operation “→” will be denoted by juxt a position. We can define a partial 
ordering “≤” on a lattice implication algebra L by x ≤ y if and only if  x → y = 1.  

Theorem 1.1. Definitions 1.3 and 1.4 are equivalent. 

Theorem 1.2. In a lattice implication algebra L, the following are hold 

 (i) x ≤ y if and only if x → y = 1 

(ii) x ≤ (x → y) → y  

(iii) 0 → x = 1,     1 → x = x   and    x → 1 = 1 

(iv) x’ = x → 0 

(v) x → y ≤ (y → z) (x → z)  

(vi)  (x ∨ y) = (x → y) → y 

(vii) x ≤ y ⟹ y → z ≤ x → z and z → x ≤  z → y. 
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Definition  1.5. A non-empty set G is called commutative l-group implication algebra 
if only if 

1. (G, +) is a commutative group 

2. (G, →) is an implication algebra 

3. x ≤ y ⟹ (i)     a +  x  ≤  a + y 

      (ii)    (a → x) → b ≥ (a →  y) → b   

     (iii)    a  → (x → b) ≥ a  → (y  → b),    for  all a, b, x, y in G. 

Definition  1.6. A non empty set G is called commutative l-group implication algebra 
if and only if 

1. (G, +) is a commutative group 

2. (G, →) is an implication algebra 

3. (i)     a + (x ∨ y) = (a + x) ∨ (a + y) 

  (ii)    a + (x ∧ y) = (a + x) ∧ (a + y) 

  (iii)   [a → (x ∨ y)] → b] = [(a → x) → b] ∧ [(a → y) → b] 

                                                  = a →[(x ∨ y) → b] 

  (iv)    [a → (x ∧ y)] → b] = [(a → x) → b] ∨ [(a → y) → b] 

                                                  = a → [(x ∧ y) → b] for all x, y, a, b in G. 

Theorem  1.3. The above two definitions for commutative l–group implication algebra 
are equivalent. 

LI–IDEAL IN COMMUTATIVE  L-GROUP IMPLICATION ALGEBRA 

In this section to introduced lattice implicative ideal or LI-ideal and obtained set of all  

LI-ideals in a commutative l-group implication algebra form a distributive lattice.        
Definition 2.1: Let G be a commutative l–group implication algebra and I a non-empty 

subset of G. Then I is called an LI–ideal if and only if  

1. a, b in I implies a – b in I 

2. a, b in I implies a ∨ b, a ∧ b in I 

3. 0 < x < a, and a in I implies x in I 

4. (x → y)’ ∈ I and y ∈ I imply  x ∈ I 

In a commutative l–group implication algebra, {0}, G are LI–ideals of G. 

Theorem  2.1: If I1, I2, are two LI–ideals of commutative l–group implication algebra G, 
then 

(i) I1 ∨ I2 = { x  G/ x ≤ x1 ∨ x2 for some x1 in I1, x2 in I2} is an LI–ideal 

(ii) I1 ∧ I2 = { x  G/ x in I1 and x in I2} is an LI–ideal 

(iii) I1 + I2 = { x in G/ x ≤ x1 + x2 for some x1 in I1, x2 in I2} is an  LI–ideal 

(iv) I1 ∨ I2  is the smallest LI– ideal containing I1 U I2 

Proof: For (i): 
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Let a, b in I1 ∨ I2 

 ⟹    a, b in G such that a ≤ a1 ∨ a2, b ≤ b1 ∨ b2  for some a1 , b1 in I1, a2, b2 in I2 

 ⟹    a – b, a ∨ b, a ∧ b in G such that  

    a – b ≤ (a1 ∨ a2) – (b1 ∨ b2) = [a1 – (b1 ∨ b2)] ∨ [(a2 – (b1 ∨ b2)] 

             = [(a1 – b1) ∧ (a1 – b2)] ∨ [(a2 – b1) ∧ (a2 – b2)] ,   by property (4) and (5) 

             ≤   (a1 – b1) ∨ (a2 – b2) with a1 – b1 in I1,  a2 – b2  in I2. 

 a ∨ b  ≤   (a1 ∨ a2) ∨ (b1 ∨ b2) = a1 ∨ [a2 ∨ (b1 ∨ b2)] = a1 ∨ [(a2 ∨ b1) ∨ b2] 

 = a1 ∨ [(b1 ∨ a2) ∨ b2] = a1 ∨ [b1 ∨ (a2 ∨ b2)] =(a1 ∨ b1) ∨ (a2 ∨ b2) for some a1 ∨ b1  

      in I1, a2 ∨ b2 in I2 

    a ∧ b ≤  (a1 ∨ a2) ∧ (b1 ∨ b2) = [(a1 ∨ a2) ∧ b1] ∨ [(a1 ∨ a2) ∧ b2] 

