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InTRODUCTION
et Xa, be a given infinite series with the sequence of partial sums {s,} and let {p,}
be a sequence of constants with py >0, p, 20 for n>0 and B, = Zn: p,- We defines
v=0
n
P;yz = Z()Agzipv
v=

n
Bl =% pl.pli=pli=0,ix1 .. (L1)
v=0

=1, 4) = (v+1)(v+2)...(v+n)

where, K

&

' , (y>—1, n:1,2,3...) ...(1.2)
n!

The sequence to sequence transformations (BOOS [1])
1 n
Ly =F§p3sv (13)

defines the sequence {p}} of the (N, p)) mean of the sequence {s,} generated by the

sequence of coefficients {p)}. If

132/M015



96 Acta Ciencia Indica, Vol. XLI M, No. 2 (2015)

th >sasn—o .. (1.4)

Then the series Za, is said to be (N, p!)—summable to s. It is clear that (N, p!)-
summability method is regular (Boos [1])

For y=1, (N, p})-summability method reduces to (N, p,)-summability method.
(BOOS [1])

The sequence-to-sequence transformation (Hardy [2])

n
T, = > (’J)q”*st ..(15)
(1+)" v=0

defines the sequences {7},} of the (£, ¢) means of the sequences {s,}. If
T, >sasn—o ... (1.6)

Then the series XZa, is said to be (£, g)-summable to s. Clearly (£, g)-summability
method is regular, (Hardy [2])

Further, the (E, ¢) transformation of the (N, p;l/) transformation of {s,} is defined by

(1+9)" ko
1 o n\ n—k | 1 J Y
= i g — > pls .. (1.7)
(1+q)n kZ(:)( ) Pky vZ:(:) VoY
If, T, —>Sasn—ow ... (1.8)

Then Xa, is said to be (E,q) (N, p))-summable to s. Further suppose, the summability

method (E,q)(N, py) is assumed to be regular throughout this paper.

For y=1, (E,q)(N, p)) -summability method reduces to (E,q) (N, P, ) -summability

method and transformation t,, becomes r}1 define by,

1 n 3 1 k
. — 3 (’,g)q" I3 ps, .. (19)
(I+¢)" k=0 Py v=0

Let f(¢f) be a periodic function with the period 2m and Lebesgue-integrable over
(=, m).
The Fourier series associated with f'at any point x is defined by,
f(x)~a70+ 3 a,cos nx+b,sinnx = £ A4, (x) ...(1.10)
n=l1 n=0

And the conjugate series of the Fourier series (1.10) is defined as,
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0 0
% (b, cosnx—a,sinnx)= X B, (x) o (111)

n=l1 n=0

Let s5,(f :x) bethe n—th partial sums of (1.11). The L, -norm of a function f:R — R
is defined by

171, =sup{|f (x)|: x € R}

and the L, —norm is defined by,

1
= (e vz (13)

The degree of approximation of a function f:R— R by a trigonometric polynomial

pn(x) of degree n under norm ||||  is defined by (Zygmund [8]).

1B, = 71, =sup{|pu () - £ (x): x e R} . (1.14)
and the degree of approximation E, (f) ofa function f €L, is given by
E, (f)%fn 18, - 71, .. (1.15)

A function f € Lip(a), if
|f(x+z)—f(x)|=o(|t|°‘), O<a<l, t>0 . (1.16)

and a function f € Lip(a,r), if
1

Uoznlf(xﬂ)—f(x)l’ dx)’ =0(|z|°‘), O<a<lr>1  ..(1.17)

Further, a function f(x) € Lip(&(t),r), if

1
T eat)— £ (x) dx | =0(E[t]), r 21,650 ... (4.1.18)
fo (x+1)=f(x) ]

Finally, a function f e W (L, ,&(t)), if

I

For the Lipischitz classes, we have that, (Khan [3])
Lipa c Lip(a,r) c Lip(é(t),r) c W(Lr,a(t)) ... (1.19)

Here, we use the following Notations through out this paper.

f(x+t)—f(x)]s?nx

dx] =0(g|z]), B=0
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1 n 1 I COS;—COS(VJF;jt
and l;n (t)=— z (Z)qn_k {— )y p:f}x X

Known REsuLTS

En 2012, Misra et. al. [4] have proved the following theorem.
Theorem 2.1 : If fis a 2n-periodic function of the class Lipo then degree of
approximation by the product (E,q)(ﬁ, pn) summability means of the conjugate series

(1.11) of the Fourier-series (1.10) is given by

1
T, —f“ =0 ,0<a<l1
Lok ((nﬂ)“]

where t', is as defined in (1.9).

