ROW GENERALIZED ORTHOGONAL COMBINATORIAL MATRIX AND CERTAIN COMBINATORIAL DESIGNS

MITHILESH KUMAR SINGH
Professor, University Department of Mathematics, Ranchi University, Ranchi, India
AND
DINESH PRASAD
Research Scholar, University Department of Mathematic, Ranchi University, Ranchi, India

RECEIVED : 20 May, 2015
In this paper we give some properties of row generalized orthogonal combinatorial matrix and some construction theorems on BIBDs, GD, RD and (r, λ) design using row generalized orthogonal combinatorial matrix.
KEYWORDS : Generalized orthogonal combinatorial matrix (GOCM), balanced incomplete block design (BIBD), group divisible design (GD), rectangular design (RD), (r, λ) design.

Introduction

onstruction theory of combinatorial design has extensive interactions with different areas viz., group theory, graph theory, number theory, finite field, finite geometry, and linear algebra. Bose [1], Shrikhande [11] constructed BIBDs using theory of groups and finite fields. Sane [10] constructed a family of symmetric design from afine plane. Bridges [3], Trang [14], Brourer and Wilbrink [4], Bose and Conor [2], Rao [9], Hanani [6], Zhu [16] constructed symmetric BIBDs and related designs. Deza et al [5] and Vanstone [15] contributed in the construction of (r, λ) designs.

In this paper we use the concept of GOCM [13] in the construction of BIBDs, GD, RD and (r, λ) designs. Generalized orthogonal matrix (GOM) over group algebra was introduced by Singh et. al. [12] in the construction of complex Hadamard matrix.

We give the following definition
Let \mathbb{N} be the set of natural numbers,
1.0. Left \boldsymbol{m}-module. Let R be the ring of $m \times m$ integer matrices, i.e. matrices with entries in \mathbb{Z}, then the set M of all $m \times n$ matrices, $m, n \in \mathbb{N}$ is a left R-module. M will be called left \boldsymbol{m} module.
1.1. Row Generalized Orthogonal Matrix (Row GOM) over left modules on the ring of $m \times m$ matrices over \mathbb{Z}.

We consider left modules M_{j} of $m \times n_{j}$ matrices on the ring of $m \times m$ matrices over \mathbb{Z}, ($j=1,2, \ldots, s$) such modules are left m-modules.

Let $N=\left(N_{i j}\right), i=1,2,3 \ldots \ldots \ldots, l$ and $j=1,2,3, \ldots \ldots ., s$ be a block matrix, where $N_{i j}$ are $m \times n_{j}$ matrix from $M_{j}, j=1,2, \ldots, s$ where $\sum_{j=1}^{S} n_{j}=n$, clearly blocks of $j^{\text {th }}$ column of $N \in M_{j}$.

Let $R_{i}=\left(N_{i 1} N_{i 2} \ldots \ldots . N_{i s}\right)$ be the $i^{\text {th }}$ block row of N.
We define inner product of two block rows R_{i} and R_{j}
as $R_{i} o R_{j}=R_{i} R_{j}^{T}=R_{i j}=\sum_{k=1}^{l} N_{i k} N_{j k}^{T} \in M_{j}$
N is called a row GOM if there exist fixed integers $r, \lambda_{1}, \lambda_{2}, \lambda_{3}$ such that

$$
\begin{array}{r}
R_{i j}=. \sum_{k=1}^{l} N_{i k} N_{j k}^{T}=r I_{m}+\lambda_{1} K_{m}, \text { whenever } i=j \\
\text { and } \lambda_{2} I_{m}+\lambda_{3} K_{m} \text { whenever } i \neq j
\end{array}
$$

$l, s, m, n_{1}, n_{2}, \ldots, n_{s}, r, \lambda_{1}, \lambda_{2}, \lambda_{3}$, will be called parameters of the row GOM.
If $n_{1}=\mathrm{n}_{2}=\ldots=n_{s}=n$, then $l, s, m, n, r, \lambda_{1}, \lambda_{2}, \lambda_{3}$, will be called parameters of the row GOM.

When $m=n$, row GOM will has square blocks with parameters $l, s, n, r, \lambda_{1}, \lambda_{2}, \lambda_{3}$.
REMARK: A row GOM will be called a row GOCM if $\boldsymbol{N}_{i j}$ are $(0,1) \boldsymbol{m} \times \boldsymbol{n}_{j}$ matrix from \mathbf{M}_{j}.
1.2. Balanced incomplete block design (BIBD). A block design $D=(V, \beta)$, where V is a set of v elements called points and β is a collection of b subsets of V called blocks such that for some fixed r, k, λ
(i) Each block contains exactly k points
(ii) Each point belongs to exactly r blocks
(iii) Each pair of points occurs in exactly λ blocks,
is called a BIBD. Such a design is also called 2-($v, b, r, k, \lambda)$-design or a (v, k, λ)-design.
1.3. (r, λ) - Design: A (r, λ) design is a block design (V, β) such that
(i) Every element of V occurs in precisely r blocks .
(ii) Every pair of distinct elements of V occurs in precisely λ blocks.
1.4. Association Scheme. A d-class association scheme with vertex set X of order v is a sequence of non zero $\{0,1\}$-matrices $A_{0}, A_{1}, A_{2}, \ldots, A_{d}$ with rows and column indexed by X, such that
(i) $A_{0}=I$,
(ii) $A_{i}{ }^{T}=A_{i}$ for all $i \in\{0,1,2, \ldots \ldots \ldots, d\}$
(iii) $A_{0}+A_{1}+A_{2}+\ldots \ldots+A_{d}=J$,
(iv) $A_{i} A_{j}$ lies in the real span of $A_{0}, A_{1}, A_{2}, \ldots, A_{d}: A_{i} A_{j}=\sum_{k=0}^{d} P_{i j}{ }^{k} A_{k}$. (vide Godsil and Song [7])

Properties of gocm

(i) The row sum of a GOCM is r, which is independent of the row.
(ii) The column sum of a GOCM is k, which is independent of the column.

