H*-NORMAL SPACES

NIDHI SHARMA, POONAM SHARMA

Department of Mathematics N.R.E.C. College, Khurja (U.P.), India

AND

NEERAJ KUMAR TOMAR

Department of Mathematics, Surajbhan Degree College Shikarpur-202395 (U.P.), India

RECEIVED : 10 February, 2015

The aim of this paper is to introduce a new class of closed sets called H^* -closed sets in topological spaces. This class is properly placed between the class of h-closed set and generalized *h*-closed set obtained several properties of such a set. We introduced a new class of normal spaces called H^* -normal spaces by using H^* -open sets and obtained several properties of such a space. Moreover, we obtain some new characterizations and preservation theorems of H^* -normal spaces.

2010 AMS Subject Classification: 54D15, 54C08.

KEY WORDS AND PHRASES : *H**-closed, *gH**-closed, *rgH**-closed, *H**-open, *gH**-open, *rgH**-open sets and *H**- normal spaces,

INTRODUCTION

The aim of this paper is to introduce a new concept of normal spaces called H^* - normal spaces by using H^* -open sets and obtained several properties of such a space. Moreover, we obtain some new characterizations and preservation theorems of H^* -normal spaces. Recently, P.G. Patil *et al.* [6] introduce and study two new class spaces of w α -normal and w α -regular spaces by utilizing w α -closed sets and obtained some characterization of w α -normal and w α -regular spaces. Throughout this paper, (X, τ) , (Y, σ) spaces always mean topological spaces X, Y respectively on which no separation axioms are assumed unless explicitly stated.

Preliminaries

2.1. Definition. A subset A of a topological space X is called.

- 1. Regular closed [7] if A = cl (int (A)).
- 2. Semi-open [3] if $A \subseteq cl$ (int (A)).
- 3. *w*-closed [5] if cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is a semi-open in X.
- 4. α -closed [4] if cl (int (cl (A))) $\subseteq A$.
- 5. α^* -set [2] if int (cl (int (A))) = int (A).

134/M015

- 6. C-set [2] if $A = U \cap V$, where U is an open and V is an α^* -set in X.
- 7. *h*-closed [1] if *s*-cl (*A*) \subseteq *U* whenever *A* \subseteq *U*, and *U* is a *w*-open in *X*.
- 8. *gh*-closed if h-cl $(A) \subseteq U$ whenever $A \subseteq U$, and U is a h-open in X.
- 9. *rgh*-closed if h-cl $(A) \subset U$ whenever $A \subset U$ and U is regularly h-open in X.
- 10. **Regular** *h***-open** if there is a regular open set U such that $U \subseteq A \subseteq h$ -cl (U).
- 11. *hCg*-closed if *h*-cl (*A*) \subseteq *U* whenever *A* \subseteq *U*, and *U* is *C*-set in *X*.
- 12. *H**-closed if *h*-cl (*A*) \subseteq *U* whenever *A* \subseteq *U* and *U* is *hCg*-open set in *X*.
- 13. Regular *H**-open if there is a regular open set U such that $U \subset A \subset H^*$ -cl (U).
- 14. *gH****-closed** if H^* -cl (A) $\subseteq U$ whenever $A \subseteq U$ and U is H^* -open in X.
- 15. *rgH**-closed if *H**-cl (*A*) \subseteq *U* whenever *A* \subseteq *U* and *U* is regularly *H**-open in *X*.

The complement of regular closed (resp. α -closed, *w*-closed, *gh*-closed, *rgh*-closed, *H**-closed, *gH**-closed, *rgH**-closed, semi-open, regular *h*-open, regular *H**-open) set is said to be regular open (resp. α -open, *w*-open, *gh*-open, *rgh*-open, *H**-open, *gH**-open, *rgH**-open, semi-closed, regular *h*-closed, regular *H**-closed) set. The intersection of all *H**-closed subset of *X* containing *A* is called the *H**-closure of *A* and is denoted by *H**-cl (*A*). The union of all *H**-open sets contained in *A* is called *H**-interior of *A* and is denoted by *H**-int (*A*). The family of *H**-open (resp. *H**-closed) sets of a space *X* is denoted by *H**O (*X*) (resp. *H**C (*X*)).

