
Acta Ciencia Indica, Vol. XLI M, No. 2 (2015) 175

THE DIRECTED HYPERGRAPHS IN GRAPH THEORY

A. RAMESH KUMAR

Head, Department of Mathematics, Srimad Andavan Arts & Science College, Trichy-05

AND

G. KAVITHA

Asst. Professor, Kongunadu College of Engineering and Technology, Tholurpatti, Thottiam

RECEIVED : 17 December, 2014

REVISED : 13 January, 2015

We study on directed hypergraphs as a tool to model and
solve some classes of problems arising in Operations
Research and in Computer Science. Concepts such as
connectivity, paths and cuts are defined. An extension of
the main duality results to a special class of hypergraphs is
presented. We also saw that hypergraphs generalized
standard graphs by defining edges between multiple
vertices instead of only two vertices. Hence some
properties must be generalization of graph properties and
application of hypergraphs.

KEYWORDS: Directed hypergraph, Hyperpaths,
connection, and cut sets.

MSC CODE: 05C65

INTRODUCTION

A directed graph is called digraph. Directed graphs arise in a natural way in many

applications of graph theory. The street map of a city, abstract representation of computer
programs and network flows can be represented only by directed graphs rather than by graphs.
Directed graphs also are used in the study of sequential machines and system analysis in
control theory.

Many of the concepts and terminology for graphs are also valid for digraphs. However,
there are many concepts of digraphs involving the notion of orientation that apply only to
digraphs. We discuss the condition under which one can direct the edges of a graph in such a
way that the resulting digraph is strongly connected. Then we deal with the connection
between digraphs of Hypergraphs and matrices.

A path or directed path is a walk in which all the vertices are distinct. A cycle or circuit is
a nontrivial closed walk whose origin and interval vertices are distinct. The various types of
Hypergraphs having in graph theory likewise, Dual hypergraphs, unimodular hypergraphs,
balanced hypergraphs, Arbordal hypergraphs, Normal hypergraphs, mengerian hypergraphs
and paranormal hypergraphs and so on.

NOTATIONS

121/M014

Acta Ciencia Indica, Vol. XLI M, No. 2, 175 (2015)

176 Acta Ciencia Indica, Vol. XLI M, No. 2 (2015)

 j the frequency of line l j LI;

 (Li’) the “combined” frequency of the lines-set Li’;

 j (Li’) the probability that a carrier serving line lj will arrive at stop I before carriers
serving other lines of Li’;

 Tj the expected travel time between stop I and the destination, if line l j is used, not
including the waiting time at I;

 w (Li') the average waiting time at stop I.

DIRECTED HYPERGRAPHS

A hypergraph is a pair H = V, E), where V = {v1 , v2, ..., vn} is the set of vertices (or

nodes) and E = {E1, E2, ..., Em}, with Ei V for i = 1, …, m, is the set of hyperedges. Clearly,
when | Ei | = 2, i = 1,…, m, the hypergraph is a standard graph While the size of a standard
graph is uniquely defined by n and m, the size of a hypergraph depends also on the cardinality
of its hyperedges; we define the size of H as the sum of the cardinalities of its hyperedges:
size (H) = Ei E | Ei |.

It is worth noting that there is a one-to-one correspondence between hypergraphs and
Boolean matrices. Indeed, any n × m matrix A = [aij] such that aij {0, 1} may be considered
as the incidence matrix of a hypergraph H where each row i is associated with a vertex vi and
each column j with a hyperedge Ej.

A directed hyperedge or hyperarc is an ordered pair, E = (X, Y), of disjoint subsets of
vertices; X is the tail of E while Y is its head. In the following, the tail and the head of hyper
arc E will be denoted by T (E) and H (E), respectively.

A directed hypergraph is a hypergraph with directed hyperedges. In the following,
directed hyper graphs will simply be called hypergraphs. An example of hyper graph is
illustrated in Fig. 1. Note that hyperarc E5 has an empty head.

Fig. 1. A hypergraph and its incidence matrix.

Acta Ciencia Indica, Vol. XLI M, No. 2 (2015) 177

Fig. 2. A hypergraph and its incidence matrix.

Similarly Fig. 2, Note that hyperarc E7 and E8 has an empty head.