 =   [b1 ∧ (a1 ∨ a2)] ∨ [b2 ∧ (a1 ∨ a2)] = [(b1 ∧ a1) ∨ (b1 ∧ a2)] ∨ [b2 ∧ a1) ∨ (b2 ∧ a2)] 

                                     ≤  (a1 ∨ b1) ∨ (a2 ∨ b2) with a1 ∨ b1 in I1,   a2 ∨ b2 in I2 

⟹   a – b, a ∨ b, a ∧ b in I1 ∨ I2 

Let 0 <  x <  a  and a in I1 ∨ I2 

⟹   0 < x < a and a in G such that a  ≤  a1 ∨ a2 for some a1 in I1, a2 in I2 

⟹    x in G such that x ≤ a1 ∨ a2 for some a1 in I1, a2 in I2 ⟹ x in I1 ∨ I2 

Let (a →b)’  ∈  I1 ∨ I2,  b ∈ I1 ∨ I2                                     

⟹ b → a ∈ I1 ∨ I2,  b ∈ I1 ∨ I2 

⟹ b → a ∈ G such that b → a ≤ c1 ∨ c2 for some c1 ∈ I1, c2 ∈ I2 

   b ≤ b1 ∨ b2 for some b1 ∈ I1, b2 ∈ I2 

   a ≤ b → a ≤ c1 ∨ c2 for some c1 ∈ I1,   c2 ∈ I2 

 ⟹ a ∈ I1 ∨ I2 

Thus I1 ∨ I2 is an LI–ideal. 

For (ii): 

Let a, b in I1 ∧ I2 

 ⟹ a, b in I1 and a, b in I2 ⟹ a – b, a ∨ b, a ∧ b in I1  and   a – b, a ∨ b, a ∧ b in I2 

 ⟹  a – b, a ∨ b, a ∧ b in I1 ∧ I2 

Let 0 < x < a and a in I1 ∧ I2 

⟹   0 < x < a and a in I1 and a in I2 ⟹ (0 < x < a and a in I1) and (0 < x < a and a in I2)   

⟹ x in I1 and x in I2 ⟹ x in I1 ∧ I2 

Let (a → b)’ ∈  I1 ∧ I2,   b ∈ I1 ∧ I2 

⟹ (a → b)’ ∈ I1  and  b ∈ I1 ,  and   (a → b)’ ∈ I2  and  b ∈ I2 

⟹ a ∈ I1 and a ∈ I2 ⟹ a ∈ I1 ∧ I2 

Hence I1 ∧ I2 is an LI – ideal 

 

For (iii) : 
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Let a, b in I1 + I2 

⟹  a, b in G such that a ≤  a1 + a2,   b ≤ b1 + b2,   for some a1, b1 in I1, a2, b2 in I2 

⟹ a – b, a ∨ b, a ∧ b in G such that  

a – b ≤ (a1 + a2) – (b1  + b2) = (a1 – b1) + (a2 – b2) with a1 - b1 in I1, a2 – b2 in I2 

a ∨ b ≤ (a1 + a2) ∨ (b1 + b2) ≤ [(a1 ∨ b1) + (a2 ∨ b2] ∨ [(a1 ∨ b1) + (a2 ∨ b2)]  

           = (a1 ∨ b1) + (a2 ∨ b2) for some a1 ∨ b1 in I1, a2 ∨ b2 in I2 

 a ∧ b ≤ (a1 + a2) ∧ (b1 + b2) ≤ (a1 + a2) for some a1 in I1, a2 in I2 

⟹   a – b, a ∨ b, a ∧ b in I1 + I2 

Let 0 < x < a and a in I1 + I2 

⟹   0 < x < a and a in G such that a  ≤  a1 + a2 for some a1 in I1, a2 in I2 

⟹   x < a1 + a2 for some a1 in I1, a2 in I2 

⟹   x in I1 + I2 

Let  (a→b)’ ∈ I1 + I2,   b ∈ I1 + I2 

⟹   b → a ∈ I1 + I2,  b ∈ I1 + I2 

⟹    a < b → a ≤ c1 + c2 for some c1 ∈ I1, c2 ∈ I2 

⟹    a ∈ I1 + I2 

Hence  I1 + I2 is an LI–ideal of G. 

For (iv): 

To prove 

   (1) I1 U I2 ⊂ I1 ∨ I2    

   (2) If  I1 U I2 ⊂ I  then I1 ∨ I2 ⊂  I for any LI-ideal I of G. 