2.2. Remark. Every α -closed (resp. α -open) set is H*-closed (resp. H*-open) set.

Definitions stated above, we have the following diagram :

closed $\Rightarrow \alpha$ -closed $\Rightarrow h$ -closed $\Rightarrow H^*$ -closed $\Rightarrow gh$ -closed $\Rightarrow rgh$ -closed

 gH^* -closed $\Rightarrow rgH^*$ -closed.

However the converses of the above are not true may be seen by the following examples.

2.3. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then $A = \{c\}$ is *h*-closed set as well as *H**-closed set but not closed set in *X*.

2.4. Example. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}, X\}$. Then the set $A = \{a, d, e\}$ is *rgh*-closed set as well as *rgH**-closed set but not *gh*-closed set and not *gH**-closed set in X.

2.5. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then the set $A = \{c\}$ is gH*-closed set but not closed set in X.

H*-NORMAL SPACES

3.1. Definition. A topological space X is said to be normal (resp. H^* -normal) if for every pair of disjoint closed sets A and B, there exist open (resp. H^* -open) sets U and V such that $A \subset U$ and $B \subset V$.

3.2. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then $A = \{a\}$ and $B = \phi$ are disjoint closed sets, there exist disjoint open sets $U = \{a, c, d\}$ and $V = \{b\}$ such that $A \subset U$ and $B \subset V$. Hence X is normal as well as H*-normal because every open set is H*-open set.

3.3. Remark. By the definitions and examples stated above, we have the following diagram :

normal
$$\Rightarrow \alpha$$
-normal $\Rightarrow H^*$ -normal.

3.4. Lemma. A subset A of a topological space X is rgH^* -open iff $F \subset H^*$ -int (A) whenever F is regularly closed and $F \subset A$.

3.5. Definition 1. A function $f: X \rightarrow Y$ is said to be

1. Almost rgH^* -closed if for every regular closed set F of Xf(F) is πgH^* -closed in Y.

2. *H**-closed if for each closed set in *X*, f(F) is *H**-closed set in *Y*.

3. Almost H^* -closed if f(A) is H^* -closed in Y for each $A \in RC(X)$.

4. Almost gH*-closed if f(A) is gH*-closed in Y for each $A \in RC(X)$.

3.6. Theorem. A surjection $f: X \to Y$ is a almost rgH^* -closed if and only if for each subsets S of Y and each $U \in RO(X)$ containing $f^{-1}(S)$, there exists a rgH^* -open set V of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Proof. Necessity. Suppose that f is almost rgH^* -closed. Let S be a subset of Y and $U \in RO(X)$ containing $f^{-1}(S)$. If V = Y - f(X - U), then V is a rgH^* -open set of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Sufficiency. Let *F* be any regular closed set of *X*. Then $f^{-1}(Y - f(F)) \subset X - F$ and $X - F \in RO(X)$. There exists a *rgH**-open set *V* of *Y* such that $Y - f(F) \subset V$ and $f^{-1}(V) \subset X - F$. Therefore, we have $f(F) \supset Y - V$ and $F \subset X - f^{-1}(V) \subset f^{-1}(Y - V)$. Hence we obtain f(F) = Y - V and f(F) is *rgH**-closed in *Y*. This shows that f is almost *rgH**-closed.

Preservation theorems and other characterizations of H*-normal spaces

3.7. Theorem. For a topological space *X*. The following are equivalent:

(a) X is H^* -normal.

(b) For any pair of disjoint closed sets A and B of X, there exists disjoint gH^* -open sets U and V of X such that $A \subset U$ and $B \subset V$.

(c) For each closed set A and each open set B containing A, there exists a gH^* set U such that $cl(A) \subset U \subset H^*$ - $cl(U) \subset B$.

(d) For each closed A and each h-open set B containing A, there exists H^* -open set U such that $A \subset U \subset H^*$ -cl $(U) \subset int (B)$.

(e) For each closed A and each h-open set B containing A, there exists a gH*-open set G such that $A \subset G \subset H^*$ -cl $(G) \subset int (B)$.

(f) For each *h*-closed set A and open set B containing A, there exists H^* -open set U such that $cl(A) \subset U \subset H^*$ - $cl(U) \subset B$.

(g) For each *h*-closed set *A* and each open set *B* containing *A*, there exists a gH^* -open set *G* such that cl (*A*) $\subset G \subset H^*$ -cl (*G*) $\subset B$.

