
Acta Ciencia Indica, Vol. XLI M, No. 2 (2015) 123 

AN INVESTIGATION ON SOME LRS BIANCHI TYPE-I  
COSMOLOGICAL MODELS WITH ZERO-MASS SCALAR FIELD 

 

ABHISHEK KUMAR SINGH AND Dr. R. B. S. YADAV 

Magadh University, Bodhgaya-824234 (Bihar), India 

RECEIVED : 18 April, 2015 

REVISED : 17 May, 2015 

In this paper, we have considered some LRS Bianchi-I 
cosmological models in the presence of zero-mass scalar 
fields associated with a perfect fluid distribution in it. We 

choose  � = � 
�
�

(����)  (where  a and b are any arbitrary 
constants) and calculate the metric, pressure and density 
respectively. We have also discussed various physical and 
geometrical properties of the models. 
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INTRODUCTION 

Several investigations have been made in higher dimensional cosmology in the frame 

work of different scalar tensor theories and cosmological models. Recently there has been 
considerable interest in cosmology with LRS Bianchi type-I cosmological model in the 
presence of zero mass scalar field and scalar meson fields. Because of the fact that our 
universe is currently undergoing on accelerated expansion which has been confirmed by a host 
of observation such as type-�� Supernovae (SN - ��) [24, 31, and 41]. 

Many researchers in relativity have focussed their mind in the study of scalar meson field. 
Brahamachary [2] considered the massive, whereas Bergmann and Leipnik [1] considered the 
mass-less scalar field coupled to spherically symmetric gravitational fields. Janis et. al.  [15] 
have further considered the problem from the point of view of singularities and  Gautreau [11] 
and Singh [37] have extended the study to the case of non-spherical Weyl and plane 
symmetric fields respectively. Later on, the workers in the field , with a few exceptions 
(Stephenson [40] ) have directed their efforts to the study of the mass less scalar fields coupled 
to gravitational and electromagnetic fields ( Mishra and Pandey [20] ); Rao, et. al. [28], [29], 
Roy, et. al. [33], Singh [38]. Janis et. al. [16] obtained the solutions of the Einstein-scalar and 
Brans-Dicke [3] field equations for static space-time and also gave a procedure to generate 
static solutions of the coupled Einstein-Maxwell scalar field equations. The solutions of 
axially symmetric Einstein-Maxwell scalar field equations have been given by Eris and Gurses 
[10]. Singh et. al [38] has found a method to obtain solutions to the cylindrically symmetric 
gravitational field coupled to mass less scalar and non-null Maxwell fields. They have further 
applied the technique to the solution due to Chitre et. al. [8] and have also obtained the dual 
solution by an extension of Bonnor’s theorem [4]. 

As a matter of fact following the development of inflationary models, the importance of 
scalar field (mesons) in cosmology has become well known [17]. Bergmann and Leipnik [1] 
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and Brahmachary [2] have investigated the spherically symmetric field associated with zero 
rest mass. The static solutions for axially symmetric field have been investigated by Buchdahl 
[6], Janis et. al. [15,16], in an attempt to present an extension of Israel’s idea of a singular 
even horizons [14] have considered the spherically symmetric solutions of the field equation 
of general relativity containing zero rest-mass  meson fields. Singh [37], Patel [21] and Reddy 
[30] have investigated plane symmetric solutions of the field equations corresponding to the 
zero mass scalar fields. Stephenson [41], Rao et. al. [29], Sharma and Yadav, Chatterjee and 
Roy [7], Reddy and Rao [30], Pradhan et. al. [25, 26], Yadav and Pradhan et. al [44], 
Purushottam and Yadav [27], Roy and Neelima [33], Yadav and Saha [43], Riess et. al. [32]  
Tagmark and Blanton [41] and Perlmutter et. al. [24], Ellis [9], Hawking et. al. [13], Mac 
Callum [19], Satchel [39], Benkeinstein [5] are some of the authors who have studied various 
aspects of interacting fields in the framework of general relativity.  

