
Acta Ciencia Indica, Vol. XLI M, No. 3 (2015) 207 

 A GLOBALLY CONVERGENT ALGORITHM FOR 
CONSTRAINED OPTIMIZATION USING QUADRATIC 

APPROXIMATION 
 

SAURABH SRIVASTAVA
 

Department of Mathematics, Hindustan College of Science & Technology, Farah, Mathura (U.P.), India 

RECEIVED : 15 July, 2015 

REVISED : 31 July, 2015 

“This paper presents an algorithm utilizing a quadratic 
approximation for determining the search direction and an 
exact penalty function for choosing the step length. The 
algorithm is globally convergent. The algorithm provides a 
rule for choosing the penalty parameter near a solution 
employs a search are rather than a search direction to 
avoid truncation of the step length”. 
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INTRODUCTION 

We consider the following problem  

     Min {f (x : h (x) = 0, g (x)  0} (1) 

where f : Rn  R, g : Rn  Rm, h : Rn  Rr. 

There are several algorithm which possess a superliner rate of convergence but are only 
locally convergent given by Chamberlen [2], Fletecher [5], Giull and Murray [6] and Powell 
[11], [12], Rios LM, Sahinidis NV, [15]. To stabilize globally these algorithms, the main 
difficulty is that they generate sequences which are not compulsorily feasible. It makes a 
confusion to decide whether the next iteration is an improvement or not. In this class of 
algorithm we find search direction by solving a first or second order approximation to the 
original problem and the step length is selected by approximately to the original problem and 
the step length is selected by approximately minimizing an exact penalty function. The 
concept of application of penalty function in constrained   minimization problem was studied 
and given in detail by Conn [3], Daniel [4] and Robinson [13]. Global convergence for 
constrained optimization problem was proved by Han [7], [8], Wang, Huang and He [14]. 
Modified Armijo procedure for penalty function approach was used by Audet, Dennis [1], 
Levenberg [9] and Marquardt [10]. 

This paper presents an algorithms utilizing a quadratic approximation for determining the 
search direction and an exact penalty function for choosing the step length, which overcomes 
above obtained difficulties. 

The algorithm : 

Superlinear convergence is obtained by using a search direction which is obtained by 
solving a quadratic approximation to the original problem. Let L denotes the lagrangian 
function as :  
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     L (x, /) = f (x) + < /, g (x) > +  < , h (x) >  … (2) 

Let H  Rn  n  is an estimate of the Hessian Lxx (x, , ). The quadratic approximation to 
P, given x and H, is defined to be the program: 

QP (x,H) :               min {fx (x) p + (½pTHP | p  F (x) } … (3) 

where   F(x) : { p  Rn | g(x) + gx (x) p  0, h (x) + hx (x) p = 0} … (4) 

Solving QP (x1H) yields a search direction which is certainly satisfactory near a solution 
point, but which may not be satisfactory. 

The exact penalty function employed in this paper is r : Rn  R  R defined by 

     r (x, c) = f (x) (+ c : (x) … (5) 

where  : Rn  R is defined by 

    (x) = max {gj (x) , j  m ; | hi (x) | , j  r; 0 }  … (6) 

where m, r denote, respectively the sets {1121 …., m} and {1, 2, .... r}. The penalty parameter 
is c. 

Obviously  (x)  0 and  (x)  0 and  (x) = 0 iff x is feasible. To make certain whether 
a given search direction p is a descent direction for  (x, c), we  require first order estimates  

and    (r, p, c),  (x, + p); these are obtained by replacing gj (x + p) by gj (x)  + gj
x (x) p and hj 

(x + p) by hj (I) + hi
x (x) p in the appropriate definitions  yielding.  

   �
1( , , ) ( ) ( ) , )xx p c f x f x p c x p     … (7) 

    ˆ ( , ) max ( ) , , ( ) ( ) : ;0j j j
xx p g x p j m h x h x p j r      … (8) 

It is supposed that f, g, h are continuously differentiable,  

Let  : Rn  Rn  R  R is defined by  

     (x, p, c) =    (x, p, c) –  (x, c) … (9) 

so that  (x, p, c)  is a first order estimate of  (x + p, c)  –  (x, c); p is a descent direction for    
 (x, c) if  (x, p, c) < 0. If p is a solution of QP (x, H), then, under certain condition, c can be 
chosen so that p is a descent direction  (x, c). 

Proposition 1 : Let {p, , } be a Kuhn-Tucker triple for QP (x, H). Then p is a descent 
direction for  (x,c) if 

(i)  H is a positive definite. 

