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INTRODUCTION 

It is well known that a distributed complimented lattice is a Boolean algebra which is 

equivalent to Boolean ring with identity. This relation gives a link between Lattice theory and 
Modern Algbra. The algebraic structure connecting lattice and group is called l-group or 
lattice ordered group. Many common abstractions, namely Dually residuated lattice ordered 
semi groups, lattice ordered commutative groups, lattice ordered near rings lattice ordered 
semi rings and commutative l-group implication algebra are presented in [8], [4], [1], [7] and 
[5] respectively. The concept of LI-ideal in lattice implication algebra is introduced in [9]. 

Ore, O., has introduced and developed the concept of distributive element in a lattice. The 
concept of distributive ideal is called distributive element in the ideal lattice I (L) of a lattice L 
has been introduced by Gratzer, G., and Schmidt, E.T., 

In this paper the concept of distributive LI-ideal, dually distributed LI-ideal are introduced 
and established it characteristic theorems. 

PRELIMINARIES 

In this section are listed a number of definitions and results which are made use of 

throughout the paper. The symbols ≤, +, −, ∨, ∧ , →, ∗ and ∈ will denote inclusion, sum, 
difference,  join (least upper bound), meet (greatest lower bound), implication, symmetric 
difference and membership in a lattice L or commutative l-group implication algebra G. Small 
letters a, b,…. will denote elements of the lattice L or commutative  l-group G. 

Definition  1.1: A non-empty set G is called an l-group iff 

(i) (G, +) is a group               (ii) (G, ≤) is a lattice 

(iii) If x ≤ y, then a + x + b ≤ a + y + b, for all a, b, x, y in G. 
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                                             Or 

                      (a + x + b) ˅ ∨ (a + y + b) = (a + x˅ ∨ y + b) 

                      (a + x + b) ˄ ∧ (a + y + b) = (a + x ˄ ∧ y + b),      for all a, b, x, y in G. 

Definition 1.2 : An l-group G is called commutative l-group if x + y = y + x for all x, y in 
G. 

Definition  1.3 : An implication algebra is a non-empty set L with greatest element I, least 
element 0, an unary operation “ ’ ” and a binary operation  “→” which satisfies the following 
axioms: 

(I1)    1 → x = x      (I2)    x → x = I        (I3)    (x → y) → y = (y → x) → x 

(I4)    (((y → z) → z) → x) → x = (((y → x) → x)→ z) → z 

(I5)     x → (y → z) = y → (x → z)     (I6)     0 → x = I    

(I7)    x → 0 = x’ for all x, y, z  ∈  L. 

Definition 1.4 : Let (L, ˅ ∨, ˄ ∧, 0, I) be a bounded lattice with an order-reversing 
involution ′, I and 0 the  greatest and the smallest element of L respectively,  →: L × L→ L be 
a mapping. Then (L, ∨ ˅, ˄ ∧, ’, →, O, I) is called a lattice implication algebra if the following 
conditions hold  for any  x, y, z  ∈ L: 

(L1)     x → (y → z) = y→ (x → z),  (L2)     x → x = I,     (L3)     x → y = y′ → x′,                                          

(L4)     If x → y = y → x = I, then x = y,  (L5)     (x → y) → y = (y → x) → x, 

(L6)     (x ∨ y) → z = (x → z) ∧ (y → z)       (L7)     (x ∧ y) → z = (x → z) ∨ (y → z). 

The binary operation “→” will be denoted by juxt a position. We can define a partial 
ordering “≤” on a lattice implication algebra L by x ≤ y if and only if  x → y = 1.  

Theorem 1.1:     Definitions 1.3 and 1.4 are equivalent. 

Theorem 1.2. In a lattice implication algebra L, the following are hold 

(i) x ≤ y if and only if x→ y = 1                        (ii)  x ≤ (x → y) → y  

(iii) 0 → x = 1,     1 → x = x   and    x → 1 = 1   (iv)   x’ = x → 0 

(v) x → y ≤ (y → z) (x → z)                                  (vi)  (x ∨ y) = (x → y) → y 

 (vii)  x ≤ y ⟹ y → z ≤  x → z and  z→ x ≤  z→ y. 

Definition  1.5 : A non-empty set G is called commutative l-group implication algebra 
if only if 

1. (G, +) is a commutative group         2. (G, →) is an implication algebra 

3. x ≤ y ⟹ (i)     a +  x  ≤  a + y 

                         (ii)    (a → x) → b ≥ (a →  y) → b   

                        (iii)    a  → (x → b) ≥ a  → (y  → b),    for  all a, b, x, y in G. 