Remark : A square GOCM is called regular if its row sum is equal to its column sum $=k$, which is independent of a row or column.

2.1. TYPES OF GOCM

In this section we classify row GOCMs according to the representation of inner products of rows of a GOCM.
(1) Type I GOCM A row GOCM will be called type I row GOCM

$$
\text { if } \lambda_{1}=\lambda_{2}=\lambda_{3}
$$

(2) Type II GOCM A row GOCM will be called type II row GOCM

$$
\text { if } \lambda_{1}=\lambda_{3} \text { or } \lambda_{2}=\lambda_{3}
$$

(3) Type III GOCM A row GOCM will be called type III row GOCM

$$
\text { if } \lambda_{1}=\lambda_{2}
$$

(4) Type IV GOCM A row GOCM will be called type IV row GOCM if it is not of type I, II or III.
Theorem 1. A row GOCM N with constant column sum k is in general a rectangular design (RD).

Proof: We have

Let,

$$
\begin{aligned}
N N^{T} & =\left(\begin{array}{ccc}
r I_{m}+\lambda_{1} K_{m} & \ldots & \lambda_{2} I_{m}+\lambda_{3} K_{m} \\
\vdots & \ddots & \vdots \\
\lambda_{2} I_{m}+\lambda_{3} K_{m} & \cdots & r I_{m}+\lambda_{1} K_{m}
\end{array}\right) \\
& =r\left(I_{m} \times I_{l}\right)+\lambda_{1}\left(I_{m} \times K_{l}\right)+\lambda_{2}\left(K_{m} \times I_{l}\right)+\lambda_{3}\left(K_{m} \times K_{l}\right) .
\end{aligned}
$$

Claim. These are the association matrices of at most three class association scheme:
Using the properties of Kronecker product it is easy to verify the postulates of AS
We have

$$
\begin{align*}
B_{0}{ }^{T} & =B_{0}, \tag{i}\\
B_{1} & =\left(I_{m} \times K_{l}\right)^{T}=I_{m} \times K_{l}=B_{1}, \\
B_{2}{ }^{T} & =\left(K_{m} \times I_{l}\right)^{T}=K_{m} \times I_{l}=B_{2}, \\
B_{3}{ }^{T} & =\left(K_{m} \times K_{l}\right)^{T}=K_{m} \times K_{l}=B_{3} .
\end{align*}
$$

Hence, $B_{0}, B_{1}, B_{2}, B_{3}$ are symmetric matrices.
(ii) $B_{0}+B_{1}+B_{2}+B_{3}=J_{m} \times J_{l}$.
(iii) $B_{1} B_{2}=\left(I_{m} \times K_{l}\right)\left(K_{m} \times I_{l}\right)$ $=K_{m} \times K_{l}=B_{3}$.
$B_{1} B_{3}=\left(I_{m} \times K_{l}\right)\left(K_{m} \times K_{l}\right)$ $=(l-1) B_{3}+(l-2) B_{2}$.
$B_{2} B_{3}=\left(K_{m} \times I_{l}\right)\left(K_{m} \times K_{l}\right)$ $=(m-1)\left(I_{m} \times K_{l}\right)+(m-2)\left(K_{m} \times K_{l}\right)$ $=(m-1) B_{1}+(m-2) B_{3}$.
$B_{1}{ }^{2}=(l-1) B_{0}+(l-2) B_{2}$,
$B_{2}{ }^{2}=(m-1) B_{0}+(m-2) B_{2}$,

$$
B_{3}{ }^{2}=(m-1)(l-1) B_{0}+(m-2)(l-2) B_{3} .
$$

The above products give the values of $p_{j k}{ }^{i} ;(0 \leq i, j, k \leq 3)$ which are the parameters of a rectangular association scheme. Hence the theorem.

Theorem 2: A row GOCM N with constant column reduces to GD design when $\lambda_{1}=\lambda_{3}$ or $\lambda_{2}=\lambda_{3}$.