In real way at the present state of evolution, the universe is spherically symmetric and the 
matter distribution in it is isotropic and homogeneous. But in its early stages of evolution, it 
could have not had a smoothed out picture. Close to the big-bang singularity, neither the 
assumption of spherically symmetric nor of isotropy can be strictly valid. So we consider 
plane symmetry, which is less restrictive than spherical symmetry and provide an avenue to 
study in homogeneities. For simplification and description of the large scale behaviour of the 
actual universe, locally rotationally symmetric [henceforth referred as LRS] Bianchi-I space 
time has been widely studied. Mazumdar [18] has obtained solution of LRS Bianchi-I space-
time filled with a perfect fluid. Hajj-Boutros and Sfeila [12] and Sri Ram [34] have also 
obtained some solution for the same field equations by using their solution-generating 
techniques. Pradhan et. al. [25] have studied LRS Bianchi-I space-time with zero mass scalar 
field. In fact cosmological models based on scalar fields of various kinds have had enormous 
success in solving cosmological problems among which are the causality, entropy, initial 
singularity and cosmological constant problem. 

In this paper, we have considered some LRS Bianchi-I cosmological models in the 
presence of zero-mass scalar fields associated with a perfect fluid distribution in it. We have 
also discussed various physical and geometrical properties of the models have been also 
calculated and discussed. 

THE FIELD EQUATIONS 

The metric for the LRS Bianchi-I space-time is of the form [19]. 

     ds2 = −  dt2  +  λ2 dx2  +  μ2 (dy2 + dz2) … (2.1) 

where λ and  μ are function of the cosmic time t. The energy momentum tensor of a perfect 
fluid together with a zero mass scalar field is given by  

       ���
(� ) ���

(�)
   … (2.2) 

where    ���
(� )

= (ρ + p) ui uj  +  pgij … (2.3) 

Is the energy momentum tensor corresponding to perfect fluid distribution with the four 
vector velocity  ui satisfying ui u

j = −  1, p the pressure and ρ the mass-energy density. The 

energy momentum tensor   ���
(�)

 corresponding to zero mass scalar fields φ and is 

���
(�)

= φ ��  φ � −
1

2 
 ��� �

�� φ ,α� ,β                                             … (2.4) 
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where φ (t) (a function of t only) is the zero-mass scalar field which satisfies the wave 
equation. 

     ��� φ ;�� = 0  … (2.5) 

 The scalar field φ is not directly coupled to matter. It interacts with matter indirectly 
through gravity. The Einstein’s field equations 

��� −  
1

2
 � ��� = ����                                                               …  (2.6) 

together with energy momentum tensor defined by equation (2.2) gives the following 
equations 

− �� +  φ �  =
2μ̈

μ
  +  

μ̇�

μ�
                                                                 …  (2.7) 

− �� +  φ �  =
μ̈

μ
  +  

λ̇μ̇

λμ
  +  

λ̈

λ
                                                        …  (2.8) 

�ρ −  φ �  =
2λ̇μ̇

λμ
  +  

μ̇�

μ�
                                                              …  (2.9) 

where k = 8πG, G is the gravitational constant. The over dot indicates a derivative with 
respect to time t. The wave equation (2.5) yields 

�
  

 

λ̇

 λ  
 +  

2μ̇

μ
� φ  ̇+  φ̈= 0                                                            …  (2.10) 

and the energy conservation for the matter  ���,�
(� )

= 0  leads to 

ρ̇ + �
λ̇

λ  
 +  

2μ̇

μ
� ( ρ + p ) = 0                                                       …  (2.11) 

SOLUTIONS OF THE FIELD EQUATIONS  

From equation (2.7) and (2.8), we obtain 

μ̈

μ
  +   

μ̇�

μ�
  −   

λ̈

λ
 −  

λ̇μ̇

λμ
= 0                                                       … (3.1) 

which has first integral. 

     μ�λ̇ −  λμμ̇  =  � … (3.2) 

where A is an integrating constant. 

