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The heat transfer characteristics of a couple-stress fluid in
an asymmetric channel in the presence of the second
order slip boundary condition were investigated in this
paper. The channel asymmetry is produced by peristaltic
wave train on the walls to have different amplitudes and
phase. The system governing current flow was found as a
set of non-linear PDE, which are solved and the analytical
expression for the axial velocity, stream function, pressure
gradient and pressure rise are established using long
wavelength and low Reynolds number assumptions. The
effect of second slip parameter on the present physical
parameters was discussed through graphs and the
importance of this type of slip is discussed in detail.
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InTRODUCTION

Eeristalsis is well known to physiologists to be one of the major mechanisms for fluid
transport in many biological systems. Peristalsis is found in the swallowing food through
esophagus, transport of urine from kidney to the bladder, vasomotion of the small blood
vessels and in many other glandular ducts. The first investigation of Latham [1] is in fluid
motion in a peristaltic pump. Various experimental and theoretical studies have been
conducted to understand peristaltic flow in asymmetric channel [2-7]. Different models have
been proposed to explain the behavior of non-Newtonian fluids. The couple-stress fluid is a
special case of a non-Newtonian fluid, which is intended to take into account of the particle
size effects. K. S. Mekheimer et. al. [8] studied the peristaltic transport of a couple stress fluid
in an annulus. Srivastava L. M. [9] investigated peristaltic flow of a couple stress fluid.
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T. Hayat et al. [10] discussed the peristaltic flow of a nanofluid with slip effects. Y.V.K. Ravi
Kumar et. al. [11] discussed peristaltic transport of power law fluid in an asymmetric channel.
T. Fang et. al. [12] studied viscous flow over a shrinking sheet with a second order slip flow
model. Y.V.K. Ravi Kumar et. al. [13] investigated slip effects on hyperbolic tangent fluid in
an inclined asymmetric channel. M. M. Nandeppanavar et. al. [14] investigated second order
slip flow and heat transfer over a stretching sheet with non-linear Navier boundary condition.
Y.V.K. Ravi Kumar et. al [15] discussed slip and magnetic field effect on a couple stress fluid
in an inclined asymmetric channel. The main feature of previous studies is that less focus was
on the second slip effect, while this effect has been recently discussed by many authors. M.
Turkyilmazoglu [16] studied heat and mass transfer of MHD second order slip flow. A. V.
Rosca [17] investigated the flow and heat transfer over a vertical permeable stretching
shrinking sheet with a second order slip. Y. Abd Elmaboud et al. [18] investigated thermal
properties of couple stress fluid in an asymmetric channel with peristalsis. Emad H. Aly et. al.
[19] studied the effect of the velocity second slip boundary condition the peristaltic flow of
nanofluids in an asymmetric channel.

In view of these works done by various researchers, we propose to study the effect of
second slip on the peristaltic pumping of couple stress fluid in an asymmetric channel with
thermal properties. Solution is obtained by considering suitable boundary condition governing
the flow. Expressions for velocity, stream function, axial pressure gradient and pressure rise
are shown. The phenomena of pumping and trapping are also discussed in detail.

FORMULAT[ON OF THE PROBLEM

.1 Governing equations
We consider the peristaltic motion of a couple stress fluid confined in a two dimensional
infinite asymmetric channel of widthd; +d,. A rectangular co-ordinate system (X, Y) is

chosen such that X-axis lies along the centre line of the channel in the direction of wave
propagation and Y-axis transverse to it. The asymmetric in the channel is induced by assuming
the peristaltic wave train on the walls to have different amplitudes and phases. The wall
deformation is given by

H(X,T)=h =d +q sin[%()_(—ct_)},upper wall .. (D

— o 2n = _
Hy(X,t)=h=—dy—a, sm[%(X—ct)-i—d)}, lower wall ...(2)

where aj, a, are the amplitudes of the waves, A is the wavelength, the phase difference ¢
varies in the range0< ¢ <m. ¢ =0 corresponds to asymmetric channel with waves out of

phase and ¢ =mn the waves are in phase, and further @, a,, d;, d, and ¢ satisfies the

condition af + a3 +2aya, cos @ < (dy +d, )2 . The walls, Y = H, and Y = H, are maintained

at temperatures 7; and T respectively.