Proof: We proceed to show that when $\lambda_{2}=\lambda_{3}, N$ is the incidence matrix of a GD design. We have

$$
\begin{aligned}
& N N^{T}=r\left(I_{m} \times I_{l}\right)+\lambda_{1}\left(I_{m} \times K_{l}\right)+\lambda_{2}\left\{\left(K_{m} \times I_{l}\right)+\left(K_{m} \times K_{l}\right)\right\} \\
& =r\left(I_{m} \times I_{l}\right)+\lambda_{1}\left(I_{m} \times K_{l}\right)+\lambda_{2}\left(K_{m} \times J_{l}\right) . \\
& \text { Let } \quad B_{0}=I_{m} \times I_{l}, B_{1}=I_{m} \times K_{l}, B_{2}=K_{m} \times J_{l} \text {. } \\
& B_{1}^{2}=(l-1) B_{0}+(l-2) B_{1} \text {, } \\
& \therefore \quad n_{1}=p_{11}{ }^{0}=l-1 \text {. } \\
& B_{2}{ }^{2}=l(m-1) B_{0}+l(m-1) B_{1}+l(m-2) B_{2}, \\
& \therefore \quad n_{2}=p_{22}{ }^{0}=l(m-1) \text {. } \\
& B_{1} B_{2}=(l-1) B_{2} .
\end{aligned}
$$

The above products give the values of $p_{j k}{ }^{i} ;(0 \leq i, j, k \leq 2)$ which are the parameters of a GD association scheme.

Now, let $\lambda_{1}=\lambda_{3}$ then

$$
N N^{T}=r\left(I_{m} \times I_{l}\right)+\lambda_{1}\left(K_{m} \times I_{l}\right)+\lambda_{2}\left\{\left(I_{m} \times K_{l}\right)+\left(K_{m} \times K_{l}\right)\right\}
$$

Also let

$$
B_{1}=K_{m} \times I_{l}, B_{2}=\left(I_{m} \times K_{l}\right)+\left(K_{m} \times K_{l}\right)
$$

Then

$$
B_{1}^{2}=(m-1) B_{0}+(m-2) B_{2}
$$

and

$$
\begin{array}{rlrl}
\therefore & B_{2}{ }^{2} & =m(l-1)\left(I_{m} \times I_{l}\right)+m(l-2)\left(K_{m} \times I_{l}\right)+m(l-2)\left(J_{m} \times K_{l}\right) \\
& n_{1} & =m-1, n_{2}=m(l-1) \\
B_{1} B_{2} & =(m-1) B_{1}
\end{array}
$$

The above products give the values of $p_{j k}{ }^{i}$; $(0 \leq i, j, k \leq 2)$ which are the parameters of a GD association scheme. Hence the row GOCM is the incidence matrix of a GD design.

Remark: A row GOCM N is BIBD if $\lambda_{1}=\lambda_{2}=\lambda_{3}$ and if the column sum of N is k.

Construction of certain combinatorlal design from gocm

3.1. CONSTRUCTION OF BIBD FROM GOCM

Theorem 3. For any prime p there exist a 2-Design with parameters

$$
\left(p^{2 n}, p^{2 n}\left(p^{n}+1\right), P^{2 n}-1, p^{n}-1, p^{n}-2\right)
$$

Proof. For $n>1$ we give a method of construction using finite field.
Consider the finite the field $G F\left(p^{n}\right),=G F(q), q=p^{n}$
Let $\left\{0,1, x, x^{2}, \ldots, x^{q-1}\right\}$ be the elements of $G F(q)$ we construct $(q-1)$ matrices of order q

$$
\left(A_{1}, A_{2}, \ldots A_{q-1}\right) \text { as follows, writing } p^{n}=q
$$

Each row and column of $A_{s}=\left(a_{i j}\right)$ is headed by $\left[0, x^{S}, x^{S+1}, \ldots, x^{q-1}, x, x^{2}, \ldots, x^{S-1}\right]$ respectively, the rest of entries are given by $a_{i j}=a_{i 1}-a_{1 j}, i, j>1$.
$\because\left\{0, x, x^{2}, \ldots, x^{q-1}\right\}$ from a finite group each row as well as column are distinct permutations of $\left[0, x, x^{2} \ldots x^{q-1}\right]$ i.e. in any row an element does not appears more than ones. Now replace 0 by null matrix O of order p^{n} and x^{s} by α^{S} where α^{S} is a (0,1) circulant matrix such that $\alpha^{q}=\mathrm{I}, \alpha=\operatorname{circ}(010 \ldots 0)$.

Next we construct the block matrix.

$$
\begin{aligned}
G & =\left[\widetilde{K} A_{0}, A_{1}, A_{2}, \ldots A_{q}\right]_{q 2} \times \times_{q 2(q+1)} \text { with } \\
\widetilde{K} & =\operatorname{circ}\left(\begin{array}{lll}
K & 0 \ldots 0) \\
A_{0} & =\operatorname{circ}\left(\begin{array}{lll}
0 & I
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

It can be verified that G is a row GOCM and is the incident matrix of the B 1 BD

$$
\left(p^{2 n}, p^{2 n}\left(p^{n}+1\right), P^{2 n}-1, p^{n}-1, p^{n}-2\right)
$$

Theorem 4. If $\left[d_{1}, d_{2}, \ldots d_{k}\right] \bmod (m n)$ is a difference set, then

$$
N=\left[\alpha^{d 1}+\alpha^{d 2}+\ldots . \alpha^{d k}\right] \text { is a GOCM where } \alpha^{m n}=I, \alpha=\operatorname{Circ}(01 \ldots 0)
$$

and N is the incidence matrix of a BIBD.
Proof. It can be easily verified.
For particular cases see appendix I, table 1.1
H.N.-1, 3, 5, 7, 12, 16, 25, 30, 31, 34, 37, 50, 69, 75, 103, 150, 153, 166, 207
(Combinatorial design theory, Hall [7]).
Theorem 5. If $\left[d_{11}, d_{12}, \ldots, d_{1 k}\right],\left[d_{21}, d_{22}, \ldots ., d_{2 k}\right], \ldots .\left[d_{i 1}, d_{i 2}, \ldots ., d_{i k}\right] \bmod (m n)$ is a supplementary difference set, then $N=\left[\begin{array}{lll}\sum_{j=1}^{k} \alpha^{d 1 j} & \sum_{j=1}^{k} \alpha^{d 2 j} \ldots \sum_{j=1}^{k} \alpha^{d i j}\end{array}\right]$ is a GOCM where $\alpha^{m n}=I, \alpha=\operatorname{Circ}(01 \ldots 0)$ which is the incidence matrix of a BIBD.

