ON HYPERBOLIC COSYMPLECTIC MANIFOLD ADMITTIING A STRUCTURE CONNECTION-I

SAVITA VERMA
Deptt. of Mathematics, Govt. P.G. College, Rishikesh (Uttarakhand), India

RECEIVED : 26 January, 2014
We consider the structure connection B in Hyperbolic Contact Metric manifold and we stuudy (0,6)-type tensor (K.'K) and (0,4)-type tensor (K. Ric) and Ricci-semiisymmetric, if $\left(K .{ }^{\prime} K\right)=0$ and $(K$. Ric) $=0$, respectively. Here we obtained the properties of these $(0,6)$ and (0,4)-type tensors in a hyperbolic cosymplectic manifold admitting the structure connection. Further, we have shown the necessary and sufficient condition that the hyperbolic Cosymplectic manifold admitting an F - T-structure connection is flat iff the Curvature tensor with respect to B vanishes.

KEYWORDS : Hyperbolic contact metric manifold, Hyperbolic cosymplectic Manifold, Structure connection, Curvature tensor, (0, 6)-type tensor (K.'K), (0, 4)-type tensor (K. Ric), Ricci-semi -symmetric manifold, etc.

Introduction

Upadhyay, M.D., Dubey, K.K. [1] have studied Almost Hyperbolic contact Structure. Kalpana and Srivastava [4], Sinha, B.B. and Yadav, S.L. [2] Doğan, S. doand Karadoğ [8] and Chinca, O., Gonzalec, C. [6] have studied the Structure connection B in Hyperbolic Contact Metric Manifold. Defever, F. and Others [3] have defined a (0,6)-type tensor (K. ' K) and (0,4)-type tensor (K. Ric) and called the manifold Semi-symmetric and Ricci-semi symmetric if $\left(K .{ }^{\prime} K\right)=0$ and $(K$. Ric $)=0$ respectively. Sharma, R., Koufogiorgos [5] have studied the locally symmetric and Ricci symmetric contact metric manifold. While Ahmad, M., Ali, K. [7] have studied Semi invariant submanifold of Nearly hyperbolic Cosymplectic Manifold.

Let us consider an odd-dimensional complete real Differentiable manifold M_{n} of dimension n; with a fundamental tensor field F of type $(1,1)$, a fundamental vector field T and a 1-form A, satisfying [1]

$$
\begin{align*}
& F^{2} X=X+A(X) T \tag{1.1}\\
& F T=0 \tag{1.1}\\
& A(F X)=0 \tag{1.1}\\
& A(T)=-1, \text { and } \operatorname{rank}(F)=n \tag{1.1}
\end{align*}
$$

For every tangent vector field X in M_{n}. then M_{n} is called a hyperbolic contact metric manifold if a pseudo Riemannian metric tensor g, satisfies

$$
\begin{align*}
& \mathrm{G}(F X, F Y)=-g(X, Y)-A(X) A(Y) \tag{1.2}\\
& g(T, X)=A(X) \tag{1.2}
\end{align*}
$$

The structure Bundle $\{F, T, A, G\}$ is called hyperbolic contact metric structure [1].
The fundamental 2-form ' F of the structure defined as

$$
\begin{equation*}
' F(X, Y)=g(F X, Y) \tag{1.3}
\end{equation*}
$$

Satisfies
where

$$
' F(X, Y)=-' F(Y, X)=-' F(\bar{X}, \bar{Y})
$$

A hyperbolic metric manifold M_{n} is said to be the hyperbolic cosymplectic
Manifold [1] \& [2], if

$$
\begin{align*}
& \left(D_{X} F\right)(Y)=0 \tag{1.4}\\
& \left(D_{X} A\right)(Y)=0 \tag{1.4}\\
& D_{X} T=0 \tag{1.4}
\end{align*}
$$

and
where D is the Riemannian connection in M_{n}. Defever, F. and others (1997) have defined [3].