Acta Ciencia Indica, Vol. XLI M, No. 2 (2015) 133

n T=T.
Fig. 1. Schematic diagram of the problem

The governing equations of the flow of an incompressible couple stress fluid in the
absence of body force and body couple and the energy equations are

Vg=0 .. (3)
Dq = = = - = = = _

pF:—Vﬁ—pVxqu—nVXVXqu ... (4)
t

pa% — KT+ u[(V9): (F9) + () : (V) + 4T : ()] 1+ 4n[(T): (Tm)] ... )

where p is the density, ¢ is the velocity vector, P is the fluid pressure, pis the fluid viscosity,
n and n' are the couple stress fluid parameters, £ is the thermal conductivity, & is the
specific heat at constant temperature, w is the rotation vector, and 7 is the temperature.

Introducing a wave frame (x, y) moving with velocity ¢ away from the fixed frame (X, Y)
by the transformation

x=X-ct, y=Y, u:lj—C,V:Vp(x)zP(X,t) ... (6)

where (u, v) are the velocity components in the wave frame (x, y), p and P are pressures in
wave and fixed frame respectively. The pressure p remains a constant across any axial station
of the channel under the assumption that the wavelength is large and the curvature effects are
negligible.

After using these transformations, the equations of motion are

a_“+a_":(), (D
ox dy
_0 _o). o N ot ot ot
p U—=+v— M:——"r}.l —2"1‘—2 M—T] —4+—4+2 ) ) u (8)
ax ox & oy & oy K-y

_0 _9o). ? 9% |- 4t ot -
p u——m+yv— V=-—+},l —2+—2 V—T] —4+—4+2 2 2 v (9)
ox ay ox- oxt oy ox-oy
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The energy equation

2 2 —\2 —\2 — —\2
pé{uiﬂziJT A G T+pl2 (a_uj +[6—VJ +(6_u+6_vj
& ' F w52 x) \&) [ \& &

2 2
6_2 6_2 622 6)—)2
Consider the following non dimensional variables and parameters:
y it v hy h 2nd
:_2fo’ A h=2L h= 2,S:ﬁg(75),5: ™
A d c d¢ d, 5 e A
2 dy?
Re=PC ,_2ML A o5, (11
n A Aue

where T, is the fluid temperature in static condition, Re is the Reynolds number, & is the
dimensionless wave number, P.is the Prandtel number, E, is the Eckert number and a is the

couple stress fluid parameter indicating the ratio of the channel width (constant) to material
characteristic length.

After non-dimensionalization of the Egs. (7) - (10), we get

u, vy, (12
ox 6y
2 2 4 4 4
SRe ui-i-v3 uz—a—p+826—u+a—u—L 646_u+6_u+2628_u ...(13)
ox oy x a?r gt ol at at ox’oy?
2, 52 4 4 4
& Re(uﬁwﬁjv: P, 20 . a_;_% 648—:+a—:+282—82 v2 (14)
x Oy oy ox~ oyT a ox" Ox Ox“0y
0 5% 3% 0 oV | (ou sov)
P.3Re u—+v— 0=52"— +P.E, 252 [ uj H 2] Ee st
ox 0Oy 8x2 oy ol ox oy oy Ox
2 8%y 62 %u 0% ?
— o + —2+6 5 ... (15)
o ox? 6y oy Ox
Under lubrication approach (negligible inertia Re—0 and long wavelength & < 1),
Writing eqs. (12) — (15) in terms of the stream function y (x, y) defined by u = 6\|1 —Z—W
X

we get

3 5
():_a_p+6_w_ia_\v ... (16)
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p
0=-2- . (17
o 0]
2 2
2 2 3
0-20pp | Ty LY . (18)
oy oy o\ oy
The dimensionless boundary conditions in the wave frame are
F 0 o o
==, Ao Ly alat y=h .. (19)
2 oy Oy oy
F oy 62\y 63\y
:__s_:Bl 5 +'32 3 —1 at y:h2 (20)

where By, B, represent the first order slip parameter, second order slip parameter respectively.