Particular cases are
H.N. $9,20,29,42,56,57,58,60,85,86,92,93,95,101,103,108,124,125,154,155$, 157, 185, 186, 188, 187, 190, 197.
(Combinatorial design theory, Hall [7]).

3.2. CONSTRUCTION OF NON SYMMETRIC BIBD

Definition 1(a): Two rectangular matrices of same size $(m \times n) A$ and B will be called disjoint if their Hadamard product is zero i.e., $A . B=0$.

1(b) : n rectangular $m \times n$ matrices $A_{1}, A_{2}, \ldots A_{n}$ will be called disjoint if $A_{i} \cdot A_{j}=0_{m \times n}$ for $i, j=1,2, \ldots, n ; i \neq j$.

Definition 2. Rectangular Algebra of $(\mathbf{0}, 1)$ matrices. Let $A_{1}, A_{2}, \ldots, A_{r}$ be $(0,1)$ matrices which are disjoint $m \times n$ matrices. Let Ω be a generalized association scheme of square $(0,1)$ matrices. $A_{1}, A_{2}, \ldots, A_{r}$ is said to constitute a rectangular algebra based on Ω if $A_{i} A_{j}$ is a linear combination of association matrices of Ω.

Remark: Rectangular algebra is non associative.

Definition 3. Partial Association scheme

Let R_{i} be relation from A to $B, i=1,2, \ldots, r$
i.e., $\quad R_{i} \subseteq A \times B, i=1,2, \ldots, r$

If A has m element and B has n elements, then adjancy matrix of R_{i} is an $m \times n$ matrix B_{i} defined as $B_{i}=\left[\alpha_{j k}\right]$, where $\alpha_{i j}=\left\{\begin{array}{l}1, \text { if }(j, k) \in R i \\ 0, \text { otherwise }\end{array}\right.$
$B_{1}, B_{2}, \ldots, B_{r}$ will be said to constitute a partial association scheme over a generalized association scheme Ω if $B_{1}, B_{2}, \ldots, B_{r}$ constitutes a rectangular algebra over Ω.

$$
\text { i.e., if } \quad \text { (i) } B_{1}, B_{2}, \ldots, B_{r} \text { are disjoint }
$$

(ii) $B_{i} B_{j}^{T}$ is a linear combination of association matrices of Ω.

Remark : (i) Since $B_{1}+B_{2}+, \ldots,+B_{r} \neq J_{m, n}$ the association scheme is called partial association scheme

Algorithm for construction of row GOCM from partial association scheme

Step 1. Construct a partial association scheme $B_{1}, B_{2}, \ldots, B_{r}$ of $m \times n$ matrices from a given generalized association scheme Ω of $m \times m$ square matrices $A_{1}, A_{2}, \ldots A_{q}$.

Step 2. Represent the partial association scheme $B_{1}, B_{2}, \ldots, B_{r}$ as

$$
a_{1} B_{1}+a_{2} B_{2}+\ldots \ldots+a_{r} B_{r}
$$

Step 3. Replace $a_{1}, a_{2}, \ldots, a_{r}$ by suitable $p \times p(0,1)$ matrices $P_{1}, P_{2}, \ldots P_{r}$ such that $P_{1}+P_{2}+\ldots,+P_{r}=J_{p}$ and adjoin new column of I_{p}, K_{p} to construct the $m p \times(n+s) p$ matrix N, where s is the number of new columns.

Step 4. N is a row GOCM.
Example : Let Ω be a generalized association scheme (circulant $A S$) defined by the 3×3 matrices
and let

$$
\begin{aligned}
& I_{3}, \omega=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \omega^{2}=\left[\begin{array}{llll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
& B_{1}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \\
& B_{2}=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& B_{3}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

we have

$$
\begin{aligned}
& B_{1} \mathrm{~B}_{1}^{T}=B_{2} B_{2}^{T}=I, B_{3} B_{3}^{T}=2 I \\
& B_{1} B_{2}^{T}=O, B_{1} B_{3}^{T}=\omega=B_{2} B_{3}^{T}
\end{aligned}
$$

Hence (B_{1}, B_{2}, B_{3}) defines a partial association scheme over Ω.
The partial association scheme can be represented as

$$
a_{1} B_{1}+a_{2} B_{2}+a_{3} B_{3}=\left[\begin{array}{cccccc}
a_{1} & a_{2} & 0 & 0 & a_{3} & a_{3} \\
a_{3} & a_{3} & a_{1} & a_{2} & 0 & 0 \\
0 & 0 & a_{3} & a_{3} & a_{1} & a_{2}
\end{array}\right]
$$

