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In this investigation, A mathematical model of oscillatory 
flow of blood conducting Visco-elastic (Rivlin-Ericksen) 
fluid through porous medium with mild stenosis has been 
developed. Analytical expressions for velocity profile, 
volumetric flow rate, wall shear stress and resistive 
impedance have been obtained. The computational results 
are presented graphically. It is noticed that the axial 
velocity decreases as visco-elastic coefficient increases 
and axial velocity profile increases with increasing the 
pressure gradient. 
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INTRODUCTION 

The Blood flow is significantly altered and fluid dynamical factors play important roles 

as the stenosis continues to enlarge leading to the development of cardiovascular diseases such 
as heart attack etc. Due to stenosis in the human artery the flow of blood is disturbed and 
resistance to the flow become higher than that of normal one. Various mathematical models 
have been investigated by several researchers to explore the effect on oscillatory flow of non-
Newtonian blood flow through porous medium in a stenosis artery. Womersley [23] discussed 
oscillatory motions of a viscous liquids in a thin-walled elastic tube. Barnes et al [3] studied  
on pulsatile flow of non-Newtonian liquids. Daly [6] considered a numerical study of pulsatile 
flow through stenosed canine femoral arteries. Back et al [4] studied  pulsatile, viscous blood 
flow through diseased coronary arteries of man. Newman et al [14] studied the oscillatory 
flow numerically in a rigid tube with stenosis. Haldar and Ghosh  [7]  discussed effect of 
magnetic field on blood flow through an indented tube in the presence of erythrocytes. Rathod  
and  Shrikanth  [16]  studied MHD flow of Rivlin-Ericksen fluid through an inclined channel. 
Bhardwaj and Kanodia [5] studied oscillatory arterial blood flow with mild stenosis. Singh 
and Mishra [18] studied the flow of visco-elastic fluid through porous medium under the 
influence of magnetic field. Jain and Sharma [9] discussed mathematical analysis of MHD 
flow of blood in very narrow capillaries. Rathod and Tanveer [15] discussed pulsatile flow of 
couple stress fluid through a porous medium with periodic body acceleration and magnetic 
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field. Jain and Sharma [10] studied mathematical modeling of blood flow in a stenosed artery 
under MHD effect through porous medium. Sanyal and Biswas  [17] analysed  pulsatile 
motion of blood through an axisymmetric artery in presence of magnetic field. Mathur and 
Jain [11] analyzed pulsatile flow of blood through a stenosed tube : effect of periodic body 
acceleration and a magnetic field. Tripathi and Kumar [21] considered a study of oscillatory 
flow of blood through porous medium in a stenosed artery in the presence of magnetic field. 
Tanwar and Varshney [22] analysed magnetic field effect on Oscillatory Arterial blood flow 
with mild stenosis. Mishra and Singh [12] considered  a study of oscillatory blood flow 
through porous medium in a stenosed artery. Agarwal and Varshney [1] considered the effect 
of magnetic field of pulsatile inclined two layered blood flow with periodic body acceleration. 
Mohan and Prashad [13] Considered MHD oscillatory flow of elastico viscous blood through 
porous medium in a stenosed artery. Agarwal and Varshney [2] analyzed Slip velocity effect 
on MHD oscillatory blood flow through stenosed artery. Guojie et. al [8] considered unsteady 
non-newtonian solver on unstructured grid for the simulation of blood flow. Sinha et. al [19] 
discussed Slip effect on pulsatile flow of blood through a stenosed arterial segment under 
periodic body acceleration. Singh et. al [20] considered MHD flow of blood through radially 
non-symmetric stenosed artery. In the present paper we consider the problem of Mishra et. al. 
[9] with Elastico-Viscous (Rivlin-Ericksen) fluid under the same conditions. 

MATHEMATICAL MODEL 

Let us consider the oscillatory blood flow through a uniform rigid circular tube in the 

presence of porous medium with mild stenosed. We considered the flow is axially symmetric, 
laminar and incompressible, where the flowing blood is modeled as a non-Newtonian (Rivlin-
Ericksen) fluid. The geometry of the stenosis is given by 
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where 0R  is the radius of the normal artery, R (x) is the radius  of the artery in the stenotic 

region, 2d  is the length of stenosis and  is the maximum height of the stenosis such that 
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Fig. 1.  Geometry of Stenosed Artery 

The equation of motion governing the flow field in the tube is 
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where p
 
is the fluid  pressure,   is the density and w is the velocity in the axial direction,

 


 
is Visco-elastic coefficient, μ is viscosity, k is the permeability of porous medium.      