SOLUTION OF THE PROBLEM

he solution of Eqn. (17), (18), (19) with the boundary conditions (19), (20) is given by

2
u = a.cosh oy + o4, (sinh oy) —2yA4s + 4, +P(y7—2yA6 -4 +A00Lsinhocy—1] ...2D)

3
F .
‘P:?+smh(xy+A1coshoty—A5y2—A7y—A10+P[%—A6y2—A8y—A“+A0c0shoty—A12—y]

.. (22)
Ao’ sinh2
0= %(cosh Qoy)(—P, E,) (o +(1+4)2) + W — 4.4, As cos 20ty — 4 As sinh oty
2 .2 .
Ays + yA h2 64, sinh
122 42 + 225 P +P2(A0 7 Cosh20Y 5 4o cosh 2ay(y—2.4ga2)— oSN
hl—hz +2’Y 4
2 3 2
2 A — A
Y 24gy caal 42 L Y426 = Ag .(23)
12 3 202 M—hy+2y

where

I} = cos[ ok | - cosh ok |
I, = o sinh[oy |+ By a? cosh[afy ]+ o sinh[ak ]
I3 =sin[ohy | -sinh[ o, |
I = ocosh[ay |+ By o sinh[ouky |+ By o cosh[ay]

I5 = cos[ahy |+ cosh o, |



136 Acta Ciencia Indica, Vol. XLI M, No. 2 (2015)
Ig = sin[(xhl]—sinh[ochz]

_ (L —hy) =21 +21, - B % (cosh[a/y ]+ cosh[ay 1) — B, (o (sinh[ ok ]+ sinh[ oy ]))

I
(213 =214 +ady (b — hy) +Byou(sinh [ohy |+ sinh [oth, ]) + B, (o® )(cosh[au/y ]+ cosh[oh, 1))
(hy—hy)’ B 2F
) 76 +ﬂ1(hl h2)+h1—h2+2
(213 — 21 +aly (hy —hy )+ fa(sinh [ahy |+ sinh [ah, |)+ fra’ (cosh[ahl]+cosh[ah2]))
A2 = (XI] +Bla2[6 +B2(X3[5
h2 —hy?
Ay =(2m —2hy + 4By ), 45 =M, As -4
Ay 4y
Ay = (14 + 171y =20y +Py) 4s
I
A3 = 7+ﬂ1h1 + B =246 (W + B) + 4oL
Al() = (Sinh[ahl]'i‘I7COSh[ahl]—A5h12 —A7h1)
h 2
A]] =?—A6hl —Agh] +AOCOS[ah]], A12 :(_hl)
—PtE, a2 )+ (1+1,) 3
Ay = ( ) (1+17) (cosh[Zodq])+(%(sinh[2ahl])]—((4l7A5)(cosh[Zochl]))
—4 As (sinh [0y 1) + (245> )
2 2 - 2
Ay = A04°° (cosh[2ah 1)+ 2.4y (I —2A6a2)(cosh[2ah1])—M—%
o
3 2
_ 2Ah +4A62 +h#2
3 20,
(x3+(1+17)2 , 4 ,
A5 =—PrE,| —————sinh[20h; ]+ I7 (a)" cosh[2a/ |- 417 Asa sinh[2a ]

—4 4sorcosh[oy ]+ 4457 |
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203 6.4, sinh [y ])
o

A = cosh[2a/y ]+2 Ayga(hy — 2A6(12) (sinh[20/y]) -

2 3 2
_hL_M+4A62 M
12 3 2(a)?
A7 = A3 +yAis, Aig = Aig + 146
3

2 2
Ayg =—PrE, [(#J(coshpahz]) ! 7;‘ (sinh[20t/y 1) — 415 As (cosh [ 20, )

— 445 (sinh [ahz])+2A52h22}

2 2 - 2
6 h[ok
Ay = 4“ (cosh[2athy 1)) +2.4y (hy —2A6a2(cosh[2ah2])—M—%
a
3 2
_ﬂ+41462 +hLZ
200
oc3+(1+l7)2 , 4 :
Ay =—PrE,| ————sinh[20h, ]+ I7 ()" cosh[2ah, |- 417 Asosinh[ 20, ]

—44so.cosh[ay ])+445>h,

5 3 6 sinh| ok
Ay = AOTacosh[Zahz]-i- 2 Ayau(hy —24g0?)sinh [2ahy | —M
2 3 2
T 2A6h | ga w2
12 3 202