If we replace a_{1} by $\alpha+\alpha^{4}, a_{2}$ by $\alpha^{2}+\alpha^{3}$ and a_{3} by I_{5} where $\alpha^{5}=I_{5}$ and adjoining a new column $\left[\begin{array}{c}I_{5} \\ I_{5} \\ I_{5}\end{array}\right]$,

We have the GOCM

$$
N=\left(\begin{array}{ccccccc}
\alpha+\alpha 4 & \alpha 2+\alpha 3 & O & O & I & I & I \\
I & I & \alpha+\alpha 4 & \alpha 2+\alpha 3 & O & O & I \\
O & O & I & I & \alpha+\alpha 4 & \alpha 2+\alpha 3 & I
\end{array}\right)
$$

Clearly N is row column regular and $R_{i} R_{J}=I+K, i \neq j$ and $R_{i}^{2}=4 I+K$
Here

$$
\lambda_{1}=\lambda_{2}=\lambda_{3}=I
$$

Hence N is type I GOCM giving the incidence matrix of a non symmetric BIBD with parameters $v=15, b=35, r=7, k=3, \lambda=1$.

3.3. CONSTRUCTION OF RD \& GD FROM GOCM

Theorem 7. If a $(0,1)$ regular square matrix A satisfying

$$
A^{2}=P_{11}^{0} I+P_{11}^{1} A+P_{11}^{2}(J-I-A)
$$

Then A is a $\left(v, P_{11}^{0}, P_{11}^{1}, P_{11}^{2}\right)$ strongly regular graph and gives a GD design.
Proof. Let I, K be the two usual $(0,1)$ matrices.
And let

$$
\begin{aligned}
A & =K \times I+I \times K \\
& =\left(\begin{array}{ccccc}
K & I & I & \ldots & I \\
I & K & I & & I \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
I & \cdots & \cdots & & K
\end{array}\right)
\end{aligned}
$$

then A is a 2-class $A S$ or $S R G$ satisfying $A^{2}=P_{11}^{0} I+P_{11}^{1} A+P_{11}^{2}(J-I-A)$
If K and I is of order n then $K^{2}=(n-1) I+(n-2) K$

$$
\begin{aligned}
R_{j}^{2} & =2(n-1) I+(n-2) K \\
R_{i j} & =(n-2) I+2 K
\end{aligned}
$$

and
Therefore A is a row GOCM with parameter $l=s=n, m=n=n, r=2(n-1)$,

$$
\lambda_{1}=n-2, \lambda_{2}=n-2, \lambda_{3}=2
$$

and the related design is a RD design wih parameter $v=n^{2}=b, n_{1}=n-1, n_{2}=n-1$, $n_{3}=(n-1)^{2}, \lambda_{1}=n-2, \lambda_{2}=n-2, \lambda_{3}=2$

Theorem 8. Let $N_{i j} i, j=1,2, \ldots . n$ be $n \times m$ matrices with entries $(0,1)$.
Let $N=\left(N_{i j}\right) i=1,2, \ldots . . m$ and $j=1,2, \ldots \ldots s$ be an $m \times s$ block matrix which is a GOCM such that

$$
\begin{align*}
& R_{i}^{2}=r I+\lambda_{1} K \tag{1}\\
& R_{i} R_{j}=\lambda_{2} I+\lambda_{3} K \tag{2}
\end{align*}
$$

Then N is the incidence matrix of a RD based on the rectangular association scheme represented by the array

$$
\begin{array}{ccccccc}
1 & 2 & 3 & - & - & - & n \\
n+1 & n+2 & - & - & - & - & 2 n \\
2 n+1 & 2 n+2 & - & - & - & -3 n \\
- & - & - & - & - & - & - \\
- & - & - & - & - & - & \\
- & - & - & - & - & - & \\
(m-1) n+1 & (m-1) n+2 & - & - & m n .
\end{array}
$$

Proof. Let a pair of points belonging to same row is $1^{\text {st }}$ associate, a pair of points belonging to same column is $2^{\text {nd }}$ associate and other pairs are $3^{\text {rd }}$ associates. However replications of the points and different block sizes of the RD may be different. Also

If $\sum_{j=1}^{s} N_{i j}$ is row regular, for each i with row sum $r--------(\mathrm{A})$ and $\sum_{i=1}^{s} N_{i j}$ is column regular for each j with column sum k------(B) then M is the incidence matrix of a RD with parameters $v=m n, b=n s, r=r, k=k, \lambda_{1}, \lambda_{2}, \lambda_{3}, n_{1}=n-1, n_{2}=m-1, n_{3}=(n-1)(m-1)$. The above RD is a GD if $\lambda_{1},=\lambda_{3}$ or $\lambda_{2}=\lambda_{3}$ and $n_{1}=\left(n_{1}+n_{3}\right)$ if $\lambda_{1}=\lambda_{3}$, or $n_{2}=\left(n_{2}+n_{3}\right)$ if $\lambda_{2},=\lambda_{3}$.

Also the RD is a BIBD if $\lambda_{1}=\lambda_{2}=\lambda_{3}$.
Remark: The following parametric relations must be satisfied
(i) $n r=k s$ and
(ii) $\quad \lambda_{1}(n-1)+\lambda_{2}(m-1)+\lambda_{3}(n-1)(m-1)=r(k-1)$.
${ }^{*}$) If (A) and (B) are dropped and $\lambda_{1}=\lambda_{2}=\lambda_{3}$ then the above design is a pair wise balanced design, PBD.

