LINE-BLOCK GRAPHS AND CROSSING NUMBERS

B. BASAVANAGOUD AND SHREEKANT PATIL
Department of Mathematics, Karnatak University, Dharwad - 580003
RECEIVED : 25 May, 2015
REVISED : 27 June, 2015

The graph valued function namely the line-block graph $L_{b}(G)$ of a graph G is the graph whose point set is the set of lines and blocks of G and two points are adjacent if the corresponding blocks contain a common cutpoint of G or one corresponds to a block B of G and other to a line e of G and e is in B. In this paper, we establish a necessary and sufficient condition for graphs whose line-block graphs have crossing number $k, k=1,2,3$ or 4 .

2010 Mathematics Subject Classification : 05C10.

KEY WORDS : Block; line-block graph; crossing number.

Introduction

Throughout the paper, we only consider simple finite graphs. We follow [4, 5] for the terminology and notation. A block of a graph is a connected nontrivial graph having no cutpoint. The block graph $B(G)$ of a graph G is the graph whose points are the blocks of G and in which two points are adjacent whenever the corresponding blocks have a cutpoint in common. A graph G is called a planar graph if G can be drawn in a plane so that no two of its lines are cross each other. A graph that is not planar is called nonplanar. The crossing number $\operatorname{Cr}(G)$ of a graph G is the minimum number of pairwise intersections of its lines when G is drawn in the plane. Obviously $\operatorname{Cr}(G)=0$ if and only if G is planar.

The line-block graph $L_{b}(G)$ of a graph G is the graph whose point set is the set of lines and blocks of G and two points are adjacent if the corresponding blocks contain a common cutpoint of G or one corresponds to a block B of G and other to a line e of G and e is in B. This concept was introduced by V. R. Kulli [6]. The crossing number of graph valued functions were studied in [1-3, 8-12].

The following theorem will be useful in the proof of our results.
Theorem 1.1[7] The line-block graph $L_{b}(G)$ of a graph G is planar if and only if every cutpoint of G is incident with at most 4 blocks.

Lemmas

We start with preliminary lemmas, which are useful to prove our main theorems.
Lemma 2.1 If a graph G has a cutpoint incident with six blocks, then $\operatorname{Cr}\left(L_{b}(G)\right) \geq 3$.

Proof. Suppose G has a cutpoint c incident with six blocks. Then the points corresponding to the blocks incident with cutpoint c constitutes an induced subgraph K_{6} in $L_{b}(G)$. It is known that $\operatorname{Cr}\left(K_{6}\right)=3$. Thus $\operatorname{Cr}\left(L_{b}(G)\right)=3$.

Suppose G has a cutpoint incident with at most five blocks. Suppose c_{1} is a cutpoint incident with five blocks. Then the points corresponding to the blocks incident with cutpoint c_{1} constitutes an induced subgraph K_{5} in $L_{b}(G)$. It is known that $\operatorname{Cr}\left(K_{5}\right)=1$. It follows that $\operatorname{Cr}\left(L_{b}(G)\right) \geq 3$.

Lemma 2.2 If a graph G has two cutpoints each of which is incident with six blocks, then $\operatorname{Cr}\left(L_{b}(G)\right) \geq 6$.

Proof. Suppose G has two cutpoints $c_{i}, i=1,2$ each of which is incident with six blocks. As in Lemma 2.1, points corresponding to six blocks incident with cutpoint c_{i} forms an induced subgraph K_{6} which has crossing number 3 . Since G has two specified cutpoints c_{1} and c_{2}. So $\operatorname{Cr}\left(L_{b}(G)\right)=6$.

Suppose G has a cutpoint incident with at most five blocks. Suppose c_{3} is a cutpoint incident with five blocks. Then the points corresponding to five blocks incident with cutpoint c_{3} forms an induced subgraph K_{5} in $L_{b}(G)$. It is known that $\operatorname{Cr}\left(K_{5}\right)=1$. It follows that $\operatorname{Cr}\left(L_{b}(G)\right) \geq 6$.

Lemma 2.3 If G has $k(k \geq 1)$ cutpoints each of which is incident with five blocks and every other cutpoint of G is incident with at most four blocks, then $\operatorname{Cr}\left(L_{b}(G)\right)=k$.

Proof. Suppose G has $k(k \geq 1)$ cutpoints each of which is incident with five blocks. Then the points corresponding to five blocks incident with cutpoint $c_{i} ; 1 \leq i \leq k$ forms an induced subgraph isomorphic to K_{5}. It is known that $\operatorname{Cr}\left(K_{5}\right)=1$. Since G has k specified cutpoints $c_{i} ; 1 \leq i \leq k$, so $\operatorname{Cr}\left(L_{b}(G)\right)=k$ and a cutpoint of G incident with at most four blocks forms K_{2} or K_{3} or K_{4} as an induced subgraph, which is planar.

Main results

Ingraphs with crossing number 1 or 2 .

Theorem 3.1. A graph G has a line-block graph with crossing number $k ; k=1$ or 2 if and only if G has exactly k cutpoints each of which is incident with five blocks and every other cutpoint of G is incident with at most four blocks.