$$
\begin{array}{r}
(K . ' K)(Z, U, V, W ; X, Y)=-‘ K(K(X, Y, Z), U, V, W)-‘ K(Z, K(X, Y, U), V, W) \\
-\quad ' K(Z, U, K(X, Y, V), W)-‘ K(Z, U . V, K(X, Y, W)) \ldots(1.5)(\mathrm{a}) \\
(K . \operatorname{Ric})(Z, U ; X, Y)=-\operatorname{Ric}(K(X, Y, Z), U)-\operatorname{Ric}(Z, K(X, Y, U)) \tag{1.5}
\end{array}
$$

where $\left(K .^{\prime} K\right)$ is a tensor of type $(0,6)$ and $(K$. Ric) is a tensor of type $(0,4)$. Here K and Ric are the Riemannian curvature tensor and Ricci- tensor in M_{n}.

If $\left(K .{ }^{\prime} K\right)=0$ and $(K$. Ric $)=0$, then the manifold is to be semi-symmetris and Ricci-semisymmetric, respectively [3].

Remark (1.1) : In the above and in what follows, $X, Y, Z, \ldots \ldots$. are the tangent vector fields in M_{n}.
A structure connection in hyperbolic cosymplectic manifold $\boldsymbol{M}_{\boldsymbol{n}}$
The structure connection B in a hyperbolic contact metric manifold M_{n} is given by [1], [2], [4].

$$
\begin{equation*}
B_{X} Y=D_{X} Y+H(X, Y) \tag{2.1}
\end{equation*}
$$

Where

$$
\begin{equation*}
H(X, Y)=A(Y) X-A(Y) \bar{X}-A(X) \bar{Y}-g(X, Y) T+' F(X, Y) T \tag{2.1}
\end{equation*}
$$

Whose torsion tensor is defined as

$$
\begin{equation*}
S^{*}(X, Y)=A(Y) X-A(X) Y+2^{\prime} F(X, Y) T \tag{2.2}
\end{equation*}
$$

In a hyperbolic contact metric manifold M_{n}, we have

$$
\begin{align*}
\left(B_{X} A\right)(Y) & =\left(D_{X} A\right)(Y)-A(X) A(Y)-g(X, Y)+{ }^{\prime} F(X, Y) \tag{2.3}\\
B_{X} T & =D_{X} T-A(X) T-X-\bar{X} \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
\left(B_{X} F\right)(Y)=\left(D_{X} F\right)(Y)-A(Y) \bar{X}+A(Y) X-g(X, Y) T-‘ F(X, Y) T \tag{2.4}
\end{equation*}
$$

Now, we rewrite the equation (2.1) in the form

$$
\begin{equation*}
B_{Y} Z=D_{Y} Z+A(Z) Y-g(Y, Z) T+{ }^{\prime} F(Y, Z) T-A(Z) \bar{Y}-A(Y) \bar{Z} \tag{2.5}
\end{equation*}
$$

The curvature tensor of the structure connection B in the hyperbolic contact metric manifold M_{n} is given by

$$
\begin{equation*}
R(X, Y, Z)=B_{X} B_{Y} Z-B_{Y} B_{X} Z-B(X, Y) Z \tag{2.6}
\end{equation*}
$$

In view of the equation (2.5), we obtain

$$
\begin{align*}
R(X, Y, Z) & =K(X, Y, Z)+\left(D_{X} A\right)(Z) Y-\left(D_{Y} A\right)(Z) X-\left(D_{X} A\right)(Z) \bar{Y} \\
& +\left(D_{Y} A\right)(Z) \bar{X}-g(Y, Z) D_{X} T+g(X, Z) D_{Y} T+{ }^{‘} F(Y, Z) D_{X} T \\
& -' F(X, Z) D_{Y} T-A(Z)\left\{\left(D_{X} F\right)(Y)-\left(D_{Y} F\right)(X)\right\}+\left(D_{X}^{\prime} F\right)(Y, Z) T \\
& -\left(D_{Y} ' F\right)(X, Z) T-A(Y)\left(D_{X} F\right)(Z)+A(X)\left(D_{Y} F\right)(Z)+g(Y, Z) X \\
& -g(X, Z) Y-‘ F(Y, Z) X+' F(X, Z) Y-g(Y, Z) \bar{X}+g(X, Z) \bar{Y} \\
& +' F(Y, Z) \bar{X}-‘ F(X, Z) \bar{Y}-\bar{Z}\left\{\left(D_{X} A\right)(Y)-\left(D_{Y} A\right)(X)\right\} \quad . . \tag{2.7}
\end{align*}
$$

