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INTRODUCTION 

A directed graph is called digraph. Directed graphs arise in a natural way in many 

applications of graph theory. The street map of a city, abstract representation of computer 
programs and network flows can be represented only by directed graphs rather than by graphs. 
Directed graphs also are used in the study of sequential machines and system analysis in 
control theory. 

Many of the concepts and terminology for graphs are also valid for digraphs. However, 
there are many concepts of digraphs involving the notion of orientation that apply only to 
digraphs. We discuss the condition under which one can direct the edges of a graph in such a 
way that the resulting digraph is strongly connected. Then we deal with the connection 
between digraphs of Hypergraphs and matrices. 

A path or directed path is a walk in which all the vertices are distinct. A cycle or circuit is 
a nontrivial closed walk whose origin and interval vertices are distinct. The various types of 
Hypergraphs having in graph theory likewise, Dual hypergraphs, unimodular hypergraphs, 
balanced hypergraphs, Arbordal hypergraphs, Normal hypergraphs, mengerian hypergraphs 
and paranormal hypergraphs and so on. 

NOTATIONS 
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  j the frequency of line l j LI; 

  (Li’) the “combined” frequency of the lines-set Li’; 

 j (Li’) the probability that a carrier serving line lj will arrive at stop I before carriers 
serving other lines of Li’; 

 Tj the expected travel time between stop I and the destination, if line l j is used, not 
including the waiting time at I; 

 w (Li') the average waiting time at stop I. 

DIRECTED HYPERGRAPHS 

A hypergraph is a pair H = V, E), where V = {v1 , v2, ..., vn} is  the set of vertices (or 

nodes) and E = {E1, E2, ..., Em}, with Ei  V for i = 1, …, m, is the set of hyperedges. Clearly, 
when | Ei | = 2, i = 1,…, m, the hypergraph is a standard graph While the size of a standard 
graph is uniquely defined by n and m, the size of a hypergraph depends also on the cardinality 
of its hyperedges; we define the size of H as the sum of the  cardinalities of its hyperedges: 
size (H) = Ei  E | Ei |. 

It is worth noting that there is a one-to-one correspondence between hypergraphs and 
Boolean matrices. Indeed, any n × m matrix A = [aij] such that aij {0, 1} may be considered 
as the incidence matrix of a hypergraph H where each row i is associated with a vertex vi and 
each column j with a hyperedge Ej. 

A directed hyperedge or hyperarc is an ordered pair, E = (X, Y), of disjoint subsets of 
vertices; X is the tail of E while Y is its head. In the following, the tail and the head of hyper 
arc E will be denoted by T (E) and H (E), respectively. 

A directed hypergraph is a hypergraph with directed hyperedges. In the following, 
directed hyper graphs will simply be called hypergraphs. An example of hyper graph is 
illustrated in Fig. 1. Note that hyperarc E5 has an empty head. 

                 
Fig. 1. A hypergraph and its incidence matrix. 
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Fig. 2. A hypergraph and its incidence matrix. 

Similarly Fig. 2, Note that hyperarc E7 and E8 has an empty head. 

As for directed graphs, the incidence matrix of a hyper graph H is a next matrix [aij] 
defined as follows (see Fig. 1): 

     

1 if ( ),

1 if ( ),

0 otherwise

i j

ij i j

v T E

a v H E

 


 



 

Clearly, there is a one-to-one correspondence between hyper graphs and (–1, 0, 1) 
matrices. A Backward hyper arc, or simply B-arc, is a hyper arc E = (T (E), H (E)) with            
| H (E) | = 1 (Fig. 3a). A Forward hyper arc, or simply F-arc, is a hyper arc E = (T (E), H (E)) 
with | T (E) |= 1 (Fig. 3b). 

 
(a)                                   (b) 

Fig. 3. A B-arc (a) and a F-arc (b). 
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A B-graph (or B-hyper graph) is a hyper graph whose hyper arcs are B-arcs. A F-graph 
(or F-hyper graph) is a hyper graph whose hyper arcs are F-arcs. A BF-graph (or BF-hyper 
graph) is a hyper graph whose hyper arcs are either B-arcs or F-arcs. 

