
Acta Ciencia Indica, Vol. XLI M, No. 2 (2015) 95 

 DEGREE OF APPROXIMATION OF FUNCTION BELONGING 

TO WEIGHTED ( , ( ))rL t  CLASS BY ( , )( , )nE q N p -SUMMABILITY 

MEANS OF IT’S CONJUGATE FOURIER SERIES 
 

ADITYA KUMAR RAGHUVANSHI
 

Department of Mathematics, IFTM University, Moradabad-244 001 (U.P.), India 

RECEIVED : 3 February, 2015 

In this research paper, we have proved a theorem on 
degree of approximation of a function belonging to 
weighted Lipischitz  class by product summability means of 
it’s conjugate Fourier series. 

 

AMS Classification : 42B05, 42B08 

 

KEYWORDS : (E, q) summability means, ( , )nN p

summability means, product summability means, Lipischitz 
class, Degree of approximation, Fourier series and 
Conjugate Fourier series. 

 

INTRODUCTION 
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The sequence to sequence transformations (BOOS [1]) 
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defines the sequence { }np  of the ( , )nN p  mean of the sequence { }ns  generated by the 

sequence of coefficients { }.np  If  
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                                                         as nt s n    … (1.4) 

Then the series na  is said to be ( , )nN p –summable to s. It is clear that ( , )nN p -

summability method is regular (Boos [1]) 

For 1,   ( , )nN p -summability method reduces to ( , )nN p -summability method.  

(BOOS [1]) 

The sequence-to-sequence transformation (Hardy [2]) 
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defines the sequences { }nT of the (E, q) means of the sequences { }.ns  If  

      as nT s n    … (1.6) 

Then the series na  is said to be (E, q)-summable to .s  Clearly (E, q)-summability 

method is regular, (Hardy [2]) 

Further, the (E, q) transformation of the ( , )nN p  transformation of { }ns  is defined by 
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If,                                      as n s n     … (1.8) 

Then na  is said to be ( , ) ( , )nE q N p -summable to .s   Further suppose, the summability 

method  ( , ) ( , )nE q N p  is assumed to be regular throughout this paper. 

For 1  , ( , ) ( , )nE q N p -summability method reduces to ( , ) ( , )nE q N p -summability 

method and transformation n  becomes 1
n  define by, 
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Let ( )f t  be a periodic function with the period 2  and Lebesgue-integrable over 

( ,  ).   

The Fourier series associated with f at any point x  is defined by,  
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And the conjugate series of the Fourier series (1.10) is defined as, 
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Let ( : )ns f x  be the n th  partial sums of (1.11). The L -norm of a function :f R R  

is defined by  

                                            sup :f f x x R


   

and the vL –norm is defined by, 
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The degree of approximation of a function :f R R  by a trigonometric polynomial 

( )np x  of degree n under norm .


 is defined by (Zygmund [8]). 

             sup :n nP f p x f x x R


     … (1.14) 

and the degree of approximation ( )nE f  of a function vf L  is given by 

                                                    min

n
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A function ( ),f Lip   if  
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        … (1.16) 

and a function ( , ),f Lip r   if  
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Further, a function    ( , ),f x Lip t r   if  
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Finally, a function   , ,rf W L t   if  
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For the Lipischitz classes, we have that, (Khan [3]) 

                                 , ( ), ,rLip Lip r Lip t r W L t         … (1.19) 

Here, we use the following Notations through out this paper. 
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KNOWN RESULTS 

In 2012, Misra et. al. [4] have proved the following theorem. 

Theorem 2.1 : If f is a 2 -periodic function of the class Lip  then degree of 

approximation by the product    , , nE q N p  summability means of the conjugate series 

(1.11) of the Fourier-series (1.10) is given by  
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where 'n  is as defined in (1.9). 

And, generalizing the Theorem 2.1 in 2012, Paikray et. al. [6] have proved the following 
theorem. 

Theorem 2.2 : If f is a 2 periodic function of class ( , ) ,Lip r
 

then degree of 

approximation by product   , , nE q N p  summability mean of the conjugates series (1.11) of 

the Fourier-series (1.10) is given by 
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where 1
n   is defined in (1.9) .  

Further, in 2013, generalizing the Theorem 2.2 Misra et. al. [5] have proved the following 
theorem. 

Theorem 2.3 : Let ( )t  be a positive increasing function and f  is a 2 -periodic, 

Lebesgue-integrable function of class ( ( ), )Lip t r 1, 0,r t   
then the degree of 

approximation by the product    , , nE q N p  summability mean of the conjugate series (1.11) 

of the Fourier-series (1.10) is given by,  
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where 1
n  is defined as in (1.9).  
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MAIN RESULTS 

The purpose of this paper is to generalised the Theorem 2.3 for   ,rW L t  class by 

( , ) ( , )nE q N p –summability means in the following form. 

Theorem 3.1 : If :f R R  is a 2 periodic, Lebesgue integrable function over [ , ] 

and belonging to the class   , , 1.rW L t r   Then the degree of approximation by the 

product ( , ) ( , )nE q N p  summability means of the conjugate series (1.11) of the Fourier series 

(1.10) is given by  
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where n  is as defined in (1.7) provided ( )t  satisfies the following conditions 
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 be a decreasing sequence. … (3.4) 

where,   is an arbitrary number such that  1 1 0,s     conditions (3.2) and (3.3) hold 

uniformly in x and where 
1 1

1,
r s
   such that 1 .r    

LEMMAS 

We have need the following lemmas for the proof of our theorem. 

Lemma 4.1: 
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 then (Boos [1]) 
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This prove the lemma. 

Lemma 4.2: 
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This proves the lemma. 

PROOF OF THE THEOREM 

Using Reimann-Lebesgue theorem, we have for the n-th partial sum  :ns f x  of the 

conjugate Fourier-series (1.11) of f (x) as follows (Titchmarsh [7]) 
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The ( , )nN p  transform of ( : )s f x   using (1.3) is given by 

   

 
0

0

1
cos sin

1 2 2
( )

2sin
2

n

n k
kn

t
k t

t f x t p dt
tP
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Now, 
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     Applying Hölder’s inequality, we have that 
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Using Hölder’s inequality, we have that 
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Hence, combining (5.1) (5.2) and (5.3), we have that  
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This completes the proof of the theorem 

COROLLARY 

Following results can be derived as a corollary by our theorem. 

Corollary 6.1 : If 0  then ( , ( ))rW L t  class reduces to ( ( )),Lip t r  class and the 

degree of approximation for conjugate Fourier-series by product 1( , ) ( , )nE q N p
-summability 

mean is given by 
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Corollary 6.2 : For 0   and 1   the main theorem reduces to theorem 2.3. 
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Corollary 6.3 : If 0  and  t t   then,   ,rW L t  class reduces to   ,Lip t r  

and the degree of approximation for conjugate Fourier-series by product   , , nE q N p –

summability mean is given by  
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Corollary 6.4 : If 0  and    and 1,t t    then main theorem reduces to theorem 

2.2. 

Corollary 6.5 : If 0,      and ,t t     then   ,rW L t  class reduces to Lip  

and the degree of approximation for conjugate Fourier-series by product   , , nE q N p –

summability mean is given by   
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Corollary 6.6:  If 0  and   ,   and 1t t       then main theorem reduces to 

theorem 2.1. 

CONCLUSIONS 

Our theorem have more general results rather than any previous known results, that will 

be enrich the literature on Approximation theory. 
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