In view of the equation (1.4), the curvature tensor of the structure connection B in hyperbolic cosymplectic manifold M_{n} is given by

$$
\begin{equation*}
R(X, Y, Z)=K(X, Y, Z)+\{g(Y, Z)-‘ F(Y, Z)\}(X-\bar{X})-\{g(X, Z)-‘ F(X, Y)\}(Y-\bar{Y}) \tag{2.8}
\end{equation*}
$$

Contracting the above equation with respect to X,
We obtain

$$
\begin{array}{cl}
R(Y, Z)=\operatorname{Ric}(Y, Z)+(n-2) g(Y, Z)-(n-2)^{\prime} F(Y, Z)-A(Y) A(\mathrm{Z}), & \ldots(2.9)(\mathrm{a}) \\
R(Y)=K(Y)+(n-2) Y-(n-2) \bar{Y}-A(Y) T & \ldots(2.9)(\mathrm{b}) \tag{2.9}
\end{array}
$$

or
Again contracting (2.9) (b) with respect to Y,
We get

$$
\begin{equation*}
r=k+n(n-2)+1=k+(n-1)^{2} \tag{2.10}
\end{equation*}
$$

Here, $R(Y, Z)$ and r are Ricci-tensor and scalar curvature of the structure Connection B, respectively and k is the scalar curvature of manifold M_{n}.

Let us suppose that the curvaturre tensor of the structure connection vanish, i.e.

$$
R(X, Y, Z)=0,
$$

Then we have from (2.8), (2.9) and (2.10), the following results :

$$
\begin{gather*}
K(X, Y, Z)=\{g(X, Z)-‘ F(X, Z)\}(Y-\bar{Y})-\{g(Y, Z)-‘ F(Y, Z)\}(X-\bar{X}) . \tag{2.11}\\
\operatorname{Ric}(Y, Z)=(n-2)^{\prime} F(Y, Z)-(n-2) g(Y, Z)+A(Y) A(Z) \tag{2.12}\\
k=-(n-1)^{2} \tag{2.13}
\end{gather*} .
$$

and
From (2.12), we also have

$$
\begin{equation*}
\operatorname{Ric}(\bar{Y}, Z)+\operatorname{Ric}(Y, \bar{Z})=0 \tag{2.14}
\end{equation*}
$$

Thus, we have
Theorem (2.1) : Let M_{n} be a hyperbolic cosymplectic manifold admitting a structure connection B given by (2.5). If the curvature tensor with respect to B vanishes, then M_{n} is of constant scalar curvature and

$$
\operatorname{Ric}(\bar{Y}, Z)+\operatorname{Ric}(Y, \bar{Z})=0
$$

Also hold good in M_{n}.

Proof : Taking $R(X, Y, Z)=0$ in (2.8) and following the above patterns, we obtain the equation (2.13) and (2.14), from which, the proof of the Theorem follows.