For (1) : 

Let x ∈ I1 U I2 be arbitrary 

 ⟹ x ∈ I1  or  x ∈ I2  or  x ∈ I1 ∩ I2 

Case (i) :  Suppose x ∈ I1 

⟹ x ≤ x ∨ 0 with x ∈ I1, 0 ∈ I2 

⟹ x ∈ I1 ∨ I2 

Case (ii) : Suppose x ∈ I2 

⟹ 0 ≤ 0 ∨ x with 0 ∈ I1,   x ∈ I2 

⟹ x ∈ I1 ∨ I2 

Case (iii) : Suppose x ∈ I1 ∩ I2 

⟹  x ∈ I1 and x ∈ I2 

⟹  x ≤ x ∨ x with x ∈ I1,  x ∈ I2  ⟹  x ∈ I1 ∨ I2 

Hence in all cases x ∈ I1 U I2 ⟹  x ∈ I1 ∨ I2 

⟹ I1 U I2  ≤  I1 ∨ I2 

For (2) :  Suppose  I1 U I2 ⊂ I for any LI-ideal I of G 
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  Then we claim that I1 ∨ I2 ⊂ I 

   Let x ∈ I1 ∨ I2 be arbitrary 

 ⟹ x ≤  x1 ∨ x2 for some x1 in I1, x2 in I2 ⟹ x ≤  x1 ∨ x2,  x1 in I1 U I2 ⊂ I, x2 in I1 U I2 ⊂ I  

 ⟹ x ≤  x1 ∨ x2,   x1 ∨ x2 in I ⟹ x ∈ I 

Therefore I1 ∨ I2 ⊂ I 

Hence I1 ∨ I2 is the smallest LI – ideal containing I1 U I2 

Theorem 2.2: Let G be a commutative l–group implication algebra and I (G), set of all  

LI–ideals of G. Then I(G) is a lattice. 

Proof : ⇔ 

First to claim that (I (G), ≤) is a poset 

Let I1 , I2 , I3 in I(G) be arbitrary. 

Define a relation ≤ on I(G) by 

      I1 ≤ I2 ⇔  I1 ⊆ I2 where I1 , I2 in I (G). 

‘≤’ is reflexive:   I1 ≤ I1, for all I1 in I (G) 

Then I1 ⊆ I1 ⟹  I1 ≤ I1 

Thus I1 ≤ I1, for all I1 in I (G). 

‘≤’  is anti symmetric: If  I1 ≤ I2  and  I2 ≤ I1 then I1 = I2 for all I1, I2 in I (G) 

Suppose I1 ≤ I2 and I2 ≤ I1 ⟹ I1 ⊆ I2 and I2 ⊆ I1 ⟹ I1 = I2 

Thus if I1 ≤ I2 and I2 ≤ I1 for all I1 , I2 in I(G) 

‘≤’ is transitive: If I1 ≤ I2 and I2 ≤ I3 then I1 ≤ I3, for all I1, I2, I3 in I (G) 

Suppose I1 ≤ I2 and I2 ≤ I3 

⟹    I1 ⊆ I2 and I2 ⊆ I3 ⟹    I1 ⊆ I3⟹    I1 ≤ I3 

Thus if I1 ≤ I2 and I2 ≤ I3 then I1 ≤ I3 for all I1, I2, I3 in I (G). 

Thus (I (G), ≤) is a poset. 

Next to claim that any two elements in I(G) have a l.u.b and g.l.b in I(G) 

⟹   I1 , I2 are LI–ideals of G ⟹  I1 ∨ I2, I1 ∧ I2 are  LI– ideals of G, by previous theorem 

⟹ I1 ∨ I2,  I1 ∧ I2 in I(G)                                                                   …(1) 

We have I1 ⊂  I1 ∨ I2,   I2 ⊂  I1 ∨ I2 ⟹  I1 ≤ I1 ∨ I2,   I2 ≤ I1 ∨ I2     …(2) 

Suppose I3 is any other upper bound of I1 and I2 in I(G) 

⟹   I1 ≤ I3, I2 ≤ I3 ⟹ I1 ⊂ I3 , I2 ⊂ I3 ⟹   I1 U I2 ⊂ I3 

⟹   I1 ∨ I2 ⊂ I3, since I1 ∨ I2 is the smallest LI–ideal containing I1 U I2 

Thus I1 ≤ I3,   I2 ≤ I3 implies I1 ∨ I2 ≤ I3                                            …(3) 

From (1), (2) and (3), any two elements I1 and I2 in I(G) have a l.u.b  I1 ∨ I2 in I(G). 

We have I1 ∧ I2  ⊂  I1,  I1 ∧ I2 ⊆ I2  ⟹ I1 ∧ I2 ≤ I1,   I1 ∧ I2 ≤  I2      …(4) 

Suppose I3 is any other lower bound of I1 and I2 in I (G) 

 ⟹   I3 ≤  I1,   I3 ≤ I2 ⟹   I3 ⊂ I1, I3  ⊆ I2 ⟹   I3 ∧ I3 ⊂  I1 ∧ I2  ⟹   I3 ≤ I1 ∧ I2 

Thus I3 ≤ I1,  I3 ≤ I2 implies I3 ≤ I1 ∧ I2                                             … (5) 
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From (1), (4) and (5) we have any two elements I1 and I2 in I (G) have a g.l.b  I1 ∧ I2 in    I 
(G).  

