DISTRIBUTIVE *LI*-IDEAL IN COMMUTATIVE *I*-GROUP IMPLICATION ALGEBRA

R. PUNITHA

Assitt. Prof. and Head, Department of Mathematics, Thassim Beevi Abdul Kader College for Women, Kilakarai

AND

Dr. R. NATARAJAN

Professor and Head (Retd.), Department of Mathematics, Alagappa University, Karaikudi

RECEIVED : 21 May, 2015

In this paper, to introduce distributive *LI*-ideal, Characterization theorem for distributive *LI*-ideal, dually distributive *LI*-ideal, Characterization theorem for dually distributive *LI*-ideal and the relation between them in a commutative *I*-group implication algebra *G*.

KEY WORDS: *I*-group, commutative *I*-group, *LI*-ideal, distributive *LI*-ideal, dually distributive *LI*-ideal.

INTRODUCTION

It is well known that a distributed complimented lattice is a Boolean algebra which is equivalent to Boolean ring with identity. This relation gives a link between Lattice theory and Modern Algbra. The algebraic structure connecting lattice and group is called *l*-group or lattice ordered group. Many common abstractions, namely Dually residuated lattice ordered semi groups, lattice ordered commutative groups, lattice ordered near rings lattice ordered semi rings and commutative *l*-group implication algebra are presented in [8], [4], [1], [7] and [5] respectively. The concept of *LI*-ideal in lattice implication algebra is introduced in [9].

Ore, O., has introduced and developed the concept of distributive element in a lattice. The concept of distributive ideal is called distributive element in the ideal lattice I(L) of a lattice L has been introduced by Gratzer, G., and Schmidt, E.T.,

In this paper the concept of distributive *LI*-ideal, dually distributed *LI*-ideal are introduced and established it characteristic theorems.

Preliminaries

In this section are listed a number of definitions and results which are made use of throughout the paper. The symbols \leq , +, -, V, \land , \rightarrow , * and \in will denote inclusion, sum, difference, join (least upper bound), meet (greatest lower bound), implication, symmetric difference and membership in a lattice *L* or commutative *l*-group implication algebra *G*. Small letters *a*, *b*,... will denote elements of the lattice *L* or commutative *l*-group *G*.

Definition 1.1: A non-empty set G is called an *l*-group iff

- (i) (G, +) is a group (ii) (G, \leq) is a lattice
- (iii) If $x \le y$, then $a + x + b \le a + y + b$, for all a, b, x, y in G.

141/M015

Or

$$(a+x+b) \lor \lor (a+y+b) = (a+x\lor \lor y+b)$$

 $(a+x+b) \land \land (a+y+b) = (a+x \land \land y+b),$ for all a, b, x, y in G .

Definition 1.2 : An *l*-group G is called commutative *l*-group if x + y = y + x for all x, y in G.

Definition 1.3 : An implication algebra is a non-empty set *L* with greatest element *I*, least element 0, an unary operation " " and a binary operation " \rightarrow " which satisfies the following axioms:

(I1) $1 \rightarrow x = x$ (I2) $x \rightarrow x = I$ (I3) $(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$

(I4)
$$(((y \to z) \to z) \to x) \to x = (((y \to x) \to x) \to z) \to z$$

- (I5) $x \to (y \to z) = y \to (x \to z)$ (I6) $0 \to x = I$
- (I7) $x \to 0 = x$ for all $x, y, z \in L$.

Definition 1.4 : Let $(L, \lor \lor, \land \land, 0, I)$ be a bounded lattice with an order-reversing involution ', I and 0 the greatest and the smallest element of L respectively, $\rightarrow : L \times L \rightarrow L$ be a mapping. Then $(L, \lor \lor, \land \land, , \rightarrow, O, I)$ is called a lattice implication algebra if the following conditions hold for any $x, y, z \in L$:

- $(L_1) \quad x \to (y \to z) = y \to (x \to z), \ (L_2) \quad x \to x = I, \quad (L_3) \quad x \to y = y' \to x',$
- (L₄) If $x \to y = y \to x = I$, then x = y, (L₅) $(x \to y) \to y = (y \to x) \to x$,
- $(L_6) \quad (x \lor y) \to z = (x \to z) \land (y \to z) \qquad (L_7) \quad (x \land y) \to z = (x \to z) \lor (y \to z).$

The binary operation " \rightarrow " will be denoted by juxt a position. We can define a partial ordering " \leq " on a lattice implication algebra *L* by $x \leq y$ if and only if $x \rightarrow y = 1$.