Given a hyper graph H = (V, E), we define its symmetric image the hyper graph H = (V, 

E ) where E = {(X, Y): (Y, X) E}. Note that the symmetric image of a B-graph is a F-graph, 
and vice versa. It is always possible to transform a general hyper graph into a BF-graph, by 
adding a dummy node to each hyper arc which is neither a B-arc nor a F-arc, and thus 
replacing the hyper arc by one backward and one forward hyper arc (see Fig. 4). 

 

Fig. 4 - Transformation of a hyper arc into a B-arc and a F-arc. 

Let FS (v) = {E E : v T (E)} and BS (v) = {E E : v H (E)} denote the Forward 
Star and the Backward Star of node v, respectively. B-graphs and F-graphs are of particular 
relevance in applications. Indeed, they have been introduced many times in the literature with 
various names. The labelled graphs [4] and B-graphs have been introduced [1]. F-graphs have 
been studied in the context of urban transit problems [8] and applications. Hyper graphs [9] 
and B-graphs, called directed hyper graphs and rule hyper graphs respectively, to represent 
deduction properties in data bases as paths in hyper graphs. 

PATHS, HYPERPATHS AND CONNECTION 

A path Pst, of length q, in hyper graph H = V, E) is a sequence of nodes and hyper arcs 

Pst = (v1 = s, Ei1, v2, Ei2, ..., EIq, vq + 1 = t), where : s  T (Ei1), t  H (EIq), and vj  H (EIj – 1) 
T (EIj), j = 2, ..., q. 

Nodes s and t are the origin and the destination of Pst, respectively, and we say that t is 
connected to s. If t T (Ei1), then Pst is said to be a cycle; this is in particular true when t = s. 
In a simple path all hyper arcs are distinct, and a simple path is elementary if all nodes           
v1, v2, … , vq+1 are distinct. Similarly we may define simple and elementary cycles. A path is 
said to be cycle-free if it does not contain any sub path which is a cycle. 

 

Fig. 5. A path P1, 8. 



Acta Ciencia Indica, Vol. XLI M, No. 2 (2015) 179 

In Fig. 5, node 8 is connected to node 1, while node 9 is not. The elementary path 
connecting 8 to 1 is drawn in thick line. 

 

Fig. 6. A path P1, 11. 

In Fig. 6, node 11 is connected to node 1, while node 12 is not. The elementary path 
connecting 11 to 1 is drawn in thick line. Consider a hyper graph H = V, E). A B-path (or B-
hyper path) st is a minimal hyper graph H= V, E) such that: 

(i) E E; 

(ii) s, t  V =    E I   V; EI E 

(iii) xV  x is connected to s in H by means of a cycle-free simple path. 

We say that H= V, E) is a F-path (or F-hyper path) from s to t if its symmetric image 
is a B-path from t to s. A BF-path (or BF-hyper path) from s to t is a hyper graph which is at 
the same time a B-path and a F-path from s to t. Node y is B-connected (F-connected, BF-
connected) to node x if a B-path (F-path, BF-path) xy exists in H. 
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Fig. 7 - A B-path (a) and a B-graph which is not a B-path (b). 

The hypergraph in Fig.7a is a B-path; note that the cycle (4, E4, 5, E5, 4) is not contained 
in any simple path from node 1 to node 7. On the contrary, the hyper graph in Fig. 7b is not a 
B-path because the only path connecting node 3 to the origin contains the cycle                      
(2, E3, 4, E2, 3). 
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CUTS AND CUTSETS 

Let H = V, E) be a hyper graph and s and t be two distinguished nodes, the source and 

the sink respectively. A cut Tst = Vs, Vt) is a partition of V into two subsets Vs and Vt such that  
s Vs and t Vt. Given the cut Tst, its cutest Est is the set of all hyper arcs E such that             
T (E)  Vs and H (E)  Vt.  