Hence I (G) is a lattice. 

Theorem  2.3: If I (G), set of all LI–ideals of a commutative l–group implication algebra 
G then I(G) is a distributive lattice. 

Proof : From the previous theorem I (G) is a lattice. 

Then claim that I1 ∨ (I2 ∧ I3) = (I1 ∨ I2) ∧ (I1 ∨ I3) for all I1 , I2 , I3 in I (G). 

For let I1, I2 , I3 in I (G) be arbitrary 

Then we have    I1 ∨ (I2 ∧ I3) ≤ (I1 ∨ I2) ∧ (I1 ∨ I3)                            …(1) 

Let x in (I1 ∨ I2) ∧ (I1 ∨ I3) be arbitrary 

⟹ x in I1 ∨ I2 and x in I1 ∨ I3 ⟹ x ≤ a1 ∨ a2 and x ≤ a3 ∨ a4 where a1, a3 in I1, a2, a4 in I3. 

⟹ x ≤ a ∨ a2 and x ≤ a ∨ a4 where a = a1 ∨ a3 ⟹ x ≤ (a ∨ a2) ∧ (a ∨ a4)  

=  a ∨ [a2 ∧ a4]                 with a in I1, a2 ∧ a4 in I2 ∧ I3 

⟹  x in I1 ∨ (I2 ∧ I3) 

Therefore (I1 ∨ I2) ∧ (I1 ∨ I3) ≤ I1 ∨ (I2 ∧ I3)                                 …(2) 

From (1) and (2) we get 

       I1 ∨ (I2 ∧ I3) = (I1 ∨ I2) ∧ (I1 ∨ I3) for all I1 , I2 , I3 in I (G). 

Hence I (G) is a distributive lattice. 

QUOTIENT COMMUTATIVE L-GROUP IMPLICATION ALGEBRA 

In this section we introduced equivalence relation, equivalence class and commutative l-

group implication algebra.  

Definition  2.1 : Let I be an LI–ideal of a commutative l–group implication algebra G. 

We define a binary reflection ~ on G as follows: 

   x ~ y  ⇔  (x→y)’ ∈ I and (y → x)’ ∈ I for all x, y ∈ G. 

Then ~ is an equivalence relation on G. 

Definition  2.3 : We denote by Ix, the equivalence class containing x and by G/I the set of 
all equivalence classes of G with respect to “~”.  That is  

                           Ix = {y ∈ G/x ~ y} 

                        G/I = {Ix /x ∈ G} 

Theorem  2.4 : If I is an LI–ideal of commutative l–group implication algebra G, then G/I 
is a commutative l–group implication algebra. 

This commutative l-group implication algebra G/I is called quotient commutative l-group 
implication algebra. 

Proof : Given G is a commutative l–group implication algebra, I, an LI–ideal of G and 
“~” is an equivalence relation defined above. 

Denote G/I = {Ix /x ∈ G}. 

Then it is easy to prove G/I is a commutative l-group implication algebra with respect to  
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(i)      Ix + Iy = Ix + y                    (ii)     Ix ∨ Iy = Ix V y 

(iii)  Ix ∧ Iy = Ix ∧ y           (iv)     Ix → Iy = Ix → y 

 (v)     Ix’ = Ix’ 

with  greatest element I1 and least element I0.  

HOMOMORPHISM, ISOMORPHISM THEOREMS 

In this section homomorphism, kernal of homomorphism and isomorphism are 

introduced and established fundamental theorem of homomorphism, first isomorphism 
theorem and second isomorphism theorem.                                  

Definition 4.1: Let G1, G2 be two commutative l–group implication algebras. A map  : 
G1 → G2 is called homomorphism if  

(i)   (a + b) =  (a) +  (b) 

(ii)  (a ∨ b) =  (a) ∨  (b) 

(iii)  (a ∧ b) =  (a) ∧  (b)  

(iv)  (a → b) =  (a) →  (b) 

(v)  (a) = [ (a)]   for all a, b ∈ G. 

Definition 4.2: Let  : G1 → G2 be a homomorphism of commutative l–group implication 
algebra. Then the kernel of  is defined by Ker  = {x ∈ G1/ (x) = 0} 

Theorem  4.1: Let  : G1 → G2 be a homomorphism of commutative l-group implication 
algebra. Then Ker  is an LI–ideal of G. 