Equation (2.3) is a linear differential equation in λ (t) and has an exact solution, 

λ  =  ��μ +  �μ 
3 ( )

dt

t
                                                                … (3.3) 

Similarly equation (3.2) is also a linear differential equation in µ (t), which has an exact 
solution, 

μ�  = ��λ�   −  2�λ�

3 ( )

dt

t
                                                       …  (3.4) 
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On integration, equation (2.10) yields, 

φ  = ��  +  3
2( ) ( )

C dt

t t 
                                                            …  (3.5) 

where  ��, ��, �� and �� are integration constants. 

Thus for any arbitrary µ (t), equation (3.3) gives λ (t) and then φ is known from equation 
(3.5). Similarly for an arbitrary λ (t) one can calculate µ (t) and φ from equation (3.4) and 
(3.5). Then from equation (2.7) and (2.9), � and  ρ can be obtained and hence the solution of 
the field equations is completely known. 

To illustrate our problem, we choose  � = � 
�
�

(����) (where a and b are any arbitrary 
constants) From equation (3.3) and (3.5) we obtain 

λ = C� � �(����) +  
2�� (���� ��)

3(�� – � )+ 2
                                                …  (3.6) 

φ �  = ��
�  � � �(����) +   

2�� ��(����)

3(�� – � )+ 2
 �                                         …  (3.7) 

where  � =  
�

�
  and f ≠  

�

��
  are real constants. So in this case, the geometry of our universe is 

given by metric 

��� = − ��� +  ���� �(����) +   
2�� (������)

3(�� – � )+ 2
 � ��� 

                                                               +   ����(����)(���  + ���)�  …  (3.8)  

For the metric (2.8) from the equation (2.7) – (2.9), find the expression for p and ρ  

�� = ��
�  ���� �(����)�

 +   
2�� ��(����)

3(�� – � )+ 2
 �

��

 +  �
(� − ��){3(�� + � )− 2}

4��
�  …  (3.9) 

          �ρ =  ��
� ���� �(����)�

 +   
2�� ��(����)

3(�� – � )+ 2
 �

��

  

+ �
2�(� − ��){3(�� + � )− 2}� �{�(�� –� )��} +  3��(� − ��)�{3(�� – � )+ 2}

4��[2���{�(�� –� )��} +  ��{3(�� – � )+ 2}]
�  …  (3.10) 

When  � =  
1

,
2

  we get solution due to Pradhan et. al. [25] by suitable adjustment of 

constants. However, when  � =  
1

2
  we get 

��� = − ��� +  ���� 
�
�(����) +   

2�� (������)

3(�� – � )+ 2
 � ���   

                              +   ��(����)(���  + ���)�… (3.11)
  

�� =   ��
�  ���� 

�
�(����)�

 +   
2�� ��(����)

3(�� – � )+ 2
 �

��

 + �
(� − ��){3(�� + � )− 2}

4��
�     …  (3.12) 
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                            �ρ  =  ��
� ���� 

�
�

(����)�
 +   

2�� ��(����)

3(�� – � )+ 2
 �

��

  

 + �
2�(� − ��){3(�� + � )− 2}�

�
�

{�(�� –� )��} +  3��(� − ��)�{3(�� – � )+ 2}

 4�� �2��
�
�

{�(�� –� )��} +  ��{3(�� – � )+ 2}�
� …  (3.13) 

when   f ≠  
b

a
, p = ρ = constant, whereas in the absence of scalar field we get, p = ρ = 0 [18]. 

The energy conditions [30(a)] 

(i)  (ρ + p ) ˃ 0 

(ii) (ρ + 3p) ˃ 0   and 

(iii)    ρ  ˃ 0 

are satisfied when  �� > 0 , A  ˃ 0 than 
1

3a
  < � < 

1

a
  and the dominant energy conditions 

[13].  

(i) (� − �) ≥ 0  and  

(ii) (� + �) ≥ 0        

when  �� > 0 , A  ˃ 0 and 
1

3a
 < � < 

2

3a
. 