(ii)   
1 1

m m
j j

j j

c
 

      … (10) 

This result is followed from the fact that if {p, , } is a Kuhn-Tucker triple for QP (x, H), 
then 

   
1 1

( , , ) ( )
m m

T j j

j j

x p c p hp c x
 

 
         

  
   … (11) 

Algorithm Model 
Data :  x,  Rn, c0 > 0,  > 1 
Step 0 :  Set i = 1 

Step 1 :  If Ci – 1   c  (xi) set ci = ci – 1. 

   if ci – 1 < c  (xi) Set ci = max { Ci – 1, c  (xi)} 
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Step 2:  Compute any xi + 1  A (xi, ci) 
   Set i = i + 1 and go to step 1. 
The procedure for choosing the penalty parameter is given in step 1.  If xi is the current 

value of x and ci the current value of  the  penalty  parameter,  then  A (xi, ci) is the set of all 
possible successors to xi that can be generated by the algorithm so that xi+1  A (xi, ci). Let D 
and d Dc respectively, denote the set of points satisfying the necessary conditions for P and Pc 
min {r(x, c)}. Now sufficient conditions for the convergence of D may be stated as in the form 
suppose that for all c > 0, A (, c) has the of theorem the following property. 

Theorem-1 :  

(i)  if {xi} is any infinite sequence such that xi + 1  A (xi, c) , c  c  (xi), for all i, than 

any accumulation point x* of {xi} satisfying x*  Dc. Suppose c  : Rn  R has the 
following properties. 

 (ii)  x  Dc and c  c  (x)  x  D. 

 (iii)  c  is continuous. 
Then any sequence {xi} generated by the algorithm model has the following properties; 
 (a)  if ci – 1 is increased finitely often any accumulation  point of {xi} i.e. x* satisfies     

x*  D. 
 (b)  if ci-1 is increased finitely often, for i  K say then the infinite sequence {xi} i  k 

has no accumulation points.  
An immediate consequence  of above stated theorem is as follows. 
Corollary : If the sequence {xi} generated by the algorithm model is bounded. then ci is 

increased only finitely often, and any accumulation x* of {xi} is desirable (x*D). 
Penalty Parameter : A possible formula for choosing c is suggested by (10). We replace 

(1) in (10) by continuous  first order estimates { ( ), ( )}x x   where : n mR R  and  

: n mR R  are defined by. 

   
2

( ( ), ( )) arg min ( ) ( ) ( ) .T T
xx x f x gx x h x         

      2 2

1

( ( ) ( )) ( )
m

j j

j

x g x


       

     2 2

1

( ) ( )}) ( ) .
r

j j m r

j

x h x R R


         … (12) 

The first term in the RHS of (12) ensures that   and    are estimates of the multipliers 

and the second and third terms ensure their continuity  if    , ,x     is a Kuhn-Tucker triple 

for P, then  ( )x     and  ( )x     Our test function  : nc R R is now defined by  

     
1 1

( ) max ( ) ( ) ,
m r

j
j

j j

c x x x b b
 

  
     

  
    … (13) 

where b is an arbitrary small constant. 

Search Direction : Let � 1( )p x H denote any solution of QP (x, H). The algorithm selects 

for the search direction if this is consistent with convergence suitable conditions for 
acceptance are : 
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(i)  A solution �p  (x, H) of QP (x, H) exists. 

(ii)  || �p  (x, H) ||  L.  … (14) 

(iii)   (x, �p  (x, H) , c)  – T (x) 

where L is a large positive constant and T is a continuous function satisfying T(x)  0 and   
T(x) = 0 iff x  D. A suitable function is  

   
22

( ) min ( ) ( ) ( ) ( ) ( )T T
iT x x x g x x x

               … (15) 

where  is small positive constant and ( )Tx  denotes the vector whose ith component is 

( ) .i x   

A convergent algorithm  �p  (x, H) as a search direction if  conditions (14) are satisfied 

and p (x, c) otherwise, can be constructed. The test condition (14) such that the former 

requirement  is satisfied. 
Step Length : Since  is not continuously  differentiable  the standard Armijo test, which 

employs the gradient of , cannot be employed. This can be modified using our estimate         
q (x, p, c) of  (x + p, c) –  (x, c). It is easily shown that  (x, p, c)   (x, p, c) for all 
 [0, 1]. So that the modified Armijo procedure is, choose the largest   A = {1, , 2 .....}.  
where   (0,1) such that 

      (x + px, c) –  (x)    (r, p1c). … (16) 

for some   (0,1). 
We now have all the necessary ingredients  to state the algorithm. 

Main Algorithm 
Data  :  x, H , c0  0.  > 1, L  (0, ),  < 1,   (0, 1). 
Step 0 : Set i = 0. 

Step 1 : If ci – 1  c  (xi) set ci = ci – 1. 