As for directed graphs, the incidence matrix of a hyper graph H is a next matrix [aij]
defined as follows (see Fig. 1):

1 if (),

1 if (),

0 otherwise

i j

ij i j

v T E

a v H E

Clearly, there is a one-to-one correspondence between hyper graphs and (–1, 0, 1)
matrices. A Backward hyper arc, or simply B-arc, is a hyper arc E = (T (E), H (E)) with
| H (E) | = 1 (Fig. 3a). A Forward hyper arc, or simply F-arc, is a hyper arc E = (T (E), H (E))
with | T (E) |= 1 (Fig. 3b).

(a) (b)

Fig. 3. A B-arc (a) and a F-arc (b).

178 Acta Ciencia Indica, Vol. XLI M, No. 2 (2015)

A B-graph (or B-hyper graph) is a hyper graph whose hyper arcs are B-arcs. A F-graph
(or F-hyper graph) is a hyper graph whose hyper arcs are F-arcs. A BF-graph (or BF-hyper
graph) is a hyper graph whose hyper arcs are either B-arcs or F-arcs.

Given a hyper graph H = (V, E), we define its symmetric image the hyper graph H = (V,

E) where E = {(X, Y): (Y, X) E}. Note that the symmetric image of a B-graph is a F-graph,
and vice versa. It is always possible to transform a general hyper graph into a BF-graph, by
adding a dummy node to each hyper arc which is neither a B-arc nor a F-arc, and thus
replacing the hyper arc by one backward and one forward hyper arc (see Fig. 4).

Fig. 4 - Transformation of a hyper arc into a B-arc and a F-arc.

Let FS (v) = {E E : v T (E)} and BS (v) = {E E : v H (E)} denote the Forward
Star and the Backward Star of node v, respectively. B-graphs and F-graphs are of particular
relevance in applications. Indeed, they have been introduced many times in the literature with
various names. The labelled graphs [4] and B-graphs have been introduced [1]. F-graphs have
been studied in the context of urban transit problems [8] and applications. Hyper graphs [9]
and B-graphs, called directed hyper graphs and rule hyper graphs respectively, to represent
deduction properties in data bases as paths in hyper graphs.

PATHS, HYPERPATHS AND CONNECTION

A path Pst, of length q, in hyper graph H = V, E) is a sequence of nodes and hyper arcs

Pst = (v1 = s, Ei1, v2, Ei2, ..., EIq, vq + 1 = t), where : s T (Ei1), t H (EIq), and vj H (EIj – 1)
T (EIj), j = 2, ..., q.

Nodes s and t are the origin and the destination of Pst, respectively, and we say that t is
connected to s. If t T (Ei1), then Pst is said to be a cycle; this is in particular true when t = s.
In a simple path all hyper arcs are distinct, and a simple path is elementary if all nodes
v1, v2, … , vq+1 are distinct. Similarly we may define simple and elementary cycles. A path is
said to be cycle-free if it does not contain any sub path which is a cycle.

Fig. 5. A path P1, 8.

Acta Ciencia Indica, Vol. XLI M, No. 2 (2015) 179

In Fig. 5, node 8 is connected to node 1, while node 9 is not. The elementary path
connecting 8 to 1 is drawn in thick line.

Fig. 6. A path P1, 11.

In Fig. 6, node 11 is connected to node 1, while node 12 is not. The elementary path
connecting 11 to 1 is drawn in thick line. Consider a hyper graph H = V, E). A B-path (or B-
hyper path) st is a minimal hyper graph H= V, E) such that:

(i) E E;

(ii) s, t V = E I V; EI E

(iii) xV x is connected to s in H by means of a cycle-free simple path.

We say that H= V, E) is a F-path (or F-hyper path) from s to t if its symmetric image
is a B-path from t to s. A BF-path (or BF-hyper path) from s to t is a hyper graph which is at
the same time a B-path and a F-path from s to t. Node y is B-connected (F-connected, BF-
connected) to node x if a B-path (F-path, BF-path) xy exists in H.

1

2

3

4 5

6

7

E1

E3 E5E4

… (a)

1

2

3

4 5

6

7

E2

E3
E1

E5E4

… (b)

Fig. 7 - A B-path (a) and a B-graph which is not a B-path (b).

The hypergraph in Fig.7a is a B-path; note that the cycle (4, E4, 5, E5, 4) is not contained
in any simple path from node 1 to node 7. On the contrary, the hyper graph in Fig. 7b is not a
B-path because the only path connecting node 3 to the origin contains the cycle
(2, E3, 4, E2, 3).