Proof : Given  : G1 → G2 is a homomorphism of  commutative l-group implication 
algebra and  Ker  or K = {x ∈ G1/ (x) = 0 in G2} 

To prove Ker  is an LI-ideal  

       i.e., to prove (1)  Ker  ≠ ,   Ker  ≤ G1 

                            (2)  x, y ∈ Ker   ⟹ x - y, x ∨ y, x ∧ y ∈ Ker ϕ   

                            (3)  0 < a < x, x ∈ Ker   ⟹  � ∈ Ker ϕ   

                            (4)  (x→y) ∈ Ker ,  y ∈ Ker  ⟹ x ∈ Ker  

For (1) :  

          We have 0 ∈ G1 such that  (0) = 0 

          ⟹    0 ∈ Kϕ  ⟹  Ker  ≠ ϕ 

          Let x ∈ K be arbitrary  

          ⟹      x ∈ G1 such that  (x) = 0 ⟹   x ∈ G1 

   Therefore Ker   ⊆ G1 

For (2) :  

       Let x, y ∈ K  

       ⟹    x, y ∈ G1 such that  (x) = 0,  (y) = 0  

       ⟹    x – y, x ∨ y, x ∧ y ∈ G, such that  
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           (x – y) =  [x + (–y)] =  (x) +  (– y) =  (x) –  (y) = 0 – 0 = 0 

           (x ∨ y) =  (x) ∨  (y) = 0 ∨ 0 = 0 

            (x ∧ y) =  (x) ∧  (y) = 0 ∧ 0 = 0 

          ⟹   x – y, x ∨ y, x ∧ y ∈ Ker   

For (3) : 

     Let 0 < a < x,   x ∈ Ker  

     ⟹    0 < a < x, x ∈ G, such that  (x) = 0  ⟹    a ∈ G, such that  (a) <  (x) = 0 

     ⟹    a ∈ G, such that  (a) = 0 ⟹    a ∈ Ker . 

For (4) :  

Let (x → y) ∈ Ker , y ∈ Ker  

⟹    (x →  y) ∈ G, such that  [(x → y)]= 0 

y ∈ G, such that  (y) = 0 

⟹  [(x → y)] =  [(x → y)] = [ (x) →  (y)] = [ (x) → 0] ={[ (x)]}  

                                                                               =  (x) with x ∈ G, 

⟹  x ∈ Ker  

Hence  Ker  is an  LI–ideal of G. 

Theorem  4.2: Let  : G → {0, 1} be an onto homomorphism of commutative l–group 
implication algebra. Then the kernel of ,  K is a maximal LI–ideal of G. 

Proof: Given  : G → {0, 1} is an onto homomorphism of commutative l-group 
implication algebra and K = {x ∈ G/ (x) = 0} 

⟹    K ≠ ϕ  since ϕ is onto ⟹    K is an LI–ideal of G 

To prove K is a maximal LI–ideal. 

Suppose K is not maximal  

Then there is a proper LI–ideal I containing K 

 ⟹    there exists x, y ∈ G such that x ∈ G – I,   y ∈ I – K 

 ⟹   f (x) = f (y) = 1 ⟹  f (x → y) = f (x) → f (y) = 1 → 1  = 1 

 ⟹   f [(x → y)] = [f (x → y)]   = [f (x) → f (y)]   = 1  = 0  ⟹    (x → y) ∈ K  

 ⟹ K ⊂ I,  y ∈ I 

 ⟹   x ∈ I which is a contradiction. 

Hence K is a maximal LI–ideal of G. 

Definition  4.3 : Let  : G1 → G2 be a homomorphism of commutative l–group 
implication algebra. Then  is called an isomorphism if  is 1 – 1 and onto. G1 is isomorphic 
to G2 if there exist  an isomorphism. 

Theorem  4.3 : (Fundamental theorem of homomorphism). Let G be a commutative l–
group implication algebra and I an LI–ideal of G. Then the quotient commutative l–group 
implication algebra G/I is a homomorphic image of a commutative l–group implication 
algebra G. Conversely let G1 and G2 be commutative 
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 l–group implication algebra and let  : G1 → G2 be an onto homomorphism. Then  

G1 / Ker  is isomorphic to G2. 

Proof: 

First part:     

Given G is a commutative l-group implication algebra and I an LI-ideal of G.  

Then G/I is a commutative l-group implication algebra. 

To prove  G/I is the homomorphic image of G.  

 Define : f : G → G/I by f (x) = Ix for all x in G. 

f is well-defined : 

        x = y  ⟹  f (x) = f (y) where x, y in G  

Suppose x = y 

         ⟹   x – y = 0,   0 ∈ ker f  ⟹  x – y ∈ ker f ⟹   f (x – y) = 0 ⟹   f (x) + f (– y) = 0 

         ⟹   f (x) – f (y) = 0 ⟹   f (x) = f (y)  

f is a homomorphism : 

Let x, y  in G be arbitrary. 

Then f (x + y) = Ix + y  = Ix + Iy = f (x) + f (y)  

          f (x ∨ y) = Ix ∨ y  = Ix ∨ Iy  = f (x) ∨ f (y)  

         f (x ∧ y) =  ��∧�  = Ix ∧ Iy = f (x) ∧ f (y)  

         f (x → y) = Ix → y = Ix → Iy = f (x) → f (y)  

         f (x) = Ix = (Ix) = [f (x)] 

f is onto:  

Take any element Ix in G/I 

            ⟹    x in G ⟹    f (x) = Ix 

Hence f is homomorphic to G to G/I. 