3 =Ag—yAy, Ay =g ~VAyy, Ays =(~Ai7 —1+ 4p). Ay =(Ay—Ag)
Ayg = Ay (Il =y +2y) = (h +y) Ays, Aoy = Aig(hy =y +27) + (y +7) Ayg

The non-dimensional expression for pressure rise per wavelength is defined as

_ ZTl:dp
AP—IO dxdx

3.1 Rate of volume flow and boundary conditions
The dimensional rate of fluid flow in the fixed frame ()_( ,}7 ) is
hX) _
0= j UX,Y,t)dY .. (24)
Iy (X)

In the wave frame (X,7) eq. (19) reduces to
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hy (X)
g= [ @®yd . (25)
Iy (X)
By eq. (15), the above rates are related in the following expression
Q=q+ch —chy ... (26)
Applying the averaged flow

1T
Q=7£Qﬁ @7

over a period T at a fixed position X, we receive
0 =q+cd) +cd,y .. (28)

with the definition of the dimensionless time averaged flows

0= -4 .. (29)
Cdl Cdl
in the fixed and moving frames, respectively, we can write eq. (25) as
0=F+1+d, ...(30)
Iy (x) oy
where F= j oAy =)=l .3
Iy (x)

NUMER[CAL RESULTS AND DISCUSSION

H.l. Trapping : Another interesting phenomenon in peristaltic motion is trapping. In the

wave frame, streamlines under certain conditions split to trap bolus which moves as a whole
with the speed of the wave. Figure 2, shows that there is no bolus for » = 0 (when there is no
wave on the lower wall) and a bolus is observed with an increase in b. Figure 3, is made in
order to see the effects of 3, on trapping. No bolus is observed for second order slip $, = 0. A
trapped bolus is observed for 3,=1.5.

4.2. The Pressure rise Ap : In Figure 4, the pressure rise decreases with increase in a. In
Figure 5, the pressure rise increases with increase in ¢ in pumping region, free pumping
region (Ap>0), and pressure rise decreases with increase in ¢ in co-pumping region
(Ap < 0). In Figure 6, the pressure rise increases with increase in a in pumping region, free
pumping region (Ap >0), and pressure rise decreases with increase in «a in co-pumping
region (Ap < 0). In Figure 7, the pressure rise increases with increase in B; in all three regions.

4.3. The Pressure Gradient dp/dx : In figures 8, 9 we observe the variation of P with
dx

Q the pressure gradient increases with increase in a, B in Ap > 0 pumping region and pressure
gradient decreases with increase with increase in a, PB;in Ap <0 (co-pumping region).
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Figures 10, 11 portrait graphs for ;l—pvs O for parameters B, and a. we observe that, pressure
X

gradient decreases with increase in parametersf,, @ in Ap >0 and the pressure gradient

increases with increase inf3,, a inAp <0.

4.4 The Temperature 0 : In Figure 12, the variation of 0 vs y for different values of ‘a’
is observed. The temperature increases with increase in ‘a’ in the upper portion where as the
effect is negligible in the middle portion. In Figure 13 the variation of 0vs y for different

values of ‘¢’ is observed. The temperature increases with increase in ‘¢’ in the upper portion
and the effect is negligible in the middle portion. In Figure 14, depicts the graph for 6 vs y for

different values of 3,, it is observed that the temperature increases with the increases of
negativity of 3, and it is negligible in the middle portion. In Figure 15, we see the variation
of 8 vs y for different values of P, it can be observed that, the temperature increases with
the increases in B; for 8 >0 and it reverses for 6 < 0.

4.5. The Velocity u (y) : To study the behaviour of the distributions of the axial velocity
u, numerical calculations for several values of B;, B,, ¢ and a are carried out from Figure 16-

19 represents graphs for different parameters of interest. It is observed that the velocity
increases with increase in parameter values.

(@ (b)

Fig. 2. Stream lines a = 0.1; ¢ = 7/6; f1 = 0.4; B2 =2; o = 3; Q = 0.3; and for different b (a) b=0
(b)b=0.1
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Fig. 3. Stream lines for a = b =0.1; f1 =0.4; 2 =2.2; a = 3; 0 = 0.3; and for different §2 (a) 2=0
(b)p2=1.5
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Fig. 19. The variation of u with y for different valuesof ¢ ata=b =0.5;d =1;,Pr=0.2;a = 0.3;

Q=0.5;
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