And, generalizing the Theorem 2.1 in 2012, Paikray et. al. [6] have proved the following
theorem.

Theorem 2.2 : If fis a 2mperiodic function of class Lip(a,r), then degree of
approximation by product (E , q)(ﬁ, Pn ) summability mean of the conjugates series (1.11) of

the Fourier-series (1.10) is given by

-] =0[;1],0<a<1,r21
0

(n+l)a+;

where 2',1, is defined in (1.9) .

Further, in 2013, generalizing the Theorem 2.2 Misra et. al. [5] have proved the following
theorem.

Theorem 2.3 : Let &(¢f) be a positive increasing function and f is a 2w -periodic,
Lebesgue-integrable function of class Lip(§(¢), ) r>1,¢>0, then the degree of
approximation by the product (E ,q)(]\_/ , pn) summability mean of the conjugate series (1.11)

of the Fourier-series (1.10) is given by,

||T;1—f||w=0[(n+l);la§( ! ]],I’Zl,

n+l1

where ri, is defined as in (1.9).
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MaAIN RESULTS

he purpose of this paper is to generalised the Theorem 2.3 for W(Lr,é(t)) class by
(E,q)(N, p))—summability means in the following form.

Theorem 3.1 : If f:R— R is a 2nperiodic, Lebesgue integrable function over [—m,it]
and belonging to the class W(L,,E_,(t)),r >1. Then the degree of approximation by the

product (E,q)(N, p}) summability means of the conjugate series (1.11) of the Fourier series
(1.10) is given by

[3+i 1
[eu =], =0 (n+1) é[—] G

n+1

where 1, is as defined in (1.7) provided £(¢) satisfies the following conditions

1

1 t|¢(t)| . o | 1
n+l r — .
0 é(t) sin® tdt O[n+1j .32
1
LI e | :
Sl | s =O{(n+l) } 63
and {@} be a decreasing sequence. ...34

where, & is an arbitrary number such that s(l—S)—l >0, conditions (3.2) and (3.3) hold

uniformly in x and where l+l =1, suchthat 1 <r < oo,
ros

LEeMmas

e have need the following lemmas for the proof of our theorem.
Lemma 4.1:

()| =0(n).0<r <

n+l1

Proof : For 0<¢ < % , we have sinnt <n sint then (Boos [1])
n+ )



100 Acta Ciencia Indica, Vol. XLI M, No. 2 (2015)

i COSt—COS(V-i-l]t
Ly 2 2

— 1 n
(1) = E (1)a L s g
T‘(l""])n k=0 Bl v=0 sin -
2
t t . .t
1 . k COS— — COS V£.COS — + sin v.sin —
< v (7 n—k | 1 Y 2 2
S o k14 Yv—opv p
n(l+q)" k= Pl v= sinl
1 " |k cosé(Zsin%é)
S—n z (Z)qn_k = ) P\Y —t+sinvt
“(1+‘1) k=0 B v=0 sin —
2
1 n i k
< )y (Z)qn_ — X p! O(Zsinv—sinv—}rvsint
n(l+q)" [k=0 P v=0

IN
—_—
M=
—_—
=3
~——
BN
T
bl
—
=
M =
i)
<=2
—_
o
—_
<
~—
+
(=
—_
<
S~—"
—_—
—

Tl:(l+q)n k=0 P]g v=0
k
< 1 ;‘, (z)qnfk O(k) D ‘1)/
Tt(l+q)n k=0 f;(y t=0
=0(n)

This prove the lemma.