Such a cutest may be empty; see for instance the cut ({1, 2}, {3, 4, 5, 6, 7}) in the          
B-graph of Fig. 7b. The cardinality of a cut is the cardinality of its cutest. In Fig. 8 three cuts 
are indicated; the cardinality of Tst 1 is 2, while Tst 2 and Tst 3 have cardinality 1. Note that t is 
not necessarily disconnected from S by removing the hyperons of a cutest. For example, Fig 8 
by removing the cutest Tst 1   we disconnect t from s, by removing the cutest of Tst 2  only the 
B-connection of t to s is lost, while t remains both connected and B-connected to  s  when we 
remove the cutest of Tst 3. 
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6

t

Tst 1 Tst 2 Tst 3  
 

Fig. 8 - Only cut Tst 1 disconnects source s and sinks t. 

Theorem 5.1. In a B-graph H = V, E), a cut Tst of cardinality 0 exists if and only if t is 
not B-connected to s. 

Proof: ( Assume that a cut Tst with an empty cutest Est exists and there is a node v  Vt  
B-connected to s. Then a B-arc E = (T (E), {v}) must exist with the property that every node   
x T (E) be B-connected to s (see Proposition 1). Clearly, as Est is empty, at least one node    
u T (E) must belong to Vt. By repeating the same argument on u, we may eventually 
conclude that s also belongs to Vt, which is a contradiction. 

 Now assume that t is not B-connected to s. Define Vs as the set of all the nodes        
B-connected to s and Vt = V \V s. T t is necessarily a cut of cardinality 0, for the existence of a 
B-arc E = (T (E), {v}) in the cut, being T (E)  Vs and v  Vt, imply the B-connection of v to s.

 
Theorem 5.2. In a hyper graph H = V, E) a cut Tst of cardinality 0 exists if and only if t is 

not super-connected to s. 

Proof: ( Let Tst = Vs, Vt) be a cut of cardinality 0. Consider the B-reduction HB of H 
obtained by replacing each hyper arc E with a B-arc (T (E), {v}) with the condition that if       
T (E)  Vs then also v  Vs. This reduction is always possible since for any hyper arc E with   
T (E)  Vs at least one node in its head must belong to Vs, otherwise E belongs to the cutest 
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which, by hypothesis, is empty. By Theorem 1, t is not B-connected to s in HB and therefore t 
is not super-connected to s in H. 

 If t is not super-connected to s, then a B-reduction exists such that t is not B-
connected to s in it, the proof is completed. 

Theorem 5.3. In a B-graph H = V, E) the following inequalities hold:  

Min {| st | : st is a s-t B-path}  maximum number of disjoint s-t cut sets  min            
{| Pst | : Pst is a s-t path}. 

Proof : The first inequality follows directly from the fact that a cutest must contain at 
least a B-arc of every B-path, and then the number of disjoint s-t cut sets cannot exceed the 
cardinality of any B-path. 

The second inequality can be proved as follows. Let Vk denote the set of nodes {I} for 
which there exists a path Psi with cardinality  k. Clearly, if h is the minimum cardinality of 
the s-t paths, then we have {s} = V0  V1 …  V h  V; then (V0, V \V 0), (V1, V \V1) …      
(Vh – 1, V \Vh – 1) are s-t cuts with disjoint cut sets, for no B-arc with a tail node in Vi and the 
head in V j with j  i + 2 may exist, and thus, no B-arc can belong to more than one cutest. 
This completes the proof. 

Theorem 5.4. In a B-graph H = V, E) the following inequalities hold: 

Max-number of disjoint s-t paths  min {| Est | : Est is an s-t cutest}  max-number of 
disjoint s-t B-paths. 