Now, taking account of the equation (1.5)(a),
We write a tensor of type $(0,6)$,

$$
\begin{align*}
(R . ' R)(Z, U, V, W ; X, Y)= & -' R(R(X, Y, Z), U, V, W)-' R(Z, R(X, Y . U), V, W) \\
& -' R(Z, U, R(X, Y, V), W)-' R(Z, U, V, R(X, Y, W)) \tag{2.15}
\end{align*}
$$

Using (2.8) in the above equation and taking account of the equation (1.2) and (1.5) (a), we obtain, after a long computation,

$$
\begin{aligned}
& \left(R .{ }^{\prime} R\right)(Z, U, V, W ; X, Y)=\left(K .{ }^{\prime} K\right)(Z, U, V, W ; X, Y) \\
& -\{g(Y, Z)-‘ F(Y, Z)\}[‘ K(X, U, V, W)-‘ K(\bar{X}, U, V, W)+2\{g(X, W) \\
& -' F(X, W)\}\{g(U, V)-‘ F(U, V)\}+A(X) A(W)\{g(U, V)-‘ F(U, V)\}-2\{g(X, V) \\
& \left.\left.-{ }^{\prime} F(X, V)\right\}\{g(U, W)-' F(U, W)\}-A(X) A(V)\{g(U, W)-' F(U, W)\}\right]+\{g(X, Z)
\end{aligned}
$$

$$
\begin{aligned}
& \left.-{ }^{\prime} F(U, V)\right\}+A(Y) A(W)\{g(U, V)-‘ F(U, V)\}-2\{g(Y, V)-' F(Y, V)\}\{g(U, W) \\
& \text { - 'F(U,W) }\}-A(Y) A(V)\{g(U, W)-‘ F(U, W)\}]-\{g(Y, U)-‘ F(Y, U)\}\left[{ }^{‘} K(Z, X, V, W)\right. \\
& -‘ K(Z, \bar{X}, V, W)+2\{g(X, V)-‘ F(X, V)\}\{g(Z, W)-‘ F(Z, W)\}+A(X) A(V)\{g(Z, W) \\
& -‘ F(Z, W)\}-2\{g(X, W)-‘ F(X, W)\}\{g(Z, V)-‘ F(Z, V)\}-A(X) A(W)\{g(Z, V) \\
& \text { - ' } F(Z, V)\}]+\{g(X, U)-‘ F(X, U)\}[' K(Z, Y, V, W)-‘ K(Z, \bar{Y}, V, W)+2\{g(Y, V) \\
& -‘ F(Y, V)\}\{g(Z, W)-‘ F(Z, W)\}+A(Y) A(V)\{g(Z, W)-‘ F(Z, W)-2\{g(Y, W) \\
& -' F(Y, W)\}\{g(Z, V)-‘ F(Z, V)\}-A(Y) A(W)\{g(Z, V)-‘ F(Z, V)\}]-\{g(Y, V)
\end{aligned}
$$

$$
\begin{align*}
& -A(X) A(U)\{g(Z, W)-‘ F(Z, W)\}]+\{g(X, V)-‘ F(X, V)\}[‘ K(Z, U, Y, W) \\
& \text { - 'K }(Z, U, \bar{Y}, W)+A(Y) A(Z)\{g(U, W)-' F(U, W)\}-A(Y) A(U)\{g(Z, W) \\
& \text { - 'F }(Z, W)\}]-\{g(Y, W)-‘ F(Y, W)\}[‘ K(Z, U, V, X)-‘ K(Z, U, V, \bar{X}) \\
& +A(X) A(U)\{g(Z, V)-‘ F(Z, V)\}-A(X) A(Z)\{g(U, V)-‘ F(U, V)\}]+\{g(X, W) \\
& \text { - 'F }(X, W)\}\left[{ }^{\prime} K(Z, U, V, Y)-‘ K(Z, U, V, \bar{Y})+A(Y) A(U)\{g(Z, V)\right. \\
& -‘ F(Z, V)\}-A(Y) A(Z)\{g(U, V)-' F(U, V)\}] \tag{2.16}
\end{align*}
$$

In a hyperbolic cosymplectic manifold,
We have the following results :-

$$
\begin{align*}
& K(X, Y, T)=0 \tag{2.17}\\
& ‘ K(X, Y, Z, T)=A(K(X, Y, Z))=0 \tag{2.17}\\
& K(X, Y, \bar{Z})=\bar{K}(X, Y, Z) \\
& K(X, Y, \bar{Z}, U)=g(K(X, Y, \bar{Z}), U)=g(\bar{K}(X, Y, Z), U)=g(K(X, Y, Z), \bar{U}) \\
& \quad \ldots-{ }^{\prime}(K(X, Y, Z, \bar{U}) \tag{2.17}
\end{align*}
$$