Lemma 4.2:

= 1 1
|kn (l‘)|:O(;J, for mﬁtﬁﬂ:

Proof : For L <t<m, byJordon’s Lemma, we have sin L > L , then
n+1 2 b

t 1
COS——CoS| v+— |t
S ()t s A

Y= " )
Ijkvo sin —
2

t vt t .ovt .t
k COS— —CO0S—.COS — + SIn—.S1n —
2 2 2 2

n(l+¢)" (k=0 Bl =0 siné
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n k
S; Z(Z)q"_k L z p},’i cos£(2sin2v£j+sinv£.sinn£
n PkY v=0 2t 2 2 2 2

2(1 + q)n 1 rk=0

o

This proves the lemma.

PRroOF OF THE THEOREM

sing Reimann-Lebesgue theorem, we have for the n-th partial sum s, ( I x) of the
conjugate Fourier-series (1.11) of f(x) as follows (Titchmarsh [7])

5u(f )= f (1) =2 [ o(0) )

The (N, p}) transform of 5(f :x) using (1.3) is given by

t . 1
cos2—s1n(k+2)t
dt

1 = 4
b= =—["6(0) 3 ]
b, IO kZ:;‘) * 2sin%

deonoting the (E,q)(N, p}) transform of 5, (f : x) by t,, we have

ne

%
n(1+¢q) k=0 Pky v=0 2sin§

! . . |k cosz—sin(v+2jt
[eu=r1=——[ o) X (¥)a"* = = pi d

1]
—
S

=2l
—~
~
N—
>
—~
~
N—
S

Il
—
N

i
+
—
b=s
—
~
~
S»I
—
~
~—~
&

n+l

:11+12 (Say) (51)
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Now,

= [ 1 () n (1) de

Applying Holder’s inequality, we have that

TARS n+l t|¢ |sm ! n+1
[n|<| [+ J
tsmt

1
:O(n+lj|: n+1 1+ﬂ

1

s
}dt

and, L={" o)k, (r)de . (52)

Using Holder’s inequality, we have that
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1 1
g " B s
= | 0(e)sins k() &(1) |°
I|<| [ e R et
Tl n+l 8 o
n+l t st

sl ¢ ntl d, . 1
=0(n+1)°| [ {— 8| taking 1 =—
—(B+1)+6 2

1 n+l
1 =5+1)s-1 |y
=0 (n+1)5é[mj[g(ﬁ 3+1) l}s}l

T

:o{(nﬂ)‘“ig(nilj} .. (5.3)

Hence, combining (5.1) (5.2) and (5.3), we have that

e o{(n ), ‘“{ﬁj}

This completes the proof of the theorem

CoROLLARY

ollowing results can be derived as a corollary by our theorem.
Corollary 6.1 : If S =0then W (L ,&(¢)) class reduces to Lip(&(t)),r class and the

degree of approximation for conjugate Fourier-series by product (£,q) (]\_/1 , P!') -summability
mean is given by

eu=11= O{(;m)i g[ﬁ)} -0

Corollary 6.2 : For =0 and y =1 the main theorem reduces to theorem 2.3.
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Corollary 6.3 : If B=0and &(¢)=¢" then, W(L,,&(t)) class reduces to Lip(&(t),r)

and the degree of approximation for conjugate Fourier-series by product (E,q)(ﬁ, p,Z)f

summability mean is given by
1
[0~ £l =0[ ——|r>0
n+l-——
B

Corollary 6.4 : If B=0 and &(7) =" and y =1, then main theorem reduces to theorem
2.2.

Corollary 6.5 : If B=0, &(¢)=¢* andy — oo, then W(L,,ci(t)) class reduces to Lip,,

and the degree of approximation for conjugate Fourier-series by product (E,q)(ﬁ, p:{)f

summability mean is given by

I, _f||:o((n—l+l)],0<y <1

Corollary 6.6: If B=0and é’;(t) =t%, y > andy =1 then main theorem reduces to
theorem 2.1.

ConcLusions

mur theorem have more general results rather than any previous known results, that will
be enrich the literature on Approximation theory.
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