Proof : Transform H = V, E) into a standard digraph G = (V, A) where for each B-arc    
(X, y) there is a unique arc (x, y) A, with x X. The choice of x X is arbitrary. It is easy to 
check that to any s-t cutest Est in H corresponds a s-t cutest Cst in G with | Cst |  | Est |; 
moreover, any set of k disjoint paths in G corresponds to a set of k disjoint paths in H, then the 
maximum number of disjoint paths in G is not larger than the maximum number of disjoint 
paths in H. Hence, from the well known max flow-min cut theorem for digraphs one has: 

max-number of disjoint s-t paths in H  max-number of disjoint s-t paths in G 

   =  min{| Cst | : CSt is a s-t cutest in G} Min {| Est | : Est is a s-t cutest in H}. 

The second inequality follows directly from the fact that, due to Theorem 1, any cutest 
must contain one B-arc from each B-path at least, and this completes the proof. 

The following examples show that strict inequalities may hold in all cases. 

In Fig. 9, a B-graph is presented for which the minimum cardinality of s-t B-paths is 5, 
the maximum number of disjoint s-t cut sets is only 4 and the minimum cardinality of s-t paths 
is 3. 
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In the B-graph of Fig. 10, the maximum number of disjoint s-t paths is 3, the minimum 
cardinality of s-t cuts is 2, and the maximum number of disjoint s-t B-paths is 1. 
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Fig. 10 

WEIGHTED HYPERGRAPHS 

6.1. Weighting functions 

A weighted hypergraph is one in which each hyperarc E is assigned a real weight vector 
w (E). Depending on the particular application, the components of w (E) may represent costs, 
lengths, capacities etc. For the sake of simplicity, in the following we shall consider only 
scalar weights. 

Given a B-path = (V, E) from s to t, by weighting function we mean a node function 
W which assigns weights to all its nodes depending on the weights of its hyperarcs. W(t) 
is the weight of the B-path  under the chosen weighting function. 

We shall restrict ourselves to weighting functions for which W(s) = 0 and W(y), for 
each y s, depends only on the hyperarcs which precede y in the B-path , i.e. the hyperarcs 
belonging to all B-paths from s to y contained in . 

A typical example of this kind of weighting function is the cost, C, defined as the sum 
of the weights of all the hyperarcs preceding node y in : 

   C(s) = 0; 

   C(y) =w (E), y  V\{s}, E Esy : sy } 

Clearly, C(t) = E Ew (E) is the cost of . This function is the usual cost in the 
graph setting, and the problem of finding a minimum cost B-path is a natural generalization of 
the minimum cost path problem.  

When the weights are all equal to 1, the cost of  is its cardinality. 

A relevant class of weighting functions is the one in which the weight of node y can be 
written as a function of both the weights of the hyperarcs entering into y and that of the nodes 
in their tails: 

  W(y) = min{w (E) + F(T (E)) : E EBS (y)},   y  V\{s}, …(1) 

where F(T (E)) is a function of the weights of the nodes in T (E) : 

   F(T (E)) = F ({W(x) : x T (E)}),   E E, … (2) 
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where F is a non-decreasing function of W(x) for each x T (E). Such weighting functions 
will be called additive weighting functions. 

In the particular case of B-graphs, the B-paths have the property that there is only one    
B-arc E entering into every node y s; in this case (1) becomes: 

     W(y) = w (E) + F(T (E)),  y  V\{s} … (1’) 

Two particular additive weighting functions which have been presented in the literature in 
the context of some relevant applications of hypergraphs are the distance and the value. Given 
a s-t B-path = (V, E), the distance in  from s to all the nodes y V\{s} which are    
B-connected to s, D(y), is defined by the following recursive equations: 

   D(s) = 0     … (3) 

  D(y) = min{l (E) + max{D(x): x T (E)} : E EBS (y)}, y  V\{s}; 

where l (E) is the length of hyperarc E. 

For B-graphs, equation (3) becomes: 

   D(y) = l (E) + max {D(x) : x T (E)},    y  V\{s}  … (3') 

In the case of unit hyperarc lengths, i.e. l (E) = 1  E E, the distance will be called 
depth.  B-graphs [4] in the context of the satisfiability analysis of propositional Horn formulae. 
In this case, procedure B-Visit, with the use of function  and a breadth-first search strategy, 
finds the minimum depth B-tree in O (size (H)) time. 