Now putting $V=T$ and $W=T$ in (2.16) and using (2.17) and (1.1)(d), we easily obtain

$$
\begin{equation*}
\left(R . .^{\prime} R\right)(Z, U, T, T ; X, Y)=\left(K .^{\prime} K\right)(Z, U, T, T ; X, Y) \tag{2.18}
\end{equation*}
$$

Again putting $Z=T$ and $U=T$ in (2.16) and using (2.17) and (1.1)(d), we get

$$
\begin{equation*}
\left(R . .^{\prime} R\right)(T, T, V, W ; X, Y)=\left(K .^{\prime} K\right)(T, T, V, W ; X, Y) \tag{2.18}
\end{equation*}
$$

Thus we have,
Theorem (2.2) In a hyperbolic cosymplectic manifold M_{n}, equipped with a structure connection B given by (2.5), we have

$$
\begin{aligned}
& \left(R . .^{\prime} R\right)(Z, U, T, T ; X, Y)=\left(K . .^{\prime} K\right)(Z, U, T, T ; X, Y) \\
& \left(R . .^{\prime} R\right)(T, T, V, W ; X, Y)=\left(K .{ }^{\prime} K\right)(T, T, V, W ; X, Y)
\end{aligned}
$$

and
Proof: The proof of the theorem is an immediate consequence of the equation (2.18) (a) and (2.18)(b).

Now, we suppose that $R(X, Y, Z)=0$, then we have
Corollary (2.1) : In a hyperbolic cosymplectic manifold M_{n}, equipped with a structure connection B given by (2.5), whose curvature tensor vanishes, we have

$$
\begin{align*}
& \left(K . .^{\prime} K\right)(Z, U, T, T ; X, Y)=0 \tag{2.19}\\
& \left(K . .^{\prime} K\right)(T, T, V, W ; X, Y)=0 \tag{2.19}
\end{align*}
$$

Proof: -- The proof of the corollary immediately follows from the theorem (2.2)
For $R(X, Y, Z)=0$
Now, taking account of the equation (1.5)(b) and using (2.11) and (2.12) in it, we obtain
(K.Ric) $(Z, U ; X, Y)=2(n-2)[\{g(X, Z)-‘ F(X, Z)\}\{g(Y, U)-‘ F(Y, U)\}$
$-\{g(Y, Z)-‘ F(Y, Z)\}\{g(X, U)-‘ F(X, U)\}]-(n-3)[A(X) A(U)\{g(Y, Z)$
$\left.\left.-{ }^{\prime} F(Y, Z)\right\}-A(Y) A(U)\{g(X, Z)-‘ F(X, Z)\}\right]+(n-1)[A(X) A(Z)\{g(Y, U)$

- ' $F(Y, U)\}-A(Y) A(Z)\{g(X, U)-‘ F(X, U)\}]$

From which, in view of (1.1)(c), we get

$$
\begin{gathered}
(K . R i c)(Z, U, \bar{X}, \bar{Y})=2(n-2)\left[\left\{{ }^{`} F(X, Z)+g(\bar{X}, \bar{Z})\right\}\left\{{ }^{`} F(Y, U)+g(\bar{Y}, \bar{U})\right\}\right. \\
\left.-\left\{{ }^{`} F(Y, Z)+g(\bar{Y}, \bar{Z})\right\}\left\{{ }^{`} F(X, U)+g(\bar{X}, \bar{U})\right\}\right] \quad \ldots(2.21)
\end{gathered}
$$

Putting $U=T$ and $Z=T$ separately in the above equation, we easily obtain

$$
\begin{align*}
& (K . \operatorname{Ric})(Z, T ; \bar{X}, \bar{Y})=0 \tag{2.22}\\
& (K . \text { Ric })(T, U ; \bar{X}, \bar{Y})=0
\end{align*}
$$

Thus, we have
Theorem (2.3). A hyperbolic cosymplectic manifold M_{n}, admitting a structure connection B given by (2.5), whose curvature tensor vanishes, is Ricci-semi-symmetric with respect tu the vector fields $(Z, T ; \bar{X}, \bar{Y})$ or $(T, U ; \bar{X}, \bar{Y})$.