Theorem 1.1: Definitions 1.3 and 1.4 are equivalent.

Theorem 1.2. In a lattice implication algebra L, the following are hold

(i) $x \le y$ if and only if $x \to y = 1$ (ii) $x \le (x \to y) \to y$ (iii) $0 \to x = 1$, $1 \to x = x$ and $x \to 1 = 1$ (iv) $x' = x \to 0$ (v) $x \to y \le (y \to z) \ (x \to z)$ (vi) $(x \lor y) = (x \to y) \to y$ (vii) $x \le y \Longrightarrow y \to z \le x \to z$ and $z \to x \le z \to y$.

Definition 1.5 : A non-empty set G is called **commutative** *l***-group implication algebra** if only if

1. (G, +) is a commutative group 2. (G, \rightarrow) is an implication algebra

3. $x \le y \Longrightarrow (i)$ $a + x \le a + y$

- (ii) $(a \to x) \to b \ge (a \to y) \to b$
- (iii) $a \to (x \to b) \ge a \to (y \to b)$, for all a, b, x, y in G.

Definition 1.6 : A non empty set G is called **commutative** *l***-group implication algebra** if and only if

- 1. (G, +) is a commutative group
- 2. (G, \rightarrow) is an implication algebra
- 3. (i) $a + (x \lor y) = (a + x) \lor (a + y)$
 - (ii) $a + (x \land y) = (a + x) \land (a + y)$

270

(iii)
$$[a \to (x \lor y)] \to b] = [(a \to x) \to b] \land [(a \to y) \to b]$$

 $= a \to [(x \lor y) \to b]$
(iv) $[a \to (x \land y)] \to b] = [(a \to x) \to b] \lor [(a \to y) \to b]$
 $= a \to [(x \land y) \to b],$ for all x, y, a, b in G .

Theorem 1.3 : The above two definitions for commutative *l*-group implication algebra are equivalent.

Definition 1.7 : Let G be a commutative l-group implication algebra and I a non-empty subset of G. Then I is called an LI-ideal if and only if

1. a, b in I implies a - b in I2. a, b in I implies $a \lor b, a \land b$ in I

3. 0 < x < a, and a in I implies x in I 4. $(x \rightarrow y)' \in I$ and $y \in I$ imply $x \in I$

In a commutative l – group implication algebra, {0}, G are LI – ideals of G.

Theorem 1.4 : If I_1 , I_2 , are two *LI*-ideals of commutative *l*-group implication algebra *G*, then

- (i) $I_1 \lor I_2 = \{x \in G | x \le x_1 \lor x_2 \text{ for some } x_1 \text{ in } I_1, x_2 \text{ in } I_2\}$ is an *LI*-ideal
- (ii) $I_1 \wedge I_2 = \{x \in G | x \text{ in } I_1 \text{ and } x \text{ in } I_2\}$ is an LI ideal
- (iii) $I_1 + I_2 = \{x \text{ in } G/x \le x_1 + x_2 \text{ for some } x_1 \text{ in } I_1, x_2 \text{ in } I_2\}$ is an *LI*-ideal
- (iv) $I_1 \lor I_2$ is the smallest *LI*-ideal containing $I_1 \sqcup I_2$

Theorem 1.5 : Let G be a commutative *l*-group implication algebra and I(G), set of all LI-ideals of G. Then I(G) is a lattice.

DISTRIBUTIVE *LI-***IDEAL**

In this section distributive *LI*-ideal is introduced and established characterization theorem for distributive *LI*-ideal.