180 Acta Ciencia Indica, Vol. XLI M, No. 2 (2015)

CUTS AND CUTSETS

Let H = V, E) be a hyper graph and s and t be two distinguished nodes, the source and

the sink respectively. A cut Tst = Vs, Vt) is a partition of V into two subsets Vs and Vt such that
s Vs and t Vt. Given the cut Tst, its cutest Est is the set of all hyper arcs E such that
T (E) Vs and H (E) Vt.

Such a cutest may be empty; see for instance the cut ({1, 2}, {3, 4, 5, 6, 7}) in the
B-graph of Fig. 7b. The cardinality of a cut is the cardinality of its cutest. In Fig. 8 three cuts
are indicated; the cardinality of Tst 1 is 2, while Tst 2 and Tst 3 have cardinality 1. Note that t is
not necessarily disconnected from S by removing the hyperons of a cutest. For example, Fig 8
by removing the cutest Tst 1 we disconnect t from s, by removing the cutest of Tst 2 only the
B-connection of t to s is lost, while t remains both connected and B-connected to s when we
remove the cutest of Tst 3.

1

s

2

3

4

5

6

t

Tst 1 Tst 2 Tst 3

Fig. 8 - Only cut Tst 1 disconnects source s and sinks t.

Theorem 5.1. In a B-graph H = V, E), a cut Tst of cardinality 0 exists if and only if t is
not B-connected to s.

Proof: (Assume that a cut Tst with an empty cutest Est exists and there is a node v Vt
B-connected to s. Then a B-arc E = (T (E), {v}) must exist with the property that every node
x T (E) be B-connected to s (see Proposition 1). Clearly, as Est is empty, at least one node
u T (E) must belong to Vt. By repeating the same argument on u, we may eventually
conclude that s also belongs to Vt, which is a contradiction.

 Now assume that t is not B-connected to s. Define Vs as the set of all the nodes
B-connected to s and Vt = V \V s. T t is necessarily a cut of cardinality 0, for the existence of a
B-arc E = (T (E), {v}) in the cut, being T (E) Vs and v Vt, imply the B-connection of v to s.

Theorem 5.2. In a hyper graph H = V, E) a cut Tst of cardinality 0 exists if and only if t is

not super-connected to s.

Proof: (Let Tst = Vs, Vt) be a cut of cardinality 0. Consider the B-reduction HB of H
obtained by replacing each hyper arc E with a B-arc (T (E), {v}) with the condition that if
T (E) Vs then also v Vs. This reduction is always possible since for any hyper arc E with
T (E) Vs at least one node in its head must belong to Vs, otherwise E belongs to the cutest

Acta Ciencia Indica, Vol. XLI M, No. 2 (2015) 181

which, by hypothesis, is empty. By Theorem 1, t is not B-connected to s in HB and therefore t
is not super-connected to s in H.

 If t is not super-connected to s, then a B-reduction exists such that t is not B-
connected to s in it, the proof is completed.

Theorem 5.3. In a B-graph H = V, E) the following inequalities hold:

Min {| st | : st is a s-t B-path} maximum number of disjoint s-t cut sets min
{| Pst | : Pst is a s-t path}.

Proof : The first inequality follows directly from the fact that a cutest must contain at
least a B-arc of every B-path, and then the number of disjoint s-t cut sets cannot exceed the
cardinality of any B-path.

The second inequality can be proved as follows. Let Vk denote the set of nodes {I} for
which there exists a path Psi with cardinality k. Clearly, if h is the minimum cardinality of
the s-t paths, then we have {s} = V0 V1 … V h V; then (V0, V \V 0), (V1, V \V1) …
(Vh – 1, V \Vh – 1) are s-t cuts with disjoint cut sets, for no B-arc with a tail node in Vi and the
head in V j with j i + 2 may exist, and thus, no B-arc can belong to more than one cutest.
This completes the proof.

Theorem 5.4. In a B-graph H = V, E) the following inequalities hold:

Max-number of disjoint s-t paths min {| Est | : Est is an s-t cutest} max-number of
disjoint s-t B-paths.