Example. The GOCM N given by

$$
N=\left(\begin{array}{cc}
I_{n} & K \\
K & I_{n}
\end{array}\right)=\left(\begin{array}{cc}
1 & \alpha+\alpha^{2} \ldots+\alpha^{n-1} \\
\alpha+\alpha^{2} \ldots+\alpha^{n-1} & I
\end{array}\right)
$$

where

$$
K=J-I_{n}
$$

is a RD based on the scheme $\begin{array}{lllllll} & 2 & 3 & - & - & n\end{array}$

Here

$$
n+1 \quad n+2 \quad n+3 \quad-\quad-\quad-2 n
$$

and

$$
m=2
$$

$$
\begin{aligned}
R_{i}^{2} & =n I+(n-2) K \\
R_{i} R_{j} & =0 I+2 K, \quad i, j=1,2
\end{aligned}
$$

N is the incidence matrix of an RD with parameters

$$
v=2 n=b, r=k=n, \lambda_{1}=(n-2), \lambda_{2}=0, \lambda_{3}=2, n_{1}=(n-1), n_{2}=1, n_{3}=(n-1) .
$$

Theorem 9. Let $I_{2 v}, A_{1}, A_{2}$ be the association matrix of the partial geometry obtained from the dual of the $\operatorname{BIBD}\left(v=2 k^{2} 2 k+1, k, 2\right)$ then $I_{2 v}+\alpha A_{1}+\alpha^{2} A_{2}$ is a GOCM. If we replace α and α^{2} by circulant matrix we get an RD with $\lambda_{1}=0, \lambda_{2}=0, \lambda_{3} \neq 0$.

Proof. IT can be easily verified.

Example

$$
\begin{aligned}
& M=\left(\begin{array}{cccccc}
1 & \alpha & \alpha^{2} & 1 & \alpha^{2} & \alpha \\
\alpha^{2} & 1 & \alpha & \alpha & 1 & \alpha^{2} \\
\alpha & \alpha^{2} & 1 & \alpha^{2} & \alpha & 1
\end{array}\right) \text { where, } \alpha^{3}=I \text { is a RD design with parameters } \\
& v=9, b=18, r=6, k=3, \lambda_{1}=0, \lambda_{2}=0, \lambda_{3}=3, n_{1}=2, n_{2}=2, n_{3}=4 . \\
& \text { as } \quad R_{i}^{2}=6 I+0 K, i=1,2,3 \text { and } R_{i j}=0 I+3 K, i, j=1,2,3 \text { and } i \neq j .
\end{aligned}
$$

Example of RD designs

(1) Let $\alpha=\operatorname{cir}\left(\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right)$) such that $\alpha^{5}=I$ and $w=\operatorname{cir}\left(\begin{array}{lll}0 & 1 & 0\end{array}\right), w^{3}=I$

Then $N=\left[w+w^{2}\right] \times\left[\alpha+\alpha^{2}+\alpha^{3}+\alpha^{4}\right]$ is a GOCM.

We have

$$
\begin{aligned}
N N^{T} & =\left[w+w^{2}\right]^{2} \times\left[\alpha+\alpha^{2}+\alpha^{3}+\alpha^{4}\right]^{2} \\
& =[2 I+J] \times\left[\alpha+\alpha^{2}+\alpha^{3}+\alpha^{4}+2\left[\alpha^{3}+\alpha^{4}+I+I+\alpha+\alpha^{2}\right]\right] \\
& =\left[2 I_{3}+K_{3}\right] \times\left[4 I_{5}+3 K_{5}\right] \\
& =8 I_{15}+4 K_{3} \times I_{5}+6 I_{3} \times K_{5}+3 K_{3} \times K_{5}
\end{aligned}
$$

which is the incidence matrix of an RD with parameters $v=b=15, r=k=8, \lambda_{1}=4, \lambda_{2}=6$, $\lambda_{3}=3, n_{1}=2, n_{2}=4, n_{3}=8$.

Theorem 9. If A, B, C are commutative $(0,1)$ matrices, then

$$
M=\operatorname{Circ}\left(\begin{array}{lllllll}
A & B & B & C & B & C & C
\end{array}\right)=\left[\begin{array}{lllllll}
A & B & B & C & B & C & C \\
C & A & B & B & C & B & C \\
C & C & A & B & B & C & B \\
B & C & C & A & B & B & C \\
C & B & C & C & A & B & B \\
B & C & B & C & C & A & B \\
B & B & C & B & C & C & A
\end{array}\right]
$$

is a GOCM if
(i)

$$
B^{2}+C^{2}+3 B C+A(B+C)=(B+C)^{2}+A B+B C+C A=\lambda_{2} I+\lambda_{3} K
$$

(ii) $A^{2}+3 B^{2}+3 C^{2}=r I+\lambda_{1} K$

The condition is satisfied if $A=J, B, C$ are association matrices satisfying $P_{12}^{1}=P_{12}^{2}$
Then

$$
\begin{aligned}
& R_{i} \cdot R_{i}=R_{i}^{2}=(3 v-2) I_{v}+\left(v-2-2 P_{12}^{1}\right) K \\
& R_{i} \cdot R_{j}=(v-1) I_{v}+\left(v+P_{12}^{1}-1\right) K
\end{aligned}
$$