Definition  1.6 : A non empty set G is called commutative l-group implication algebra 
if and only if 

1. (G, + ) is a commutative group 

2. (G, →) is an implication algebra 

3. (i)    a + (x ∨ y) = (a + x) ∨ (a + y) 

         (ii)    a + (x ∧ y) = (a + x) ∧ (a + y) 
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            (iii)    [a → (x ∨ y)] → b] = [(a → x) → b] ∧ [(a → y) → b] 

                                                    = a →[(x ∨ y) → b] 

             (iv)    [a → (x ∧ y)] → b] = [(a → x) → b] ∨ [(a → y) → b] 

                                                     = a → [(x ∧ y) → b],             for all x, y, a, b in G. 

Theorem  1.3 : The above two definitions for commutative l-group implication algebra 
are equivalent. 

Definition 1.7 : Let G be a commutative l-group implication algebra and I a non-empty 
subset of G. Then I is called an LI-ideal if and only if  

1.  a, b in I implies a – b in I                      2. a, b in I implies a ∨ b, a ∧ b in I 

3.  0 < x < a, and a in I implies x in I         4. (x → y)’ ∈ I and y ∈ I imply  x ϵ I 

In a commutative l – group implication algebra, {0}, G are LI – ideals of G. 

Theorem  1.4 : If I1, I2, are two LI-ideals of commutative l -group implication algebra G, 
then 

(i) I1 ∨ I2 = {x ϵ G/x ≤ x1 ∨ x2 for some x1 in I1, x2 in I2} is an LI-ideal 

(ii) I1 ∧ I2 = {x ϵ G/x in I1 and x in I2} is an LI – ideal 

(iii) I1 + I2 = {x in G/x ≤ x1 + x2 for some x1 in I1, x2 in I2} is an  LI-ideal 

(iv)  I1 ∨ I2  is the smallest LI-ideal containing I1 U I2 

Theorem 1.5 : Let G be a commutative l-group implication algebra and I (G), set of all 
LI-ideals of G. Then I (G) is a lattice. 

DISTRIBUTIVE LI-IDEAL 

In this section distributive LI-ideal is introduced and established characterization 

theorem for distributive LI-ideal. 

Definition  2.1: An LI–ideal D of a commutative l-group implication algebra G is called a 
distributive LI – ideal if D ∨ (X ∧ Y) = (D ∨ X) ∧ (D ∨ Y) for all X, Y ∈ I (G) 

Example  2.1 : Every ideal of a Boolean algebra B is called a distributive LI-ideal. 

Proof : Given D is an ideal of a Boolean algebra B. 

⟹   (i)    a, b ∈ D ⟹ a ∨ b ∈ D               (ii)    a < b, b ∈ � ⟹ a  ∈ I 

To prove that B is a distributive LI-ideal 

That is to prove 

(i) a, b in D ⟹ a – b in D 

(ii) a, b in D ⟹ a ∨ b, � ∧ ˅˄ � ∈ D 

(iii) 0 < x < a, and a in D ⟹ x in D 

(iv) (x → y)’ ∈ D and y ∈ D ⟹ x ∈ D 

(v) D ∨ (X ∧ Y) = (D ∨ X) ∧ (D ∨ Y) for all X, Y ∈ I (B) 

For (i): 

Let a, b ∈ D 

⟹   a, b ∈ D,   a  ≥ a – b 
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⟹  a – b ∈ D,   by the definition of ideal. 

For (ii) : 

Let a, b ∈ D   ⟹    a, b ∈ D,  a ∧ b ≤ a 

⟹    a ∧ b ∈ D,   by the definition of ideal 

Also a, b ∈ D   ⟹    a ∨ b ∈ D,   by the definition of ideal 

For (iii) : 

Let a ∈ I,   0 < x < a ⟹ x ∈ D,   by the definition of ideal 

For (iv) : 

Given     (x → y)’ ∈ D and   y ∈ D ⟹    y ∨ (x → y)’ ∈ D                          …(1) 

To prove x ∈ D 

 Consider y ∨ (x → y)’ = (y →( x → y)’) →(x → y)’ = ((x → y) → y’) →(x → y)’ 

                                     = (x → y) →( y’)’  = (x → y) → y  = x ˅ y 

⟹   x ∨ y ∈ D,     by (1) 

⟹    � ∈ D,    since x < x ∨ y 

Hence D is a LI-ideal. 