The expansion scalar  �, the shear tensor ���, the rotation ��� and acceleration vector ��  

for the velocity field uα are defined by  

    � =  �;�
�   … (3.14) 

��� =   
1

2
���� +  ��;�� −  

1

2
� ���� +  ����� −

1

3
� ���� + �����  …  (3.15) 

��� =   ��;� − ��� −  ��;�����  −
1

3
� ���� + �����                          …  (3.16) 

and                       ��  =  ����;�                                                                                                   …  (3.17) 

Here the semicolon indicates covariant differentiation. The spatial volume is given by 

     V =  ���  

For the velocity field  ��  these kinematical parameters are found to have the following 
expressions:  

� =
� � ��{3(�� – � )+ 2}  + 2��

�
�

{�(�� –� )��} �

���{3(�� – � )+ 2}�
�
�

{�(�� –� )��}�
                             …  (3.18) 

� =   
� �3��(� – ��){3(�� – � )+ 2}  + 4��

�
�

{�(�� –� )��} �

2� � ��{3(�� – � )+ 2}  + 2��
�
�

{�(�� –� )��} �
         …  (3.19) 
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� =  
1

√6
�

�2��{3(�� – �)+ 2}�
�
�

{�(�� –� )��} �

� ���{3(�� – �)+ 2}  + 2��
�
�

{�(�� –� )��} �
�                 …  (3.20) 

             � = 0 … (3.21) 

           ��  = [0,0,0,0]. … (3.22) 

DISCUSSION AND CONCLUSION 

From above equations [3.19 – 3.22] it is clear that our model is expanding, shearing and 

non rotating. The acceleration vector  ��  is zero and consequently the stream links of perfect 
fluid are geodetic. As the shear tensor is not zero, the model is clearly anisotropic.  

For f = ,
b

a
 the metric (3.11) represent a non static cosmological model filled with stiff 

fluid, the pressure and density of which are given by 

�� =   �� =   
��

�

(�� +   � ) �
                                               …  (4.1) 

The model with equal pressure and density i.e. p = � are important in relativistic 
cosmology for the description of very early stages of the universe.  

For f ≠ , ,
3 3

b b b

a a a


  from equation [3.12-3.13, 3.18-3.20] it is seen that at the singularity 

t = 0, V → 0 and � ,� ,� and � are infinitely large. As t → ∞,� → ∞ and � ,� ,� and �  

vanish. Therefore, for f ≠ , ,
3 3

b b b

a a a


 the solution [3.11] represents an anisotropic universe 

exploding from t = 0 which expands for  0 < � <  ∞ and after a large time t, would give 
essential an isotropic empty universe. 

Choosing  � =  ����(����) +  ����� and A = 0 in equation (3.3), we find 

     �� =  �����(����) +  �������(���) +  ������ … (4.2) 

where �� = ��ℎ�
� , �� = 2��ℎ�ℎ�, �� =  ��ℎ�

�  

Hence, in this case the geometry of our universe is given by metric 

   ��� =  − ��� +  (ℎ���(����) +  ℎ����)��� 

                        + (�����(����) +  �������(���) +  ������)(��� + ���) … (4.3) 

From equation [3.5], we can obtain the value of  ��, and equation [2.8-2.9] give us the 

values of the physical parameters  � and  � .  

Putting  � =  
1

,
2

 in above results we get 

        � =  ℎ��
�
�

(����) +  ℎ���� … (4.4) 

       �� =  ���(����) +  ���
�
�(����) +  ������ … (4.5) 
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and     ��� =  − ��� +  (ℎ��
�
�

(����) +  ℎ����)��� 

                                              + (���(����) +  ���
�
�

(����) +  ������)(��� + ���) … (4.6) 

In this chapter we have generalised the solution of Refs [18], [12], [34], [25]. For 

= 0,� = 0 and � =  ,
3

b

a
  from [4.6], we obtain the solutions of Sri Ram [34].  

For � = 0, from eq. [3.8] we recover the model of Mazumdar [18], and thus our solutions 
represent a generalization of Mazumdar [18]. 
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