Second part:    

Given  : G1 → G2 is an onto homomorphism of commutative l-group implication algebra 
and  Ker  = K = {x ∈ G1/ (x) = 0} 

Then K is a LI – ideal of G  and  G1/K is a commutative l-group implication algebra  

To prove G1/K is isomorphic to G2 

Define f : G1/K → G2 by f (Kx) =  (x) where x ∈ G1,  Kx ∈ G1/k 

Then we claim that f is a well defined isomorphism of G1/K onto G2 

f  is well defined;   Kx = Ky   ⟹   f (Kx) = f (Ky), where Kx, Ky ∈ G1/k 

Suppose Kx = Ky   ⟹   x = y  ⟹   (x) =  (y) ⟹  f (Kx) = f (Ky) 

f is one-one:    f (Kx) = f (Ky) ⟹   Kx = Ky   where Kx, Ky ∈ G1/k 

Suppose  f (Kx) = f (Ky) ⟹  (x) =  (y) ⟹  (x) –  (y) = 0 ⟹  (x) +  (– y) = 0 

   ⟹  [x + (– y)] = 0 ⟹  (x – y) = 0  ⟹ x – y = 0 ⟹ x = y   ⟹ Kx = Ky 

f  is onto:  
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Take any x2 ∈ G2 

        ⟹   there exist  x1 ∈ G1 such that  (x1) = x2   ⟹   Kx1 ∈ G1/K 

     F (Kx1) =  (x1) = x2 

Thus for any x2 ∈ G2 there exist Kx1 ∈ G1/K such that f (Kx1) = x2 

f preserves +, ∨, ∧, →,  : 

Let Ka, Kb  ∈ G1/K be arbitrary ⟹ a, b ∈ G                     

Then  f (Ka + Kb) = f (Ka+b) =  (a + b) =  (a) +  (b) = f (Ka) + f (Kb) 

           f (Ka ∨ Kb) = f (�� ∨ �) =  (a ∨ b) = ϕ (a) ∨  (b) = f (Ka) ∨ f (Kb) 

           f (Ka ∧ Kb) = f (�� ∧ �) =  (a ∧ b) =  (a) ∧  (b) = f (Ka) ∧ f (Kb) 

           f (Ka → Kb) = f (Ka→b) =  (a → b) =  (a) →  (b) = f (Ka) → f (Kb) 

                                                                                                for all Ka, Kb ∈ G1/K 

Thus f is an onto isomorphism  

                    ⟹ G1/K isomorphic to G2  

Theorem  4.4 : Let G1, G2 and G3 be commutative l–group implication algebras.             
H : G1 → G2 an onto homomorphism and g : G1 → G3 homomorphism with non-empty 
kernals. 

If Ker (h) ⊆ Ker (g) then there is a unique homomorphism f : G2 → G3 satisfying f o h = g 

Proof: Given h : G1 → G2  is an onto homomorphism and g : G1 → G3 a homomorphism 
with non-empty kernals of commutative l-group implication algebras. 

                        Suppose Ker (h) ⊆ Ker (g)  

Then to prove  (i)   There is a unique homomorphism f : G2 → G3 

                        (ii)  f o h = g  

Take any y ∈ G2 

 ⟹   there exist x ∈ G1, such that h (x) = y 

For the element x ∈ G1, put z = g (x) ∈ G3 

Define f : G2 → G3 by f (y) = z 

Claim (1) f is well defined  

           (2) f o h = g 

           (3) f is a homomorphism  

           (4) f is unique. 

For 1: 

  y1 = y2 ⟹ f (y1) = f (y2) where y1, y2 ∈ G2 

       y1 = h (x1),   y2 = h (x2) where x1, x2 ∈ G1 

Suppose y1 = y2 

⟹   h (x1) = h (x2) = y (say) 

            y = h (x1) = h (x2) for x1, x2 ∈ G1 

            1 = h (x1) → h (x2) = h (x1 → x2)           
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            0 = [h (x1 → x2)] = h (x1 → x2) 

        (x1 → x2) ∈ Ker (h) ⊆ Ker (g)  

   ⟹     0 = g [(x1 → x2)] = g (x1 → x2) = [g (x1) → g (x2)]   ⟹   g (x1) → g (x2) = 1 

   ⟹   g (x1) < g (x2)  

Similarly,      g (x2) < g (x1) 

Therefore    g (x1) = g (x2) 

For 2 : 