For (v): 

Given B is a Boolean algebra 

⟹    B is a commutative l-group implication algebra 

We know that I (B), the set of all LI-ideals of a commutative l-group implication algebra 
form a distributive lattice. 

⟹    D ∨ (X ∧ Y) = (D ∨ X) ∧ (D ∨ Y),     for all X, Y ∈ � (B) and D ∈ I (B) 

⟹    D is a distributive LI-ideal. 

Example 2.2 : Every LI-ideal of a commutative l-group implication algebra is a 
distributive LI-ideal. 

Theorem  2.1: Charactererization theorem for distributive LI – ideal  

Let D be an LI– ideal of a commutative l–group implication algebra G. Then the 
following conditions are equivalent. 

(i)    D is distributive  

(ii)   The map ϕ : X → D ∨ X is an onto homomorphism of I (G) onto  

                         [D) = {X in I (G)/X ≥ D} 

(iii)  The binary relation θD on I(G) is defined by  

                    “X ≡ Y (θD)  ⇔ D ∨ X = D ∨ Y  where X, Y in I (G)” 

is a congruence relation. 

Proof : Let X, Y, Z ∈  I (G) be arbitrary. 

(i) ⟹ (ii): 

ϕ preserves ∨ :  

Then  
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ϕ (X  ∨ Y) =  D ∨ (X ∨ Y) =  (D ∨ D) ∨ (X ∨ Y) =  D ∨ [D ∨ (X ∨ Y)] 

   =  [D ∨ (D ∨ X)] ∨ Y  =  [(D ∨ X) ∨ D] ∨ Y  =  [(D ∨ X) ∨ (D ∨ Y)]   

   = ϕ (X) ∨ ϕ (Y) 

Thus ϕ (X ∨ Y)  = ϕ (X) ∨ ϕ (Y),      for all X, Y ∈ I (G). 

ϕ preserves ∧ : 

Then            ϕ (X ∧ Y)  =  D ∨ (X ∧ Y) =  [(D ∨ X) ∧ (D ∨ Y)],     by (i)  

      = ϕ (X) ∧ ϕ (Y) 

Thus           ϕ (X ∧ Y)  = ϕ (X) ∧ ϕ (Y),       for all X, Y ∈ I(G). 

ϕ is onto :  

Take any X in [D) 

⟹  X in I (G) such that X  ≥  D ⟹ X in I (G) such that D ∨ X = X ⟹ ϕ (X) = D ∨ X  =  X 

Thus for any X is [D) there exist X ∈ I (G) such that ϕ (X)  =  X. 

Hence ϕ is an on to homomorphism. 

(ii) ⟹ (iii) : 

We claim that  

1)   θD  is reflexive.  2)   θD  is symmetric.   3)   θD  is transitive.   4)   substitution  property 

X ≡ X1 (θD),    Y ≡ Y1 (θD)  

⟹   X ∨ Y ≡ X1 ∨ Y1 (θD) 

⟹   X ∧ Y ≡ X1 ∧ Y1 (θD),   for all X,  X1, Y, Y1 in I(G)  

For (1) :  

Then D ∨ X  =  D ∨ X  

⟹   X ≡ X (θD) 

Thus X ≡ X (θD),   for all X ∈ I (G) 

For (2) :                                     

Suppose X ≡ Y (θD) ⟹    D ∨ X = D ∨ Y ⟹    D ∨ Y = D ∨ X ⟹    Y  ≡  X (θD)    

Thus X ≡ Y (θD) ⟹ Y ≡ X (θD),   for all X, Y ∈ I (G). 

For (3) : 

Suppose X ≡ Y (θD) and Y ≡ Z (θD) 

⟹   D ∨ X = D ∨ Y and D ∨ Y = D ∨ Z ⟹   D ∨ X = D ∨ Z ⟹   X ≡ Z (θD) 

Thus X ≡ Y (θD) and Y ≡ Z (θD) implies X ≡ Z (θD),    for all X, Y, Z ∈ I (G). 

For (4) : 

Let X,  X1, Y, Y1 ∈ I (G) be arbitrary. 