Proof. Suppose $\operatorname{Cr}\left(L_{b}(G)\right)=k ; k=1$ or 2 . Then $L_{b}(G)$ is nonplanar. By Theorem 1.1, G has at least one cutpoint incident with at least five blocks. Assume G has a cutpoint incident with six blocks. Then by Lemma 2.1, $\operatorname{Cr}\left(L_{b}(G)\right) \geq 3$, which is a contradiction. It implies that every cutpoint of G is incident with at most five blocks and G has at least one cutpoint incident with exactly five blocks. Suppose $c_{1}, c_{2}, \ldots, c_{r}$ be the cutpoints incident with five blocks in G. Then the points corresponding to five blocks incident with cutpoint $c_{i} ; 1 \leq i \leq r$ forms an induced subgraph isomorphic to K_{5} in $L_{b}(G)$. Since $\operatorname{Cr}\left(K_{5}\right)=1$, and $L_{b}(G)$ has at least r (line-disjoint) copies of $K_{5}, L_{b}(G)$ has at least r crossings. If $r>k$, then $\operatorname{Cr}\left(L_{b}(G)\right) \geq k$, a contradiction. This proves that $r \leq k$. We consider two cases depending on the value of k. Assume $k=1$. Then $r=k$, for otherwise by Theorem 1.1, $\operatorname{Cr}\left(L_{b}(G)\right)=0$, a contradiction. Assume $k=2$. Suppose $r \leq 1$. Then $\operatorname{Cr}\left(L_{b}(G)\right) \neq k$, a contradiction. Therefore $r=k$. Thus G has exactly k cutpoints each of which is incident with five blocks and every other cutpoint
of G is incident with at most four blocks, since a cutpoint of G incident with at most four blocks forms K_{2} or K_{3} or K_{4} as an induced subgraph, which is planar.

Conversely, suppose G has exactly k ($k=1$ or 2) cutpoints of which is incident with five blocks and every other cutpoint of G is incident with at most four blocks. Then by Lemma 2.3, $\operatorname{Cr}\left(L_{b}(G)\right)=k, k=1$ or 2.

We now characterize the line -block graphs with crossing number 3.
Theorem 3.2 A graph G has a line-brock graph with crossing number 3 if and only if (i) or (ii) holds:
(i) G has exactly three cutpoints each of which is incident with five blocks and every other cutpoint of G is incident with at most four blocks.
(ii) G has a unique cutpoint incident with six blocks and every other cutpoint of G is incident with at most four blocks.

Proof. Suppose $\operatorname{Cr}\left(L_{b}(G)\right)=3$. Then clearly, $L_{b}(G)$ is nonplanar and by Theorem 1.1, G has at least one cutpoint incident with at least five blocks. We consider two distinct cases:

Case 1. Assume G has $k(k \neq 3)$ cutpoints each of which is incident with five blocks and every other cutpoint of G is incident with at most four blocks. We consider two distinct subcases:

Subcase 1.1. Assume G has $k(k \leq 2)$ cutpoints. Then by Theorem 3.1, $\operatorname{Cr}\left(L_{b}(G)\right) \leq 2$, which is a contradiction.

Subcase 1.2. Assume G has $k(k \geq 4)$ cutpoints. Then by Lemma 2.3, $\operatorname{Cr}\left(L_{b}(G)\right) \geq 4$, again a contradiction. Thus from these two subcases we conclude that G holds (i).

Case 2. Assume G has two cutpoints each of which is incident with six blocks. Then by Lemma 2.2, $\operatorname{Cr}\left(L_{b}(G)\right) \geq 6$, which is a contradiction. Thus G holds (ii).

Conversely, suppose G is a graph satisfying (i) or (ii). Then by Theorem 1.1, $L_{b}(G)$ has at least one crossing. We now show that its crossing number is 3 . First assume (i) holds. Then by Lemma 2.3, $\operatorname{Cr}\left(L_{b}(G)\right)=3$. Now assume (ii) holds. Then by Lemma 2.1, $\operatorname{Cr}\left(L_{b}(G)\right) \geq 3$. But a cutpoint of G incident with at most four blocks forms K_{2} or K_{3} or K_{4} as an induced subgraph, which is planar. It follows that $\operatorname{Cr}\left(L_{b}(G)\right)=3$.

We now establish a necessary and sufficient condition for graphs whose line-block graphs having crossing number 4.

Theorem 3.3 A graph G has a line-block graph with crossing number 4 if and only if (i) or (ii) holds:
(i) G has exactly four cutpoints each of which is incident with five blocks and every other cutpoint of G is incident with at most four blocks.
G has a unique cutpoint incident with five blocks and six blocks respectively and every other cutpoint of G is incident with at most four blocks.