The value, V, defined by Leontiev flow problem for the case of B-graphs [2], is the 
solution of the following recursive equations: 

     V(s) = 0; 

   V(y) = c (E) +  a (x, E) V(x),   E EBS (y),   y  V\{s};   …(4) 

     X T (E) 
 

where c (E) is the cost of B-arc E and, for each E and each x T (E), a (x, E) is a non-negative 
real coefficient. 

APPLICATION OF HYPERGRAPHS 

6.1. Satisfiability 

Let P be a set of n atomic propositions, which can be either true or false, and denote by t 
a proposition which is always true, and by f a proposition which is always false. Let C be a set 
of m clauses, each of the form: 

   p1  p2  …  pr   pr + 1  pr + 2  …    pq, … (7) 

where, for I =1… Q, pi P. The meaning of (7) is that at least one of the propositions p1… pr 

Must be true when all the propositions pr + 1… pq are true. If this is the case, the clause is 
true; otherwise (p1… pr are all false, and pr + 1… pq are true) the clause is false. The 
disjunction p1 p2 … pr is also called the consequence of the clause, while the conjunction 
pr+1 pr+2 … p q is called the applicant. We allow for r = 0, in which case the consequence 
is replaced by f, and for r = q, in which case the implicate is replaced by t. 

Clause (7) can be easily converted into disjunctive form:  
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   p1  p2  …  pr pr + 1 pr + 2  … pq, 

A truth evaluation is a function v : P  {false, true}. If there is a truth evaluation which 
makes all the clauses true, then C is said to be satisfiable, otherwise it is unsatisfiable. 

The satisfiability problem (SAT) is defined as follows: 

Input: A set P of n propositions, and a set C of m clauses over P  {F, t};  

Output: "yes" if C is satisfiable, "no" otherwise. 

Most often, in the case of yes-instances, a truth evaluation which satisfies C is also 
desired. 

A particularly important case is when a clause contains only one atomic proposition, i.e.   
r 1 in (6). Such clause is called a Horn clause. 

It is well known that SAT is NP-complete [8]. Either NP-complete, or NP-hard, are also 
most of its variants such as k-SAT (each clause contains k 3 atomic propositions at most) and 
Max-SAT (the maximization of the number of satisfied clauses, or equivalently, the 
minimization of the number of clauses to be dropped in order to make the remaining clauses 
satisfiable). A notable exception is the case in which C contains only Horn clauses. In this 
case the satisfiability problem (HORN-SAT) is polynomial: in fact it can be solved in linear 
time [4] .Unfortunately, Max-HORN-SAT remains NP-hard [6]. 

HORN-SAT is the set of the instances of SAT whose clauses are Horn clauses. 

To any given instance SAT we can associate the hyper graph H with one node for 
each element   of  P  {f, t} and   one   hyper arc   E with   H (E) = {p1, p2, …,  pr} and T (E) 
= {pr + 1, pr + 2, …, pq}. For each clause p1  p2 …  pr  pr + 1  pr + 2 …   pq. Clearly, 
from the definition, if HORN-SAT then H is a B-graph. Note that the labeled graphs [4] to 
represent HORN-SAT instances have a direct interpretation as B-graphs. 

Theorem 6. An instance SAT is satisfiable if and only if the associated hyper graph 
H has a cut Ttf with cardinality 0. 

 

Proof : ( if  is satisfiable, then a truth assignment v exists which makes all the 
clauses in  true. Consider the cut Ttf  = (Vt, Vf) with : 

   Vt = {p :  v (p) = true}  {t}   and   Vf = {p:  v (p) = false}  {f}. 
 

We claim that Ttf has cardinality 0; in fact the existence of a hyper arc E with T (E)Vt 
and H (E) Vf would imply the existence of a clause made false by v. 