Proof : Transform H = V, E) into a standard digraph G = (V, A) where for each B-arc
(X, y) there is a unique arc (x, y) A, with x X. The choice of x X is arbitrary. It is easy to
check that to any s-t cutest Est in H corresponds a s-t cutest Cst in G with | Cst | | Est |;
moreover, any set of k disjoint paths in G corresponds to a set of k disjoint paths in H, then the
maximum number of disjoint paths in G is not larger than the maximum number of disjoint
paths in H. Hence, from the well known max flow-min cut theorem for digraphs one has:

max-number of disjoint s-t paths in H max-number of disjoint s-t paths in G

 = min{| Cst | : CSt is a s-t cutest in G} Min {| Est | : Est is a s-t cutest in H}.

The second inequality follows directly from the fact that, due to Theorem 1, any cutest
must contain one B-arc from each B-path at least, and this completes the proof.

The following examples show that strict inequalities may hold in all cases.

In Fig. 9, a B-graph is presented for which the minimum cardinality of s-t B-paths is 5,
the maximum number of disjoint s-t cut sets is only 4 and the minimum cardinality of s-t paths
is 3.

1

2

s

4

5

3

6

7

Fig. 9

182 Acta Ciencia Indica, Vol. XLI M, No. 2 (2015)

In the B-graph of Fig. 10, the maximum number of disjoint s-t paths is 3, the minimum
cardinality of s-t cuts is 2, and the maximum number of disjoint s-t B-paths is 1.

s 2

3

4

5

6

1

t

Fig. 10

WEIGHTED HYPERGRAPHS

6.1. Weighting functions

A weighted hypergraph is one in which each hyperarc E is assigned a real weight vector
w (E). Depending on the particular application, the components of w (E) may represent costs,
lengths, capacities etc. For the sake of simplicity, in the following we shall consider only
scalar weights.

Given a B-path = (V, E) from s to t, by weighting function we mean a node function
W which assigns weights to all its nodes depending on the weights of its hyperarcs. W(t)
is the weight of the B-path under the chosen weighting function.

We shall restrict ourselves to weighting functions for which W(s) = 0 and W(y), for
each y s, depends only on the hyperarcs which precede y in the B-path , i.e. the hyperarcs
belonging to all B-paths from s to y contained in .

A typical example of this kind of weighting function is the cost, C, defined as the sum
of the weights of all the hyperarcs preceding node y in :

 C(s) = 0;

 C(y) =w (E), y V\{s}, E Esy : sy }

Clearly, C(t) = E Ew (E) is the cost of . This function is the usual cost in the
graph setting, and the problem of finding a minimum cost B-path is a natural generalization of
the minimum cost path problem.

When the weights are all equal to 1, the cost of is its cardinality.

A relevant class of weighting functions is the one in which the weight of node y can be
written as a function of both the weights of the hyperarcs entering into y and that of the nodes
in their tails:

 W(y) = min{w (E) + F(T (E)) : E EBS (y)}, y V\{s}, …(1)

where F(T (E)) is a function of the weights of the nodes in T (E) :

 F(T (E)) = F ({W(x) : x T (E)}), E E, … (2)

Acta Ciencia Indica, Vol. XLI M, No. 2 (2015) 183

where F is a non-decreasing function of W(x) for each x T (E). Such weighting functions
will be called additive weighting functions.

In the particular case of B-graphs, the B-paths have the property that there is only one
B-arc E entering into every node y s; in this case (1) becomes:

 W(y) = w (E) + F(T (E)), y V\{s} … (1’)

Two particular additive weighting functions which have been presented in the literature in
the context of some relevant applications of hypergraphs are the distance and the value. Given
a s-t B-path = (V, E), the distance in from s to all the nodes y V\{s} which are
B-connected to s, D(y), is defined by the following recursive equations:

 D(s) = 0 … (3)

 D(y) = min{l (E) + max{D(x): x T (E)} : E EBS (y)}, y V\{s};

where l (E) is the length of hyperarc E.

For B-graphs, equation (3) becomes:

 D(y) = l (E) + max {D(x) : x T (E)}, y V\{s} … (3')

In the case of unit hyperarc lengths, i.e. l (E) = 1 E E, the distance will be called
depth. B-graphs [4] in the context of the satisfiability analysis of propositional Horn formulae.
In this case, procedure B-Visit, with the use of function and a breadth-first search strategy,
finds the minimum depth B-tree in O (size (H)) time.