Definition 2.1: An *LI*–ideal *D* of a commutative *l*-group implication algebra *G* is called a distributive *LI* – ideal if $D \lor (X \land Y) = (D \lor X) \land (D \lor Y)$ for all $X, Y \in I(G)$

Example 2.1 : Every ideal of a Boolean algebra *B* is called a distributive *LI*-ideal.

Proof: Given D is an ideal of a Boolean algebra B.

 $\Rightarrow (i) \quad a, b \in D \Rightarrow a \lor b \in D \qquad (ii) \quad a < b, b \in I \Rightarrow a \in I$

To prove that *B* is a distributive *LI*-ideal

That is to prove

- (i) $a, b \text{ in } D \Longrightarrow a b \text{ in } D$
- (ii) $a, b \text{ in } D \Longrightarrow a \lor b, a \land \lor \land b \in D$
- (iii) 0 < x < a, and a in $D \Longrightarrow x$ in D
- (iv) $(x \to y)' \in D$ and $y \in D \Longrightarrow x \in D$
- (v) $D \lor (X \land Y) = (D \lor X) \land (D \lor Y)$ for all $X, Y \in I(B)$

For (i):

Let $a, b \in D$ $\Rightarrow a, b \in D, a \ge a - b$ $\Rightarrow a - b \in D$, by the definition of ideal. For (ii) : Let $a, b \in D \implies a, b \in D, a \land b \leq a$ $\Rightarrow a \land b \in D$, by the definition of ideal Also $a, b \in D \implies a \lor b \in D$, by the definition of ideal For (iii) : Let $a \in I$, $0 < x < a \implies x \in D$, by the definition of ideal For (iv) : Given $(x \to y)' \in D$ and $y \in D \implies y \lor (x \to y)' \in D$...(1) To prove $x \in D$ Consider $y \lor (x \to y)' = (y \to (x \to y)') \to (x \to y)' = ((x \to y) \to y') \to (x \to y)'$ $= (x \rightarrow y) \rightarrow (y')' = (x \rightarrow y) \rightarrow y = x \lor y$ $\Rightarrow x \lor y \in D$, by (1) $\implies x \in D$, since $x < x \lor y$ Hence *D* is a *LI*-ideal. For (v):

Given *B* is a Boolean algebra

 \Rightarrow B is a commutative *l*-group implication algebra

We know that I(B), the set of all *LI*-ideals of a commutative *l*-group implication algebra form a distributive lattice.

 \implies $D \lor (X \land Y) = (D \lor X) \land (D \lor Y)$, for all $X, Y \in I(B)$ and $D \in I(B)$

 \Rightarrow D is a distributive LI-ideal.

Example 2.2 : Every *LI*-ideal of a commutative *l*-group implication algebra is a distributive *LI*-ideal.

Theorem 2.1: Charactererization theorem for distributive LI – ideal

Let D be an LI- ideal of a commutative l-group implication algebra G. Then the following conditions are equivalent.

- (i) *D* is distributive
- (ii) The map $\phi: X \to D \lor X$ is an onto homomorphism of I(G) onto

 $[D] = \{X \text{ in } I(G) | X \ge D\}$

(iii) The binary relation θ_D on I(G) is defined by

" $X \equiv Y(\theta_D) \iff D \lor X = D \lor Y$ where X, Y in I(G)"

is a congruence relation.

Proof: Let $X, Y, Z \in I(G)$ be arbitrary.

 $(i) \Rightarrow (ii):$

 ϕ preserves \lor :