Remark: (1) This is an RD with parameters

$$
\begin{gathered}
v^{\prime}=7 v=b, r=k=3 v-2 \\
\lambda_{1}=v-2-2 P_{12}^{1}, \lambda_{2}=v-1, \lambda_{3}=v-1+P_{12}^{1}, n_{1}=6, n_{2}=v-1, n_{3}=6(v-1) .
\end{gathered}
$$

Remark: (2) When $A=K=\alpha+\alpha^{2}$, and $B=C=\alpha$ and $\alpha=\operatorname{cir}$ (010) then GOCM is a GD design with parameters $v=21=b, r=k=8, \lambda_{1}=1, \lambda_{1}=7, n_{1}=6, n_{2}=14$

3.4. CONSTRUCTION OF (r, λ)-DESIGN FROM ORTHOGONAL ARRAY OF STRENGTH TWO AND ROW GCOM.

Theorem 10. Let I and K are of order 4 and l, s, p, q, t are positive integers, such that $t=2 q-p$, then there is a (r, λ)-design with parameter $v=4 l, b=4 s, r=3 p+4 q+t$, $\lambda=2(p+q)$.

Proof. Suppose I and K are of order n and p, q, t are positive integers. We construct an array N with l rows and s columns of I and K with each row having $(p+q) K s$ and $(t+q)$ is such that in the array typical arrangements of any two rows are

$$
\begin{array}{llll}
K \ldots K(q \text { times }) & I \ldots I(q \text { times }) & I \ldots I(t \text { times }) & K \ldots K(p \text { times }) \\
I \ldots I(q \text { times }) & K \ldots K(q \text { times }) & I \ldots I(t \text { times }) & K \ldots K(p \text { times }) \\
& R_{i}^{2}=(p+q)[(n-1) I+(n-2) K]+(t+q) I \\
& R_{i j}=(t+p n-p) I+[p(n-2)+2 q] K \tag{2}
\end{array}
$$

then

Clearly the array is a row GOCM
For the row GOCM, to be an (r, λ)-design
We must have $\quad t=2 q-p$

$$
\begin{align*}
& n=4 \tag{4}\\
& \lambda=2(p+q)
\end{align*}
$$

i.e. I and K are 4×4 matrices. Hence the theorem.

Display 1: For $l=4, s=4, q=1, p=2, t=0$ each row contains $p+q=3 K$'s and $t+q=1 \quad$ I's.

Consider the block matrix $N=\left[\begin{array}{cccc}I & K & K & K \\ K & I & K & K \\ K & K & I & K \\ K & K & K & I\end{array}\right]$
We have

$$
\begin{aligned}
R_{i}^{2} & =I+3 K^{2}=I+3[3 I+2 K] \\
& =10 I+6 K \\
R_{i j} & =2 K^{2}+2 K=2[3 I+2 K]+2 k \\
& =6 I+6 K
\end{aligned}
$$

The (r, λ)-design is a BIBD with parameters $(16,16,10,10,6)$.

3.6. (r, λ)-DESIGN FROM BIBD

Theorem11. If there is a $\operatorname{BIBD}(v, b, r, k, \lambda)$ then by substituting I for 0 and K for 1 in the incidence matrix of BIBD and adding t numbers of $I s$ and s number $K s$ there exists an (r, λ) design with parameters $v^{\prime}=4 v, b^{\prime}=16(r-\lambda), r^{\prime}=4(r-\lambda)+2(r+s), \lambda^{\prime}=2(r+s)$.

Proof. If I and K are of size n then we have

$$
\begin{aligned}
R_{i}^{2} & =r K^{2}+(b-r) I \\
& =[r(n-1)+(b-r)] I+(n-2) r K \\
R_{i j} & =\lambda K^{2}+(b-2 r+\lambda) I+(b-[b-2 r+2 \lambda]) K \\
& =[b-2 r+n \lambda] I+[\lambda(n-4)+2 r] K
\end{aligned}
$$

For (r, λ)-design

$$
\begin{align*}
& (n-2) r=b-2 r+n \lambda=\lambda(n-4)+2 r \tag{1}\\
& n r=b+2 n, n=\frac{b}{r+\lambda} \tag{2}\\
& (n-4) r=\lambda(n-4), \quad r=\lambda \text { is trivial when } n=4
\end{align*}
$$

Now we add t numbers of I 's and s number K then

$$
\begin{aligned}
R_{i j} & =[b-2 r+n \lambda] I+[\lambda(n-4)+2 r] K+t I+s[(n-1) I+(n-2) K] \\
& =[b-2 r+n \lambda+t+s(n-1)] I+[\lambda(n-4)+2 r+s(n-2)] K \\
R_{i}^{2} & =[r(n-1)+(b-r)] I+(n-2) r K+t I+s[(n-1) I+(n-2) K] \\
R_{i}^{2} & =[r(n-1)+(b-r)+t] I+(n-2)(r+s) K
\end{aligned}
$$

For (r, λ)-design

$$
\begin{align*}
(n-2)(r+s) & =b-2 r+t+n(\lambda+s)-s \\
& =\lambda(n-4)+2 r+s(n-2) \tag{1}\\
(n-4) r & =\lambda(n-4) \quad \Rightarrow n=4 \tag{2}
\end{align*}
$$