The value, V, defined by Leontiev flow problem for the case of B-graphs [2], is the
solution of the following recursive equations:

 V(s) = 0;

 V(y) = c (E) + a (x, E) V(x), E EBS (y), y V\{s}; …(4)

 X T (E)

where c (E) is the cost of B-arc E and, for each E and each x T (E), a (x, E) is a non-negative
real coefficient.

APPLICATION OF HYPERGRAPHS

6.1. Satisfiability

Let P be a set of n atomic propositions, which can be either true or false, and denote by t
a proposition which is always true, and by f a proposition which is always false. Let C be a set
of m clauses, each of the form:

 p1 p2 … pr pr + 1 pr + 2 … pq, … (7)

where, for I =1… Q, pi P. The meaning of (7) is that at least one of the propositions p1… pr

Must be true when all the propositions pr + 1… pq are true. If this is the case, the clause is
true; otherwise (p1… pr are all false, and pr + 1… pq are true) the clause is false. The
disjunction p1 p2 … pr is also called the consequence of the clause, while the conjunction
pr+1 pr+2 … p q is called the applicant. We allow for r = 0, in which case the consequence
is replaced by f, and for r = q, in which case the implicate is replaced by t.

Clause (7) can be easily converted into disjunctive form:

184 Acta Ciencia Indica, Vol. XLI M, No. 2 (2015)

 p1 p2 … pr pr + 1 pr + 2 … pq,

A truth evaluation is a function v : P {false, true}. If there is a truth evaluation which
makes all the clauses true, then C is said to be satisfiable, otherwise it is unsatisfiable.

The satisfiability problem (SAT) is defined as follows:

Input: A set P of n propositions, and a set C of m clauses over P {F, t};

Output: "yes" if C is satisfiable, "no" otherwise.

Most often, in the case of yes-instances, a truth evaluation which satisfies C is also
desired.

A particularly important case is when a clause contains only one atomic proposition, i.e.
r 1 in (6). Such clause is called a Horn clause.

It is well known that SAT is NP-complete [8]. Either NP-complete, or NP-hard, are also
most of its variants such as k-SAT (each clause contains k 3 atomic propositions at most) and
Max-SAT (the maximization of the number of satisfied clauses, or equivalently, the
minimization of the number of clauses to be dropped in order to make the remaining clauses
satisfiable). A notable exception is the case in which C contains only Horn clauses. In this
case the satisfiability problem (HORN-SAT) is polynomial: in fact it can be solved in linear
time [4] .Unfortunately, Max-HORN-SAT remains NP-hard [6].

HORN-SAT is the set of the instances of SAT whose clauses are Horn clauses.

To any given instance SAT we can associate the hyper graph H with one node for
each element of P {f, t} and one hyper arc E with H (E) = {p1, p2, …, pr} and T (E)
= {pr + 1, pr + 2, …, pq}. For each clause p1 p2 … pr pr + 1 pr + 2 … pq. Clearly,
from the definition, if HORN-SAT then H is a B-graph. Note that the labeled graphs [4] to
represent HORN-SAT instances have a direct interpretation as B-graphs.

Theorem 6. An instance SAT is satisfiable if and only if the associated hyper graph
H has a cut Ttf with cardinality 0.

Proof : (if is satisfiable, then a truth assignment v exists which makes all the
clauses in true. Consider the cut Ttf = (Vt, Vf) with :

 Vt = {p : v (p) = true} {t} and Vf = {p: v (p) = false} {f}.

We claim that Ttf has cardinality 0; in fact the existence of a hyper arc E with T (E)Vt
and H (E) Vf would imply the existence of a clause made false by v.

 Let Ttf = (Vt, Vf) be a cut with 0 cardinality. It is easy to check that the function:

if ,

()
if

t

f

true V
v p

false p V

is a truth assignment which makes all the clauses of true.

6.2. Relational data bases

In the last years a substantial amount of research has been devoted to the analysis of
relational data bases using graph related techniques.

A Relational Data Base (RDB) is often represented by a set of relations over a certain
domain of attribute values, together with a set of Functional Dependencies.

Acta Ciencia Indica, Vol. XLI M, No. 2 (2015) 185

Functional Dependencies have been studied by means of several types of generalized
graphs, such as FD-graphs, Implication Graphs, Deduction Graphs, etc.

Let N be the set of attributes of a RDB. A Functional Dependency F(X, Y), with both X
and Y subsets of N, defines uniquely the value of the attributes in Y once the value of the
attributes in X is given.