Then

272

 $\phi(X \lor Y) = D \lor (X \lor Y) = (D \lor D) \lor (X \lor Y) = D \lor [D \lor (X \lor Y)]$ $= [D \lor (D \lor X)] \lor Y = [(D \lor X) \lor D] \lor Y = [(D \lor X) \lor (D \lor Y)]$ $= \phi(X) \lor \phi(Y)$ Thus $\phi(X \lor Y) = \phi(X) \lor \phi(Y)$, for all $X, Y \in I(G)$. ϕ preserves \wedge : Then $\phi(X \land Y) = D \lor (X \land Y) = [(D \lor X) \land (D \lor Y)],$ by (i) $= \phi(X) \land \phi(Y)$ Thus $\phi(X \land Y) = \phi(X) \land \phi(Y), \text{ for all } X, Y \in I(G).$ ϕ is onto : Take any X in [D) \Rightarrow X in I (G) such that $X \ge D \Rightarrow$ X in I (G) such that $D \lor X = X \Rightarrow \phi(X) = D \lor X = X$ Thus for any X is [D) there exist $X \in I(G)$ such that $\phi(X) = X$. Hence ϕ is an on to homomorphism. $(ii) \Rightarrow (iii):$ We claim that 1) θ_D is reflexive. 2) θ_D is symmetric. 3) θ_D is transitive. 4) substitution property $X \equiv X_1(\theta_D), \quad Y \equiv Y_1(\theta_D)$ $\implies X \lor Y \equiv X_1 \lor Y_1(\theta_D)$ \implies $X \land Y \equiv X_1 \land Y_1(\theta_D)$, for all X, X_1, Y, Y_1 in I(G)For (1) : Then $D \lor X = D \lor X$ $\implies X \equiv X(\theta_D)$ Thus $X \equiv X(\theta_D)$, for all $X \in I(G)$ For (2) : Suppose $X \equiv Y(\theta_D) \implies D \lor X = D \lor Y \implies D \lor Y = D \lor X \implies Y \equiv X(\theta_D)$ Thus $X \equiv Y(\theta_D) \Longrightarrow Y \equiv X(\theta_D)$, for all $X, Y \in I(G)$. For (3) : Suppose $X \equiv Y(\theta_D)$ and $Y \equiv Z(\theta_D)$ $\Rightarrow D \lor X = D \lor Y$ and $D \lor Y = D \lor Z \Rightarrow D \lor X = D \lor Z \Rightarrow X \equiv Z(\theta_D)$ Thus $X \equiv Y(\theta_D)$ and $Y \equiv Z(\theta_D)$ implies $X \equiv Z(\theta_D)$, for all $X, Y, Z \in I(G)$. For (4) : Let X, X_1 , Y, $Y_1 \in I(G)$ be arbitrary. Suppose $X \equiv X_1(\theta_D)$, $Y \equiv Y_1(\theta_D) \implies D \lor X = D \lor X_1$, $D \lor Y = D \lor Y_1$ Now $D \lor (X \lor Y) = (D \lor X) \lor Y = (D \lor X_1) \lor Y = (X_1 \lor D) \lor Y = X_1 \lor (D \lor Y)$ $= X_1 \vee (D \vee Y_1) = (X_1 \vee D) \vee Y_1 = (D \vee X_1) \vee Y_1 = D \vee (X_1 \vee Y_1)$ Similarly $D \lor (X \land Y) = D \lor (X_1 \land Y_1) \Longrightarrow X \lor Y = (X_1 \lor Y_1) (\theta_D)$ and $X \wedge Y = (X_1 \wedge Y_1) (\theta_D)$

Thus $X \equiv X_1(\theta_D)$ and $Y \equiv Y_1(\theta_D)$ implies

 $X \lor Y = (X_1 \lor Y_1)(\theta_D)$ and $X \land Y = (X_1 \land Y_1)(\theta_D)$, for all $X, X_1, Y, Y_1 \in I(G)$.

Hence θ_D is a congruence relation.

(iii) \Rightarrow (i):

Claim: $D \lor (X \land Y) = (D \lor X) \land (D \lor Y)$ for all $X, Y \in I(G)$. Then $D \lor X = (D \lor D) \lor X = D \lor (D \lor X)$

 $D \lor Y = (D \lor D) \lor Y = D \lor (D \lor Y)$

- $\Rightarrow X \equiv (D \lor X) (\theta_D), Y \equiv (D \lor Y) (\theta_D) \Rightarrow X \land Y = (D \lor X) \land (D \lor Y) (\theta_D), \text{ by (iii)}$
- \Rightarrow $D \lor (X \land Y) = D \lor [(D \lor X) \land (D \lor Y)],$ by the definition of θ_D

 $\implies D \lor (X \land Y) = (D \lor X) \land (D \lor Y), \text{ since } D \le (D \lor X) \land (D \lor Y)$

Thus $D \lor (X \land Y) = (D \lor X) \land (D \lor Y)$ for all $X, Y \in I(G)$.