Proof: (a) \Leftrightarrow (b) \Leftrightarrow (c). Since every *H**-open set is *gH**-open it obvious.

 $(d) \Rightarrow (e) \Rightarrow (c)$ and $(f) \Rightarrow (g) \Rightarrow (c)$: Since every closed (resp. open) set is *h*-closed (resp. *h*-open), it is obvious.

(c) \Rightarrow (e). Let A be a closed subset of X and B be a h-open set such that $A \subset B$. Since B is h-open and A is closed, $A \subset \text{int} (A)$. Then, there exists a gH*-open set U such that $A \subset U \subset H^*$ -cl $(U) \subset \text{int} (B)$.

(e) \Rightarrow (d). Let *A* be any closed subset of *X* and *B* be a *h*-open set containing *A*. Then there exists a *gH**-open set *G* such that $A \subset G \subset H^*$ -cl (*G*) \subset int (*B*). Since *G* is *gH**-open, $A \subset H^*$ -int (*G*). Put $U = H^*$ -int (*G*), then *U* is *H**-open and $A \subset U \subset H^*$ -cl (*U*) \subset int (*B*).

(c) \Rightarrow (g). Let *A* be any *h*-closed subset of *X* and *B* be an open set such that $A \subset B$. Then cl (*A*) $\subset B$. Therefore, there exists a *gH**-open set *U* such that cl (*A*) $\subset U \subset H^*$ -cl (*U*) $\subset B$.

(g) \Rightarrow (f). Let A be any h-closed subset of X and B be an open set containing A. Then there exists a gH*-open set G such that cl (A) \subset G \subset H*-cl (A) \subset B. Since G is gH*-open and cl (A) \subset G. We have cl (A) \subset H*-int (G), put U = H*-int (G), then U is H*-open and cl (A) \subset U \subset H*-cl (U) \subset B.

3.8. Theorem. If $f: X \to Y$ is a continuous almost H^* -closed surjection and X is H^* -normal space, then Y is H^* -normal.

Proof. Let A and B be any closed set and B be a open set containing A. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint closed set of X. Since X is H^* -normal, there exists disjoint H^* -open set U and V such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Let G = int(cl(int(U))) and N = int(cl(int(V))), then G and N are disjoint regularly open sets of X such that $f^{-1}(A) \subset G$ and $f^{-1}(B) \subset H$. By Theorem 3.6, there exist disjoint rgH^* -open sets K and L of Y such that, $A \subset K$ and $B \subset L$, $f^{-1}(K) \subset G$ and $f^{-1}(L) \subset N$. Since G and N are disjoint, so are K and L. It follows from Theorem 3.6, that Y is H^* -normal.

3.9. Corollary. If $f: X \to Y$ is a continuous, H^* -closed surjection and X is a H^* -normal space, then Y is H^* - normal.

Proof. Easy to verify.

3.10. Corollary. If $f: X \to Y$ is a continuous almost gH^* -closed surjection and X is a H^* -normal space, then Y is H^* -normal.

Proof. Easy to verify.

3.11 Corollary. If $f: X \to Y$ is a continuous almost rgH^* -closed surjection and X is a H^* -normal space, then Y is H^* -normal.

Proof. Easy to verify.

References

- 1. Rodrigo, J. Antony Rex, Jansi, A. Hana Selvi and Theodore, Jessie, On *h*-closed sets in topological spaces, *International Journal of Math. Archive*, **3(3)**, 1057-1062 (2012).
- Hatir, E., Noiri, T. and Yuksel, S., A decomposition of continuity. Acta Math. Hungar., 70(1-2), 145-150 (1996).
- 3. Levin, N., Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, **70**, 36-41 (1963).
- 4. Njastad, O., On some classes of nearly open sets, Pacific J. Math., 15, 961-970 (1965).
- 5. Pushpalatha, A., Studies on a Generalization of mappings in a topological spaces, *Ph.D. Thesis*, Bharathiar University, Coimbatore (2000).
- Patil, P. G., Banchali, S. S. and Gonnagar, P.K., wα-separation axioms in topological spaces, J. of New Results in Sciences, No. 5, 96-103 (2014).
- Stone, M. H., Applications of the theory of Boolean rings to general topology, *Trans. Amer. Math. Soc.*, 41, 375-381 (1937).