A set of Functional Dependencies together with some inference rules allows us to derive
new facts from that explicitly stored in the data base. Typical inference rules [10].

(i) reflexivity : F (X, Y) if YX;

(ii) transitivity : F (X, Z) if F (X, Y) and F (Y, Z);

(iii) Conjunction: F (X, YZ) if F (X, Y), F (X, Z).

Given a set of Functional Dependencies, F, we might need to solve problems such as:

(a) find whether a given Functional Dependency F (X, Y) F can be derived from F
based on inference rules;

(b) Given a set of attributes X F, find its closure with respect to F, i.e. find the largest
set X* such that F (X, X*) either belongs to or can be derived from F.

Here we show briefly that hyper graphs provide a natural and unifying formalism to deal
with most problems arising in the analysis of Functional Dependencies in RDB.

A set F of Functional Dependencies on the attribute set N can be represented by a hyper
graph

H = V, E), with V = N and E = {(X, Y\X) : F (X, Y) F, Y /X}. It is easy to see that a
B-path on H corresponds to a sequence of implications based on rules (i), (ii) and (iii). For
example, the B-path of Fig. 11 corresponds to the derivation of F({1, 2, 3, 4}, {9, 10}) starting
from the implication relationships F ({2}, {5}), F ({3, 4}, {6, 7, 8}), F ({5, 7}, {9}) and
F ({4, 8},{10}), where attributes are denoted by natural numbers.

Fig. 10. A B-path representation of a sequence of implications.

Procedure B-Visit solves problems (a) and (b) in O (size (H)) = O (size (F)) time. In both
cases, the set Q used in B-Visit is initialized to X. Let X' be the set of nodes visited by the
procedure, i.e. the set of nodes B-connected to X. In problem (a), the answer is that F (X, Y) is
derivable from F if and only if Y X', while in problem (b) the answer is X* = X'.

When the set Y is a singleton, i.e. the Functional Dependency is of the type F (X, y)
where y N. The directed hyper graphs representing sets of Functional Dependencies of this
type are B-graphs [4, 6]. where several problems on sets of Functional Dependencies are
defined, and graph algorithms for their solution presented. All these algorithms have a natural
interpretation in terms of hyper graph algorithms.

186 Acta Ciencia Indica, Vol. XLI M, No. 2 (2015)

6.3. Urban transit application

The analysis of passenger distribution in a transit system is an interesting application of
F-graphs. A transit system can be modeled as a special network in which transit lines are
superimposed on a ground network. Each transit line is a circuit, i.e. a close alternating
sequence of nodes representing the line-stops and arcs representing the in-vehicle line
segments. The ground network is formed by nodes representing geographical points in the
urban area, and arcs representing walking paths between centurions and/or stops. For each
stop node i on the ground network, let Li be the set of lines which stop at i. Each node i will be
connected to the corresponding nodes on the lines belonging to Li by a leaving arc and a
boarding arc. An example is given in Fig. 11 on a local standpoint.

line 1

line 2

line 3

leaving arcs boarding arcs

stop node
Fig. 11. A stop served by three lines.

Consider a passenger waiting at a stop I, who wishes to reach his/her destination s with
the least expected travel time. The problem consists in determining the optimal subset
L*

I LI, the so called attractive set, such that by always boarding the first carrier of these
lines arriving at the stop, the expected travel time will be minimized.

In general, the travel time’s tj are composed of walking times, in-vehicle travel times and
waiting times associated with transfers from one line to another which can occur in the sequel
of the trip. These times are the lengths of the associated arcs of the network; the lengths of in-
vehicle arcs are the corresponding carrier travel times, the lengths of walking arcs are walking
times, and the lengths of leaving arcs are set to 0. The waiting times are associated with
boarding arcs; the value of a boarding arc (I, j) from a stop I to the corresponding line-stop of
line lj depends on the subset of lines Li' considered. Moreover, all the boarding arcs of lines
belonging to Li' have the same length, which is the average waiting time w (Li').

Under reasonable hypotheses on the distribution of passenger and carrier arrivals at the
stops, the following results are obtained:

 ,
1

() , () , ()
2 () ()

jt L
l t j i j i

i i

L w L L
L L

and the expected travel time between stop i and the destination, when the set iL is selected, is:

1
1 2() () ()

2 () () ()

i

l

t
l

tj i
i i li i i l L

i i i

L jt
T L w L L L

L L L

Acta Ciencia Indica, Vol. XLI M, No. 2 (2015) 187

The optimal set L*
I is the subset of Li which minimizes the expected travel time :

T (L*
I) = min{T (Li'): Li' Li}.