 Let Ttf  = (Vt, Vf) be a cut with 0 cardinality. It is easy to check that the function: 

     
if ,

( )
if

t

f

true V
v p

false p V


 


 

is a truth assignment which makes all the clauses of  true. 

6.2. Relational data bases 

In the last years a substantial amount of research has been devoted to the analysis of 
relational data bases using graph related techniques. 

A Relational Data Base (RDB) is often represented by a set of relations over a certain 
domain of attribute values, together with a set of Functional Dependencies. 
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Functional Dependencies have been studied by means of several types of generalized 
graphs, such as FD-graphs, Implication Graphs, Deduction Graphs, etc. 

Let N be the set of attributes of a RDB. A Functional Dependency F(X, Y), with both X 
and Y subsets of N, defines uniquely the value of the attributes in Y once the value of the 
attributes in X is given. 

A set of Functional Dependencies together with some inference rules allows us to derive 
new facts from that explicitly stored in the data base. Typical inference rules [10]. 

(i) reflexivity : F (X, Y) if YX;  

(ii) transitivity :   F (X, Z) if F (X, Y) and F (Y, Z);  

(iii) Conjunction:  F (X, YZ) if F (X, Y), F (X, Z).  

Given a set of Functional Dependencies, F, we might need to solve problems such as: 

(a) find whether a given Functional Dependency F (X, Y) F can be derived from F 
based on inference rules;  

 

(b) Given a set of attributes X F, find its closure with respect to F, i.e. find the largest 
set X* such that F (X, X*) either belongs to or can be derived from F.  

Here we show briefly that hyper graphs provide a natural and unifying formalism to deal 
with most problems arising in the analysis of Functional Dependencies in RDB. 

A set F of Functional Dependencies on the attribute set N can be represented by a hyper 
graph  

H = V, E), with V = N and E = {(X, Y\X) : F (X, Y) F, Y /X}. It is easy to see that a  
B-path on H corresponds to a sequence of implications based on rules (i), (ii) and (iii). For 
example, the B-path of Fig. 11 corresponds to the derivation of F({1, 2, 3, 4}, {9, 10}) starting 
from the implication relationships F ({2}, {5}), F ({3, 4}, {6, 7, 8}), F ({5, 7}, {9}) and        
F ({4, 8},{10}), where attributes are denoted by natural numbers. 

 
Fig. 10. A B-path representation of a sequence of implications. 

Procedure B-Visit solves problems (a) and (b) in O (size (H)) = O (size (F)) time. In both 
cases, the set Q used in B-Visit is initialized to X. Let X' be the set of nodes visited by the 
procedure, i.e. the set of nodes B-connected to X. In problem (a), the answer is that F (X, Y) is 
derivable from F if and only if Y X', while in problem (b) the answer is X* = X'. 

When the set Y is a singleton, i.e. the Functional Dependency is of the type F (X,  y) 
where y N. The directed hyper graphs representing sets of Functional Dependencies of this 
type are B-graphs [4, 6]. where several problems on sets of Functional Dependencies are 
defined, and graph algorithms for their solution presented. All these algorithms have a natural 
interpretation in terms of hyper graph algorithms. 
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6.3. Urban transit application 

The analysis of passenger distribution in a transit system is an interesting application of 
F-graphs. A transit system can be modeled as a special network in which transit lines are 
superimposed on a ground network. Each transit line is a circuit, i.e. a close alternating 
sequence of nodes representing the line-stops and arcs representing the in-vehicle line 
segments. The ground network is formed by nodes representing geographical points in the 
urban area, and arcs representing walking paths between centurions and/or stops. For each 
stop node i on the ground network, let Li be the set of lines which stop at i. Each node i will be 
connected to the corresponding nodes on the lines belonging to Li by a leaving arc and a 
boarding arc. An example is given in Fig. 11 on a local standpoint. 

line 1

line 2

line 3

leaving arcs boarding arcs

stop node  
Fig. 11. A stop served by three lines. 