And

$$
b-2 r+t+n \lambda+n s-s=n \lambda-4 \lambda+2 r+s n-2 s
$$

$$
\begin{align*}
& b-4 r+4 \lambda+s+t=0 \\
& b+s+t=4(r-\lambda) \\
& s+t=4(r-\lambda)-b \geq 0 \tag{3}
\end{align*}
$$

Note : When $4(r-\lambda)=b$, then design is BIBD.
Remarks : In all above design $s+t$ is small

$$
\text { i.e., } \quad s+t=0 \text { or } 1 \text { or } 2 \text {. }
$$

Result : When $s+t=4(r-\lambda)-b \geq 0$ and $n=4$.
The (r, λ)-design obtained from $\operatorname{BIBD}(v, b, r, k, \lambda)$ by the construction theorem has parameters $v^{\prime}=4 v, b^{\prime}=16(r-\lambda)$

$$
r^{\prime}=b+2 r+3 s+t=4(r-\lambda)+2(r+s), \lambda^{\prime}=2(r+s)
$$

With

$$
\begin{aligned}
& \text { Max. } v^{\prime}=\frac{r^{\prime \prime}-\lambda^{\prime}}{\frac{\left(r^{\prime}\right)^{2}}{b^{\prime}}-\lambda^{\prime}}=\frac{b+2 r+3 s+t-2(r+s)}{\frac{(b+2 r+3 s+t)^{2}}{16(r-\lambda)}}-2(r+s) \\
& \text { Max. } V^{\prime}=\frac{16(r-\lambda)^{2}}{(r-s-2 \lambda)^{2}}
\end{aligned}
$$

Remark : Our designs are non-near trivial and irreducible.
Remark : We classify the (r, λ)-design.

$$
\text { If } \begin{aligned}
\lambda(v-1)-r(r-1) & <0, \text { elliptical } \\
& =0, \text { parabolic } \\
& >0, \text { hyperbolic. }
\end{aligned}
$$

Some examples of (r, λ)-design from BIBD

(1) $\operatorname{BIBD}(7,3,1)$ H.N. 1

$$
v=7, b=7, r=3, \lambda=1,(r-\lambda)=2 \text { and } s+t=4(r-\lambda)-b=1
$$

Case (i). $s=0, t=1$, the (r, λ)-design is

$$
v^{\prime}=4 v=28, b^{\prime}=16(r-\lambda)=32, r^{\prime}=4(r-\lambda)+2(r+s)=14, \lambda^{\prime}=2(r+s)=6
$$

Case (ii). $s=1, t=0$, the (r, λ)-design is

$$
v^{\prime}=4 v=28, b^{\prime}=16(r-\lambda)=32, r^{\prime}=4(r-\lambda)+2(r+s)=16, \lambda^{\prime}=2(r+s)=8
$$

Remark : The (r, λ)-design is a $D K$ design $\left(r^{2}=\lambda b\right)$.

References

1. Bose, R.C., On the construction of balanced incomplete block designs, Ann. Eugenics, 9, 353-399 (1939).
2. Bose, R.C. and Connor, W. S., Combinatorial properties of group divisible incomplete block designs, Annals of Mathematical Statistics, 23, 367-383 (1952).
3. Bridges, W.G., A $(66,26,10)$ design, J. Combin. Theory, Ser. A 35, 360 (1983).
4. Brouwer, A.L. and Wilbrink, H.A., A symmetric design with parameters 2-(49 16 5), Internal Report, Math Centre, Amsterdam (1984).
5. Deza, M., Mullin, R.C. and Vanstone, S.A., Recent results on (r, λ) designs and related configurations, Rev. Tech. Fac. Ingr. Univ. Zulba, 139-158 (1981).
6. Hanani, H., Balanced incomplete block designs and related designs, Discrete Math., 11, 255-369 (1975).
7. Godsil. C.D. and Song, Y., Association schemes, in CRC Handbook of Combinatorical Designs, (eds. Colbourn \& Dinitz), Chapman \& Hall (2007).
8. Hall, Marshall Jr., Combinatorial Theory, Blaisdell Publishing Co. (1967).
9. Rao, M. B., Balanced orthogonal designs and their application in the construction of some BIB and group divisible designs, Sankhya, A 32, 439-448 (1970).
10. Sane, S.D., Some new construction of balanced incomplete block designs, Utilitas Math., 18, 217224 (1980).
11. Shrikhande, S.S., On a two parameter family of balanced incomplete block designs, Sankya, 24, 3340 (1962).
12. Singh, S., Singh, M.K., Singh, D.K., Generalized Hadamard Matrices from generalized orthogonal matrix, Global Journal of Computer Science and Technology, 10, 23-31 (2012).
13. Singh, M.K. and Prasad, D., Some new balanced block intersection designs from Williamson matrices, Acta Ciencia Indica, Vol. XL M, No. 3, 371-376 (2014).
14. Trung, T. Van, A symmetric design with parameters (61, 16, 4), J. Combin. Theory, Ser. A 37, 374 (1984).
15. Vanstone, S.A., McCarthy, D., On (r, λ) designs and finite projective planes, Utilitas Math., 11, 57-71 (1977).
16. Zhu, Some recent developments on BIBDs and related designs, Discrete Math., 123, 189-214 (1993).