Suppose X ≡  X1(θD),   Y ≡ Y1(θD) ⟹   D ∨ X = D ∨ X1,    D ∨ Y = D ∨ Y1 

Now D ∨ (X ∨ Y)  =  (D ∨ X) ∨ Y = (D ∨ X1) ∨ Y = (X1 ∨ D) ∨ Y  = X1 ∨ (D ∨ Y) 

                =  X1 ∨ (D ∨ Y1) =  (X1 ∨ D) ∨ Y1 =  (D ∨ X1) ∨ Y1 =  D ∨ (X1 ∨ Y1) 

Similarly   D ∨ (X ∧ Y) =  D ∨ (X1 ∧ Y1) ⟹ X ∨ Y  =  (X1 ∨ Y1) (θD)   

and       X ∧ Y  =  (X1 ∧ Y1) (θD) 
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Thus X  ≡  X1 (θD) and Y  ≡ Y1(θD) implies 

   X  ∨ Y  =  (X1 ∨ Y1 )(θD)  and   X ∧ Y  =  ( X1 ∧ Y1) (θD),  for all X,  X1, Y, Y1 ∈ I (G). 

Hence θD is a congruence relation. 

(iii) ⟹ (i): 

Claim:    D ∨ ( X ∧ Y )  =  ( D ∨ X ) ∧ ( D ∨ Y ) for all X, Y ∈ I (G).  

Then  D ∨ X  =  (D ∨ D) ∨ X  =  D ∨ (D ∨ X)   

           D ∨ Y  =  (D ∨ D) ∨ Y  =  D ∨ (D ∨ Y) 

⟹    X ≡ (D ∨ X) (θD), Y ≡ (D ∨ Y) (θD) ⟹  X ∧ Y = (D ∨ X) ∧ (D ∨ Y) (θD),     by (iii)  

⟹     D ∨ (X ∧ Y)  =  D ∨ [(D ∨ X) ∧ (D ∨ Y)],      by the definition of  θD 

⟹    D ∨ (X ∧ Y)  =  (D ∨ X) ∧ (D ∨ Y),     since  D ≤ (D ∨ X) ∧ (D ∨ Y) 

Thus D ∨ (X ∧ Y)  =  (D ∨ X) ∧ (D ∨ Y) for all X, Y ∈ I (G). 

Hence D is a distributive LI-ideal. 

DUALLY DISTRIBUTIVE LI-IDEAL  

In this section dually distributive LI-ideal is introduced and established characterization 

theorem for dually distributive LI-ideal. 

Definition  3.1: An LI-ideal D of a commutative l–group implication algebra G is called 
dually distributive LI-ideal if D ∧ (X ∨ Y)  = (D ∧ X) ∨ (D ∧ Y) for all X, Y ∈ I (G). 

Example  3.1 : Every ideal of Boolean algebra B is a dually distributive LI-ideal. 

Proof: Every ideal D of a Boolean algebra B is a distributive LI-ideal. 

           ⟹ D ∨ (X ∧ Y)  =  (D ∨ X) ∧ (D ∨ Y) for all D, X, Y ∈ I(G), .. .(1) 

To prove   D ∧ (X ∨ Y)  = (D ∧ X) ∨ (D ∧ Y) for all X, Y ∈ I (G) 

Now (D ∧ X) ∨ (D ∧ Y) = [(D ∧ X) ∨ D] ∧ [(D ∧ X) ∨ Y),   by (1) 

                               = [D ∨ (D ∧ X)] ∧ [Y ∨ (D ∧ X)]= D ∧ [(Y ∨ D) ∧ (Y ∨ X)] ,   by (1) 

                               = [D ∧ [(D ∨ Y)] ∧ (Y ∨ X)] = D ∧ (X ∨ Y ),   for all X, Y ∈ I (G) 

⟹ D is a dually distributive LI-ideal. 

Example  3.2 : Every LI-ideal of a commutative l-group implication algebra G is a dually 
distributive LI-ideal. 

Theorem  3.1: Charactererization theorem for dually distributive LI-ideal  

Let D be a LI-ideal of a commutative  l-group implication algebra G. Then the following 
conditions are equivalent. 

(i) D is dually distributive. 

(ii) The map ϕ : X → D ∧ X is a homomorphism of         

                       I (G) onto (D] = {X in I (G)/X ≤ D} 

(iii) The binary relation θD on I (G) is defined by  

                    “X ≡ Y (θD)  ⇔ D ∧ X = D ∧ Y  where X, Y in I (G)” 

is a congruence relation. 
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Proof: Follows dually. 

Theorem  3.2 : If D is an LI-ideal in a commutative l-group implication algebra G, then 
the following are equivalent. 

(1) D is a distributive LI-ideal 

(2) D is a dually distributive LI-ideal. 

Proof: Follows from the following results 

(1) I (G) is distributive lattice 

(2) Every distributive lattice is dually distributive. 
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