Consider a passenger waiting at a stop I, who wishes to reach his/her destination s with 
the least expected travel time. The problem consists in determining the optimal subset          
L*

I  LI, the so called attractive set, such that by always boarding the first carrier of these 
lines arriving at the stop, the expected travel time will be minimized. 

In general, the travel time’s tj are composed of walking times, in-vehicle travel times and 
waiting times associated with transfers from one line to another which can occur in the sequel 
of the trip. These times are the lengths of the associated arcs of the network; the lengths of in-
vehicle arcs are the corresponding carrier travel times, the lengths of walking arcs are walking 
times, and the lengths of leaving arcs are set to 0. The waiting times are associated with 
boarding arcs; the value of a boarding arc (I,  j) from a stop I to the corresponding line-stop of 
line lj depends on the subset of lines Li' considered. Moreover, all the boarding arcs of lines 
belonging to Li' have the same length, which is the average waiting time w (Li'). 

Under reasonable hypotheses on the distribution of passenger and carrier arrivals at the 
stops, the following results are obtained: 

   ,
1

( ) , ( ) , ( )
2 ( ) ( )

jt L
l t j i j i

i i

L w L L
L L

 
        

  
 

and the expected travel time between stop i and the destination, when the set iL  is selected, is: 

   

1
1 2( ) ( ) ( )

2 ( ) ( ) ( )
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The optimal set L*
I is the subset of Li which minimizes the expected travel time :              

T (L*
I) = min{T (Li'): Li' Li}. 

When travel times t j for every l j LI are known, the optimal set L*
I is easily found with a 

local greedy algorithm. This algorithm works as follows: first, sort the lines in non-decreasing 
order of travel times, and then iteratively insert the lines one by one into L*

I until a line lj for 
which t j > T (L*

I ;) am found [8]. 

The global problem is that of determining the least expected travel times tr for every 
origin r and a given destination s. To solve this, the least expected travel times tj for every       
lj Li and the optimal sets L*

I for all stops I must be computed simultaneously. 

For this purpose, F-graphs have been introduced to represent transit networks; boarding 
arcs corresponding to Li' may be modeled by a boarding F-arc E (Li') with length w (Li'). The 
resulting F-graph is said full because if there is a F-arc E = ({i}, H (E)), then each E' = ({i},   
H (E')) with E' E also exists. E' is called a contained F-arc. The contained F-arcs are treated 
implicitly to keep the size of the F-graph at a reasonable level. 

Let H = �V, E) be the F-graph in which contained F-arcs are omitted. The problem of 
finding the least expected travel times for destination s is equivalent to that of finding shortest 
F-paths terminating at s in F-graph H. In section 5 we mentioned that F-visits are easy when 
they are organized from the destination node towards origin nodes; this is also true for shortest 
F-paths. For the above transportation problem, the following generalized Bellman's equations 
can be written, in which the weighted average distances are defined separately for stops and 
other nodes. Let VS be the set of stops, then : 

   ( ) 0;sd s   

   ( ) min{ ( ):( , ) ( )}s xy sd x t d y x y FS x                     \ ;Sx V V  

   ( ( ))( ) min{ ( ) ( ) ( ): ( ) ( )}
j xs x y H E L s j j x xd x w L d y L E L FS x        

             
( ( ))

1
( )

2min : ( ) ( )
( )

l xy H E L s j j

x
x

d y
E L FS x

L


 
   

  
 

    .sx V  

Similar to procedures SBT, Shortest F-Tree procedures (SFT) have been developed to 
solve the above equations. Both type of SFT-queue and SFT- Dijkstra 8. 

CONCLUSION 

Hence we conclude that, let us suppose that engineers apply for positions  with the lists 

of proficiency they may have, the factory management then tries to hire the least possible 
number of engineers, so that each proficiency that the factory needs is covered by a least one 
engineer then we construct a hyper graph with a verteo of each engineer and an hyper edge for 
each proficiency, then a minimum transversal set represents the minimum group of engineers 
that need to be hired to cover all proficiencies at this factory. 
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