   If ci – 1 < c  (xi), set ci = max { ci-1, c  (xi)} 
Step 2 : If 

() A minimum norm solution p  (xi, Hi) of QP (x; H) exists. 

           () || p  (xi, Hi) ||  L. 

   ()  (xi, p  (xi, Hi), ci)  – T (xi) 

then compute p  (xi, Hi) and  

  set pi = (xi, Hi), i
p = p  (xi, Hi) Else set pi = p  (xi, ci). 

Step 3 : If pi = �p  (xiHi). Compute the largest i  A such that 

    (xi + ipi + i
2 )

i
p  –   (xi, ci)  1/8 i  (xi, pi, ci)  

and    set xi+1 = xi + ipi + i
2 

i
p . 

 If pi = p  (xi, ci) compute the largest i  A such that  

    (xi + ipi, ci) –   (xi, ci)  
4
I

Q (xi, p, ci) and set xi + 1 = xi + i pi. 

Step-4  :  Update Hi to Hi + 1. 
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Step-5 : Set i = I + 1 and go to step 1. 
Now we shall discuss global convergence of this algorithm. 
Global Convergence : For all x  Rn let I (x) index the most active inequality constraints 

and E(x) the most active equality constraints i.e.  
     I (x) = {j  m | gj (x) =  (x)} … (17) 

and      E (x) = {j  r | hj (x) =  (x)} … (18) 
Either I (x) or E (x) may be empty indeed for almost all x in Rn there will exist only one 

integer in I (x)  E (x), which is therefore a small subset of the active constraints. Here we 
make following assumptions.  

(H1) The functions fi g, h are continuously differentiable  
(H2) For all x the vectors {gj (x),  j  I (x) ; hj (x), j  E (x)} are  linearly independent  

To establish global convergence we prove that c  and A. satisfy the hypothesis  of theorem 1. 
To proceed, we need to define D, Dc more precisely as  

   D = { x  Rn | (x, , ) is a Kuhn Tucker triple for p } … (18) 
    Dc = {x  Rn | Q1 (x1C) = Q (x1 p  (x, c)}, c) = 0}  … (19) 

 It follows that ( ( ), ( ))x x  to (12) always exists and is unique and that ,   are 

continuos. Also if   ( , , )x   is a Kuhn-Tucker triple for Pi then      ( ), ( ).x x        

Hence we have 

Proposition-2 c  : R
n  R is continuous. 

Next we know that 1 (x, c)  0 and that  p  (x, c) is descent direction for   (x, c) if        1 

(x, c)  (x, p (x, c), c) < 0 so that 1 (x, c) = 0 is a necessary condition for the unconstrained 

minimization problem i.e. 
     min { (x, c)| x  Rn} 
Hence Dc is a set of desirable points for Pc using the dual from of Q Pc (x1), the following 

results can be established.  
Proposition-3 : Let c   c  (x). Then x  Dc iff x  D it is a typical  exact penalty 

function results, establishing  equivalence  of P and Pc. 
Recalling that  p  (x,c) is a solution to Qpc (x) always exists and is unique. It can also be 

established  given c  > 0, that p  (, c) is continuous. Moreover the continuity of   and   
imply that T is continuous also T (x) > 0 if x  D. Hence T : Rn  R  R defined by   (x, c)   

= max {– T (x) , 1 (x, c)} is continuous in x.  Since   (x, �p  (x, H) , c)  – T (x)   (x, c) and 

 p  (xi, (x1c), c) < 1 (x, c)   (x, c), it follows that  

      (x, p (x, H, c), c)   (x, c)  … (20)  
for all x and all H. Since  (x, p (x, H, c), c) is a first order estimate of  (x + p (x, H, c)       
+ 2 p   (x, c), c) –  (x, c) and since  (, c) is continuos, it follows  that for all (x, c) s.t.         

c  c  (x) and x  Dc.  

There exists an  > 0  > 0 s.t.  (x”, c) –  (x1, c)  –   … (21) 
for all x1   (x, ) all xn  A (x; H, c) and all symmetric H. Hence if x* be any accumulation 
point of an infinite sequence {xi} satisfying xi + !  A (xi; H, c) and c > c  (xi) for all i; then     

x*  Dc.  Thus c  and A. satisfy  the hypothesis (i) to (iii) of theorem 1 yielding let {xi} be an 
infinite sequence  generated by the main algorithm. Then {xi} has the convergence properties 
specified in conclusions (a) and (b) of theorem 1 and the corollary to theorem 1. 

CONCLUSION 
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Thus we have derived an algorithm  which is implacable and is a useful workhouse which 
can be modified  in many ways to improve  performance without  affecting its asymptotic 
properties.  
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