Hence D is a distributive LI-ideal.

DUALLY DISTRIBUTIVE LI-IDEAL

In this section dually distributive *LI*-ideal is introduced and established characterization theorem for dually distributive *LI*-ideal.

Definition 3.1: An *LI*-ideal *D* of a commutative *l*-group implication algebra *G* is called dually distributive *LI*-ideal if $D \land (X \lor Y) = (D \land X) \lor (D \land Y)$ for all $X, Y \in I(G)$.

Example 3.1 : Every ideal of Boolean algebra *B* is a dually distributive *LI*-ideal.

Proof: Every ideal *D* of a Boolean algebra *B* is a distributive *LI*-ideal.

$$\Rightarrow D \lor (X \land Y) = (D \lor X) \land (D \lor Y) \text{ for all } D, X, Y \in I(G), \dots$$
(1)

To prove $D \land (X \lor Y) = (D \land X) \lor (D \land Y)$ for all $X, Y \in I(G)$

Now $(D \land X) \lor (D \land Y) = [(D \land X) \lor D] \land [(D \land X) \lor Y), by (1)$

$$= [D \lor (D \land X)] \land [Y \lor (D \land X)] = D \land [(Y \lor D) \land (Y \lor X)], \text{ by } (1)$$

$$= [D \land [(D \lor Y)] \land (Y \lor X)] = D \land (X \lor Y), \text{ for all } X, Y \in I(G)$$

 \Rightarrow D is a dually distributive LI-ideal.

Example 3.2 : Every *LI*-ideal of a commutative *l*-group implication algebra *G* is a dually distributive *LI*-ideal.

Theorem 3.1: Charactererization theorem for dually distributive LI-ideal

Let D be a LI-ideal of a commutative l-group implication algebra G. Then the following conditions are equivalent.

(i) D is dually distributive.

(ii) The map $\phi: X \to D \land X$ is a homomorphism of

I(G) onto $(D] = \{X \text{ in } I(G) | X \leq D\}$

(iii) The binary relation θ_D on I(G) is defined by

$$X \equiv Y(\theta_D) \Leftrightarrow D \land X = D \land Y \text{ where } X, Y \text{ in } I(G)$$

is a congruence relation.

274

Proof: Follows dually.

Theorem 3.2: If D is an LI-ideal in a commutative l-group implication algebra G, then the following are equivalent.

- (1) *D* is a distributive *LI*-ideal
- (2) *D* is a dually distributive *LI*-ideal.

Proof: Follows from the following results

- (1) I(G) is distributive lattice
- (2) Every distributive lattice is dually distributive.

References

- Ayyappan, M. and Natarajan, R., Lattice ordered near ring, *Acta Ciencia Indica*, Vol. XXXVIII, No. 4, 727 (2012).
- 2. Birkhoff, G., Neutral elements in general lattices, Bull. Amer. Math. Soc., 46, 702-705 (1940).
- 3. Gratzer, G., General Lattice Theory, Academic Press Inc. (1978).
- 4. Natarajan, R. and Vimala, J., Distributive *l*-ideals in commutative *l*-group, *Acta Ciencia Indica*, Vol. **XXXIII** M, No. **2**, 517-526 (2007).
- 5. Punitha, R., and Natarajan, R., Commutative Lattice Ordered Group Implication Algebra, *Acta Ciencia Indica* (Acceptd for publication).
- 6. Punitha, R. and Natarajan, R., LI-ideal in commutative l-group implication algebra (Communicated).
- 7. Ranga Rao, P., Lattice ordered semi rings, *Mathematics Seminar Notes*, 9, 119-149 (1981).
- 8. Swamy, K.L.N., Dually residuated lattice ordered semigroups I, Annalen, 159, 105-115 (1965).
- 9. Xu, Y., Lattice Implication Algebras, J. Southwest Jiaotong University, 1, 20-27 (1993).