       Let x ∈ G1 be arbitrary, then  

       (f o h) (x) = f [h (x)] = f [y] = z = g (x) for all x ∈ G       

 ⟹  f o h = g  

For 3 :  f is a homomorphism  

        Let y1, y2 ∈ G2 be arbitrary  

Then f (y1 → y2) = z1 → z2  = f (y1) → f (y2) 

          f (y1 ∨ y2) = z1 ∨ z2  = f (y1) ∨ f (y2) 

          f (y1 ∧ y2) = z1 ∧ z2 = f (y1) ∧ f (y2) 

           f (y1 + y2) = z1 + z2 = f (y1) + f (y2) 

For 4 :  f is unique:  

Suppose there exist f1, f2 such that  

     f1 o h = g,   f2 o h = g 

⟹ f1 o h = f2 o h ⟹ (f1 o h) (x) =  (f2 o h) (x),     x ∈ G 

⟹ f1 [h (x)] = f2 [h (x)] ⟹ f1 [y] = f2 [y] for all y  

 ⟹ f1 = f2 

Therefore f is unique. 

Theorem  4.5 :   First Isomorphism theorem  

Let  : G → G1 be an onto commutative l–group implication algebra homomorphism with  
K = S. If I1 is an LI-ideal of G1, then 

 I = –1 (I1) = {x in G/ (x) in I1} is an LI-ideal of G and S is a subset of I. Conversely if I 
is an LI-ideal of G containing S, then  

I1 =  (I) = {x1 in G1/x1 =  (x), for some x in I} is an LI-ideal of G1 and G/I ≅ G1/I1 
Moreover, G/I  ≅ (G/S)/(I/S). 

Proof : 

First part : Given  : G → G1 is an onto commutative l-group implication algebra 
homomorphism with K = S and I1 is an LI-ideal of G1 

To prove I = –1 (I1) = {x in G/ (x) in I1} is an LI-ideal of G and S ⊂ I.  

Clearly, I ≠ ,  since 0 ∈ G such that  (0) = 0 in I1 

(i)   Let x. y in I be arbitrary  

⟹  x, y  in G such that  (x),  (y) in I1 
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⟹   x + y, x ∨ y, x ∧ y, x → y, x in G such that  

                   (x + y) =  (x) +  (y) with  (x) +  (y) in I1 

                   (x ∨ y) =  (x) ∨  (y) with  (x) ∨  (y) in I1 

                   (x ∧ y) =  (x) ∧  (y) with  (x) ∧  (y) in I1 

                   (x → y) =  (x) →  (y) with  (x) →  (y) in I1 

                    (x) = [ (x)] with [ (x)] in I1 

 ⟹    x + y, x ∨ y, x ∧ y, x → y, x in G such that   (x + y),  (x ∨ y),  (x ∧ y),  

       (x → y),  (x)  in I1 

⟹  x + y, x ∨ y, x ∧ y, x → y, x in I 

(ii)    Let 0 < x < a and a in I  

⟹    0 <  (x) <  (a),    (a) in I1 

⟹     (x) in I1  ⟹   x in I1 

(iii)   Let x in S be arbitrary ⟹ x ∈ K 

  ⟹   x in G such that  (x) = 0 in I1 

  ⟹    (x) in I1  ⟹   x in I 

Therefore, S ⊂ I 

Second Part:      

Given  : G → G1 is an onto commutative l-group implication algebra homomorphism. I 
is an LI-ideal of G and  

   I1 =  (I) = {x1 in G1/x1 =  (x), for some x in I} 

Clearly I1 ≠ , since 0 ∈ G1, 0 =  (0) 

To prove: 

           I1 is an LI – ideal of G1. 

(i) Let a1, b1 in I1 be arbitrary  

      ⟹ a1, b1 in G1 such that a1 =  (a), b1 =  (b) for some a, b in I 

      ⟹ a1 – b1, a1 ∨ b1, a1 ∧ b1, a1 → b1, a1 in G1 such that  

          a1 – b1 =  (a) –  (b) =  (a – b) with  (a – b) in I1, a – b ∈ I 

          a1 ∨ b1 =  (a) ∨  (b) =  (a ∨ b) with  (a ∨ b) in I1, a ∨ b ∈ I 

          a1 ∧ b1 =  (a) ∧  (b) =  (a ∧ b) with  (a ∧ b) in I1, a ∧ b ∈ I 

         a1 → b1 =  (a) →  (b) =  (a → b) with  (a → b) in I1, a → b ∈ I 

         a1 =  (a)  = [ (a)] with [ (a)] in I1,  a ∈ I 

      ⟹   a1 – b1, a1 ∨ b1, a1 ∧ b1, a1 → b1, a1 in I1 

Let 0 < x1 < a1 and a1 in I1 

 ⟹    0 < x < a and a in I ⟹    x in I ⟹    x1 =  (x),   (x) ∈ I1 ⟹   x1 ∈ I1 

Therefore I1 is an LI-ideal of G1 

Third Part: 



328 Acta Ciencia Indica, Vol. XLI M, No. 4 (2015) 

 

To prove G/I ≅ G1/I1 

Define g : G1 → G/I by g (x1) = Ix,   x1 =  (x) 

g is well defined:  

Suppose Ix = Iy 

⟹    x = y ⟹     (x) =  (y) ⟹  I (x) = I (y) ⟹   g (Ix) = g (Iy) 

Therefore g is well defined. 

g is a homomorphism : 

Let x1, y1 ∈ G1 be arbitrary. 