 
Fig. 1. Variation of axial velocity with radial distance for different values of visco-elastic coefficient with  

K = 100, H = 2, and t = 0.5, ε = 0.2. 

The boundary conditions are provided by no-slip velocity at the wall and axially 
symmetry of the flow  
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SOLUTION OF THE PROBLEM 

The simple solution of the motion of a viscous fluid will be obtained in the section 

under pressure gradient which varies with time. Before proceeding with the solution, 

transformation is defined by 0/y r R  is introduced. 

The basic equation (2) becomes on using the boundary conditions (3) and (4). 

   

2 2 22
0 0 0

2

1
1

R wR Rw w w p

t y y t k xy

      
                

                                ... (5) 

                                    0w    on  
0

R
y

R
                                                                        

                                   

0
w

y





 on  y = 0              ... (6) 

Let the solution for P and W be set in the for 
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Fig. 2. Variation of axial velocity with radial distance for different values of viscosity with 

Substituting (7) into equation (5) we get 

          

where                        k

The solution of equation (8) subject to the boundary condition (6) is 

   ( )W y  = 
  

where 0J  is the Bessel function of order zero. 

Then the resulting expression for the axial velocity in the tube is given by 
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Variation of axial velocity with radial distance for different values of viscosity with 
K = 100, H = 2, and t = 0.5, ε = 0.2. 

Substituting (7) into equation (5) we get  
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The solution of equation (8) subject to the boundary condition (6) is  

 

2
0 0 1

2
1

0 1
0

(k y)
1

1
k

PR J

Rin k
J

R

 
       

   

     

is the Bessel function of order zero.   

Then the resulting expression for the axial velocity in the tube is given by  
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Variation of axial velocity with radial distance for different values of viscosity with  

 ... (8) 

    ... (9) 

 ... (10) 

 ... (11) 



Acta Ciencia Indica, Vol. XLI M, No. 3 (2015) 265 

   
Fig. 3. Variation of axial velocity with radial distance for different values of stenotic height with  

K = 100, R0 =1, H = 2, P = 4 and t = 0.5. 

 
Fig. 4. Variation of axial velocity with radial distance for different values of  pressure gradient with 

 K = 100, H = 2, and t = 0.5, ε = 0.2. 

The volumetric flow rate Q is given by 
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Which gives on integration,  
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Fig. 5. Variation of axial velocity with radial distance for different values of permeability porous medium with 
µ = 3, H = 2, and t = 0.5, ε = 0.2. 

The shear stress at the wall r = R is defined by  
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Substituting expression (11) for w into above equation and using the relation (13) for Q, 

one obtains R  as 
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If R  is normalized with steady flow solution given by  
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Then the expression for wall shear stress is  
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The resistance impedance to the flow is defined by 
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Deduction : If � is taken as zero then  results agree with Anil Tripathi  and K.K. Singh 
(2012). 

NUMERICAL  RESULTS  AND  DISCUSSIONS   

The present model has been developed to study the oscillatory flow of blood through a 

stenosed artery considering blood as to behave like a non-Newtonian fluid. Analytical 
expressions are obtained for axial velocity, flow rate, wall shear stress and resistive 
impedance. Since velocity profiles provide a detailed description of the flow field, it is of 
interest to study their pattern. A comparison of velocity profile using equation (11) for cases 
of visco-elastic coefficient in figure 1. It is observed that the axial velocity decreases with 
increasing the visco-elastic coefficient. It is notice that the axial velocity decreases with the 
increases of viscosity (Fig. 2). It can be noticed that the axial velocity decreases with 
increasing stenosis height at the axis of tube in stenotic region (Fig. 3). Figure 4 is plotted for 
velocity profile increases with increasing the pressure gradient. it can be notice that the axial 
velocity slightly decreases with increasing the permeability of porous medium (Fig. 5).   

CONCLUSION  

Rivlin-Ericksen fluid is one of special type fluid which can not be characterized by 

maxwell’s constitutive relation and Oldroyd’s constitutive relation. According to all the 
theoretical and experimental evidence we can consider oscillatory flow of blood (Rivlin-
Ericksen) through a porous medium. which is assumed to be a Non-newtonian fluid. Here 
assumed that the surface roughness is cosine-shaped and the maximum height of the 
roughness is very small compared with the radius of the unconstricted tube. Numerical 
solutions are presented for the volumetric flow rate, wall shear stress and resistive impedence. 
it is clear that blood velocity is going to decreases as the radius of artery is going to increase it 
is observed that instantaneous flow rate is decrease as � (visco-elastic cofficient) is increase. It 
appears that the non-Newtonian behaviour of the blood is helpful in the functioning of 
diseased arterial circulation. 
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