Proof. Suppose $\operatorname{Cr}\left(L_{b}(G)\right)=4$. Then clearly, $L_{b}(G)$ is nonplanar and by Theorem 1.1, G has at least one cutpoint incident with at least five blocks. We consider the following two cases :

Case 1. Assume G has $k(k \neq 4)$ cutpoints each of which is incident with five blocks and every other cutpoint of G is incident with at most four blocks. We consider the following two subcases:

Subcase 1.1. Assume G has $k(k \leq 3)$ cutpoints. Then by Theorems 3.1 and 3.2, $\operatorname{Cr}\left(L_{b}(G)\right) \leq 3$, which is a contradiction.

Subcase 1.2. Assume G has $k(k \geq 5)$ cutpoints. Then by Lemma 2.3, $\operatorname{Cr}\left(L_{b}(G)\right) \geq 5$, again a contradiction. Thus from these two subcases we conclude that G holds (i).

Case 2. In this case, we consider the following two subcases:
Subcase 2.1. Assume G has two cutpoints each of which is incident with five blocks and a unique cutpoint incident with six blocks such that every other cutpoint of G is incident with at most four blocks. Let c_{1} and c_{2} be the cutpoints incident with five blocks and let c_{3} be the cutpoint incident with six blocks. Then by Theorem 3.1, the points corresponding to the blocks incident with cutpoints c_{1} and c_{2} constitute 2 crossings and by Lemma 2.1, the points corresponding to the blocks incident with cutpoint c_{3} constitute at least 3 crossings in $L_{b}(G)$. Thus $L_{b}(G)$ has at least 5 crossings, which is a contradiction.

Subcase 2.2. Suppose G has a unique cutpoint incident with five blocks and two cutpoints each of which is incident with six blocks such that every other cutpoint of G is incident with at most four blocks. Let c_{1} be the cutpoint incident with five blocks and let c_{2} and c_{3} be the cutpoints incident with six blocks. Then by Theorem 3.1, the points corresponding to the blocks incident with cutpoint c_{1} forms 1 crossing and by Lemma 2.2, the points corresponding to the blocks incident with cutpoints c_{2} and c_{3} constitute at least 6 crossings in $L_{b}(G)$. Thus $L_{b}(G)$ has at least 7 crossings, again a contradiction. Thus from these two subcases we conclude that G holds (ii).

Conversely, suppose G is a graph satisfying (i) or (ii), then by Theorem 3.2, $L_{b}(G)$ has more than 3 crossings. We now show that it has exactly 4 crossings. First assume (i) holds, then by Lemma 2.3, $\operatorname{Cr}\left(L_{b}(G)\right)=4$. Now assume (ii) holds. Let c_{1} and c_{2} be the cutpoints incident with five and six blocks respectively. By Theorem 3.1, the points corresponding to the blocks incident with cutpoint c_{1} constitute one crossing in $L_{b}(G)$. Since G has only one cutpoint incident with five blocks, By Lemma 2.1, the points corresponding to the blocks incident with cutpoint c_{2} constitutes 3 crossing and a cutpoint of G incident with at most four blocks forms K_{2} or K_{3} or K_{4} as an induced subgraph, which is planar. Thus $L_{b}(G)$ has exactly 4 crossings.

Acknowledgement

This research was supported by UGC-MRP, New Delhi, India : F. No. 41-784/2012 dated: 17-07-2012.
${ }^{1}$ This research was supported by UGC-UPE (Non-NET)-Fellowship, K. U. Dharwad, No. KU/Sch/UGC-UPE/2014-15/897, dated: 24 Nov 2014.

References

1. Basavanagoud, B., Quasi-total graphs with crossing numbers, J. Discrete Mathematical Sciences and Cryptography, 1 (2-3), 133-142 (1998).
2. Basavanagoud, B., Veeragoudar, Jaishri B., The block-transformation graph G^{110} with crossing number one, J. Computer and Mathematical Sciences, 6(4), 222-227 (2015).
3. Guy, R. K., Latest results on crossing numbers in recent trends in graph theory, Springer, New York, 143-156 (1971).
4. Harary, F., Graph Theory, Addison-Wesley, Reading, Mass (1969).
5. Kulli, V. R., College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
6. Kulli, V. R., On line-block graphs, International Research Journal of Pure Algebra, 5(4), 40-44 (2015).
7. Kulli, V. R., Planarity of line-block graphs, J. Computer and Mathematical Sciences, 6(4), 206-209 (2015).
8. Kulli, V. R., Muddebihal, M. H., Total-block graphs and semitotal-block graphs with crossing numbers, Far East J. Appl. Math., 4(1), 99-106 (2000)
9. Niranjan, K. M., Nagaraja, P., Lokesh, V., Semi-image neighborhood block graphs with crossing numbers, J. Sci. Res., 5 (2), 295-299 (2013).
10. Patil, H. P., Forbidden subgraphs and total graphs with crossing number 1, J. Mathematical and Physical Sci., 17, 293-295 (1983).
11. Patil, H. P., Rengarasu, U., On iterated line graphs with crossing number one, Indian J. Pure Appl. Math., 25(10), 1059-1065 (1994).
12. Patil, H. P., Kulli, V. R., Middle graphs and crossing numbers, J. Discussiones Mathematicae, 7, 97106 (1985).