Proof : The proof of the theorem follows, immediately, from theresults (2.22)(a) and (2.22)(b), for $\mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=0$. Further, we suppose that the structure connection B given by (2.5) is a $F-T-$ Connection, then we must have

$$
\begin{array}{rlr}
\left(B_{X} F\right)(Y) & =0 & \ldots(2.23)(\mathrm{a}) \\
\left(B_{X} A\right)(Y) & =0 & \ldots(2.23)(\mathrm{b}) \\
B_{X} T & =0 & \ldots(2.23)(\mathrm{c})
\end{array}
$$

Now, in a hyperbolic cosymplectic manifold, the equation (2.23) (b) and (2.23) (c) give
or

$$
\begin{array}{ll}
X-\bar{X}=-A(X) T & \ldots(2.24)(\mathrm{a}) \\
g(X, Y)-‘ F(X, Y)=-A(X) A(Y) & \ldots(2.24)(\mathrm{b})
\end{array}
$$

Using (2.24)(b) in the equation (2.8), we have

$$
\begin{equation*}
R(X, Y, Z)=K(X, Y, Z) \tag{2.25}
\end{equation*}
$$

Thus, we have
Theorem (2.4). Let M_{n} be a hyperbolic cosymplectic manifold admitting an $F-T$ structure connection B given by (2.5). Then the curvature tensor of B vanishes iff the manifold is flat.

The proof is obvious, in view of the equation the equation (2.25).

Conclusion

In this paper we coorelate Structure connection B in Hyperbolic Contact Metric Manifold with properties of (0, 6)-type and (0, 4)-type tensor in Hyeprbolic Cosymplectic Manifold and we find the necessary and sufficient condition that Hyperbolic Cosymplectic Manifold admitting an $F-T$ Structure connection is flat, iff the Curvature tensor with respect to B vanishes.

References

1. Upadhyay, M.D. and Dubey, K.K., Almost hyperbolic contact $\{f, g, u, v, \lambda\}$-Structure, Acta Mathematica Academiac Scientarium Hungrical, 28(H-1053), 13 (1973).
2. Sinha, B.B. and Yadav, S.L., Structure connection in Almost contact manifold; Publications De Linstitute mathematiqu, Nouvelle Seric, 28(42), 195 (1980).
3. Defever, F., Deszez, R. and Verstraelen, L., On semi-symmetric Para Kähler manifold, Acta Math Hungas, (74)(1-2), pp 1-17 (1997).
4. Kalpana and Srivastava, M., Structure connection in hyperbolic contact metric manifold, Bull. Cal. Math. Soc., 79, 307-313 (1987).
5. Sharma, R., Koufogiorgos : Locally Symmetric and ricci-symmetric contact metric manifold, Annals of Global Analysis and Geometry, Vol. 9, Issus 2, pp 177-182 (1991).
6. Chinca, O., Gonzalec, C., A Classification of almost contact metric manifolds, Annali di Mathematica Pure and Applicate, Vol. 156, Issue 1, pp15-36 (1990).
7. Ahmad, M., Ali, K., Semi invariant submanifold of Nearly Hyperbolic Cosymplectic Manifold, Global Journal of Science Frontier Res Math and Decision Science, Vol. 13, Issue 4 (2013).
8. Doğan, S., Karadoğ, Slant submanifold of an Almost Hyperbolic contact metric manifold, Journal of Mathematics and System Sciences, Vol. 4, pp-285-288 (2014).