When travel times t j for every l j LI are known, the optimal set L*
I is easily found with a

local greedy algorithm. This algorithm works as follows: first, sort the lines in non-decreasing
order of travel times, and then iteratively insert the lines one by one into L*

I until a line lj for
which t j > T (L*

I ;) am found [8].

The global problem is that of determining the least expected travel times tr for every
origin r and a given destination s. To solve this, the least expected travel times tj for every
lj Li and the optimal sets L*

I for all stops I must be computed simultaneously.

For this purpose, F-graphs have been introduced to represent transit networks; boarding
arcs corresponding to Li' may be modeled by a boarding F-arc E (Li') with length w (Li'). The
resulting F-graph is said full because if there is a F-arc E = ({i}, H (E)), then each E' = ({i},
H (E')) with E' E also exists. E' is called a contained F-arc. The contained F-arcs are treated
implicitly to keep the size of the F-graph at a reasonable level.

Let H = �V, E) be the F-graph in which contained F-arcs are omitted. The problem of
finding the least expected travel times for destination s is equivalent to that of finding shortest
F-paths terminating at s in F-graph H. In section 5 we mentioned that F-visits are easy when
they are organized from the destination node towards origin nodes; this is also true for shortest
F-paths. For the above transportation problem, the following generalized Bellman's equations
can be written, in which the weighted average distances are defined separately for stops and
other nodes. Let VS be the set of stops, then :

 () 0;sd s

 () min{ ():(,) ()}s xy sd x t d y x y FS x \ ;Sx V V

 (())() min{ () () (): () ()}
j xs x y H E L s j j x xd x w L d y L E L FS x

(())

1
()

2min : () ()
()

l xy H E L s j j

x
x

d y
E L FS x

L

 .sx V

Similar to procedures SBT, Shortest F-Tree procedures (SFT) have been developed to
solve the above equations. Both type of SFT-queue and SFT- Dijkstra 8.

CONCLUSION

Hence we conclude that, let us suppose that engineers apply for positions with the lists

of proficiency they may have, the factory management then tries to hire the least possible
number of engineers, so that each proficiency that the factory needs is covered by a least one
engineer then we construct a hyper graph with a verteo of each engineer and an hyper edge for
each proficiency, then a minimum transversal set represents the minimum group of engineers
that need to be hired to cover all proficiencies at this factory.

REFERENCE

188 Acta Ciencia Indica, Vol. XLI M, No. 2 (2015)

1. Acharya, B.D., Rao, S.B. and Arumugam, S., Embeddings and NP-Complete problems for graceful

graphs, Labelings of Discrete Structures and Applications, Narosa Publishing House, New Delhi,
India 57-62 (2007).

2. Addario-Berry, L., Aldred, R.E.L., Dalal, K. and Reed, B.A., Vertex colouring edge partitions, J.
Combin. Theory, Ser. B94, 237-244 (2005).

3. Chartrand, G., Nebesky, L. and Zhang, P., Hamiltonian colourings of graph, Discrete Appl. Math,
146, 257-272 (2005).

4. Chudnovsky, M., Robertson, N., Seymour, P. and Thomas, R., The strong perfect graph theorem,
Ann. Math, 164, 51-229 (2006).

5. Delavina, E., Pepper, R. and Wolter, B., Independence, Radius and Hamiltonian paths, MATCH
commun. Math. Comput. Chem.. 58, 481-510 (2007).

6. Escuadro, H., Okamoto, F. and Zhang, P., A three-color problem in graph theory, Bull. Inst.
Combin. Appl., 52, 65-82 (2008).

7. Khennoufa, R. and Togni, O., A note on radio autipodal colourings of paths math, Bohem, 130, 277-
282 (2005).

8. Karonski, M., Luczak, T. and Thomson, A., Edge weights and verto colours, J. Combin. Theory,
Ser. B91, 151-157 (2004).

9. Robertson, N. and Seymour, P.D., Graph minors, XX Wagner’s conjecture, J. Combin. Theory, Ser.
B92, 325-357 (2004).

10. Thomassen, C., Some remarks on Hajos conjecture, J. Combinn. Theory, Ser. B93, 95-105 (2005).