 ⟹   x1 =  (x),    y1 =  (y) where x, y ∈ G. 

Then, g (x1 + y1) = Ix + y= Ix + Iy   = g (x1) + g (y1) 

         g (x1 ∨ y1) = �� ∨ �  = Ix ∨ Iy  = g (x1) ∨ g (y1) 

          g (x1 ∧ y1) = �� ∧ �  = Ix ∧ Iy  = g (x1) ∧ g (y1) 

         g (x1 → y1) = Ix → y  = Ix → Iy  = g (x1) → g (y1) 

         g (x1) = Ix  = (Ix)  = [g (x1)] 

Ker g = I1 : 

Let x1 ∈ ker g be arbitrary  

⟹   x1 ∈ G1 such that g (x1) = I0 ⟹  x1 =  (0),    (0) ∈ I1 

⟹   x1 ∈ I1 

Therefore Ker g ⊂ I1 

Conversely, let x1 ∈ I1 be arbitrary  

 ⟹   x1 =  (x),   x ∈ I 

 ⟹   x1 =  (0),   0 ∈ I 

 ⟹   g (x1) = I0  ⟹   x1 ∈ Ker g 

Therefore    I1 ⊂ Ker g  

Hence    I1 = Ker g 

Hence we have g is an onto homomorphism with Ker g = I1 

⟹   G1/I1  ≅  G/I by previous theorem  

⟹   G/I  ≅  G1/I1 

Take G1 = G/S and I1 = I/S 

We get G/I  ≅ (G/S)/(I/S) 

Theorem  4.6:   Second  isomorphism theorem 

If I1 and I2 are two LI-ideals of a commutative l-group implication algebra G, then        
I1/I1 ∧ I2  ≅ I1 + I2/I2 

Proof : Given I1 and I2 are LI-ideals of G. 

Then I1 + I2, I1 ∧ I2 are LI-ideals of G. 

To prove  I1/I1 ∧ I2  ≅ I1 + I2/I2 

Consider a map  : I1 → I1 + I2/I2 by  (a1) = Ia1 where a1 in I1 

Then we claim that  is a well defined onto homomorphism with  Ker  = I1 ∧ I2 
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ϕ is well defined: 

Suppose a1 = a2 where a1, a2 in I1 

 ⟹   a1 – a2 = 0 in I1 

 ⟹   Ia1 = Ia2 ⟹   (a1) =  (a2) 

Therefore  is well defined 

 is onto : 

Take any Ia in I1 + I2 / I2 

  ⟹   a in I1 + I2  ⟹   a = a1 + a2 for some a1 in I1, a2 in I2 

  ⟹    Ia = I(a1 + a2) = Ia1 + Ia2= Ia1 

         (a) = Ia1 

Therefore  is onto.  

 is a homomorphism : 

 Let a1, a2 in I1 be arbitrary. 

Then,   (a1 + a2) = I(a1 + a2)  = Ia1 + Ia2  =  (a1) +  (a2) 

    (a1 ∨ a2) = I(a1 V a2) = Ia1 ∨ Ia2 =  (a1) ∨   (a2) 

    (a1 ∧ a2) = �(�� ∧ ��) = Ia1 ∧ Ia2  =  (a1) ∧  (a2) 

    (a1 → a2) = I(a1 → a2) = Ia1 → Ia2  =  (a1) →  (a2) 

         (a1) = I (a1)  = (Ia1) = [ (a1)] for all a1, a2 in I1 

Therefore  is a homomorphism  

Ker  = I1 ⋂ I2 : 

Let a in I1 ⋂ I2 be arbitrary 

   ⟹   a in I1 and a in I2   ⟹  a in I1 and I0 = I2   ⟹  a in I1 such that  (a) = I2 

   ⟹  a in ker   

Therefore, I1 ∧ I2 ⊆ Ker                                                              …(1) 

Conversely, let a1 in Ker  be arbitrary 

   ⟹   a1 in I1 such that  (a1) = zero element in I1 + I2/I2 

   ⟹   a1 in I1 such that  (a1)  = I0 = I2  ⟹   a1 in I1 and a1 in I2 = I0  ⟹   a1 in I1 ∧ I2 

Therefore,                    Ker   ⊆  I1 ∧ I2                                                                         ...(2) 

From (1) and  (2) we get,               Ker  = I1 ∧ I2 

Hence  : I1 → I1 + I2/I2 is an onto homomorphism with Ker  = I1 ∧ I2. 

⟹   I1/I1 ∧ I2  ≅  I1 + I2/I2  by previous theorem. 
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