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This paper is devoted to introduce and study countably gb-
compact, sequentially gb-compact, gb-Lindelof and second 
countable gb-spaces and their inter relationship. In this 
context the concept of second countable gb-space is 
projected and inter related to gb-Lindelöf space with proper 
examples.  

The gb-convergence of a sequence due to regular b-open 
sets in topological space has been conceptualized and the 
relation of gb-convergence with gb-continuity and gb-
irresolute mapping has been discovered here. It also deals 
with the relation between gb-convergent sequence and 
convergence of a sequence in a space with suitable 
example. 
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INTRODUCTION AND PRELIMINARY 

The notions of b-open sets and regular b-closed sets have been introduced and 

investigated by D. Andrijevic [1] and N. Nagaveni and A. Narmadha [2] and[3], respectively. 
In 2007, M. Caldas and S. Jafari projected some applications of b-open sets in topological 
spaces [4] whereas 2009 was the year for the conceptualization of the class of generalized b-
closed sets and its fundamental properties by A. Al-Omari and M.S.M. Noorami [5]. 

The class of generalized closed sets and regular generalized closed sets was coined and 
framed by N. Levine [6] and N. Palanniappan and K. Chandrasekhar Rao [7], respectively. 

We, here, introduce and study gb-Lindelöf space, countably gb-compact space and 
sequentially gb-compact space. We also study the new concept of second countable gb-space 
along with the gb-converge of a sequence and its behavior under gb-continuity/irresolute in a 
topological space. 

As usual throughout this paper (X, T) means a topological spaces on which no separation 
axioms are assumed unless otherwise mentioned. 
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For a subset A of a space (X, T), cl (A) and int (A) stand as the closure of A and the interior 
of A, respectively. 

Also, X-A or AC represents the complements of A in X. 

Now, the following definitions are recalled which are useful in the sequel : 

Definition (1.1) : A subset A of  a space (X, T) is said to be b-open [1]  if  

                             A  int (cl (A))    cl (int (A)). 

Definition (1.2) : A subset A of a space (X, T) is said to be regular closed [8] if                
A = cl (int (A)). 

Definition (1.3) : Generalized b-closed (briefly gb-closed) [5] set if bcl (A) ⊂ U 
whenever  A ⊂ U and U is open in X. 

Definition (1.4): A subset A of a space (X, T) is said to be 

(1) generalized closed (briefly g-closed) [6] set if  

     cl (A) ⊂ U whenever A ⊂ U and U is open in X. 

(2) generalized semi-closed (briefly gs-closed) [9] set if  

      scl (A) ⊂ U whenever  A ⊂ U  and U is open in X. 

(3)  semi-generalized closed (briefly sg-closed) [10] set if  

     scl (A) ⊂ U whenever  A ⊂ U  and U is semi-open in X. 

(4) regular generalized closed ( briefly rg-closed) [7] set if  

     cl (A) ⊂ U whenever A ⊂ U  and U is regular open in X.  

(5) generalized pre-closed (briefly gp-closed) [11] set if  

     pcl (A) ⊂ U whenever  A ⊂ U  and U is open in X. 

(6) A subset A of a space (X, T) is said to be generalized b-closed(briefly gb-closed) [3] if 

     rcl (A)   U whenever A   U and U is b-open in (X, T). 

The compliments of the above mentioned closed sets are their respective open sets. 

The intersection of all generalized b-closed sets of X containing A is called generalized b- 
closure of A and is denoted by gb-cl (A). 

The union of all regular-open sets of X contained in A is called the generalized b-interior 
of A and is denoted by gb-int (A). 

The family of all gb-open (respectively gb-closed) sets of (X, T) is denoted by GBO (X) 
(respectively GBC (X)). The family of gb-open sets of (X, T) containing a point x	∈	X is 
denoted by GBO (X, x). 

The following diagram is obtained as a part of diagram in [14]. 

                                              Diagram 

regular closed          closed                   rg-closed                           g-closed 

 

                                 p-closed                   b-closed 

 

gb closed                 gp-closed                                                          gb-closed 
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Now, the compactness is dealt with covering the sets by gb-open sets as mentioned in the 
following definitions: 

Definition (1.5) : In a topological space (X, T), a collection C of gb-open sets in X is 
called a gb-open cover of A ⊆ X if A	⊆	∪ {Vr : Vr	∈	C}. 

Definition (1.6) : A topological space (X, T) is called a gb-compact space/gb-Lindelöf 
space if every cover of X by gb-open sets has a finite subcover/countable subcover. 

Definition (1.7) : In a topological space (X, T), a subset A of X  is said to be gb-compact 
relative to X if for every gb-open cover C of A, there is a finite sub collection C*  of C that 

covers A. 

Definition (1.8): A subspace of a topological space, which is gb-compact as a topological 
space in its own right, is said to be gb-compact subspace. 

The following lemma (1.1) is enunciated for the above definitions to be consistent : 

Lemma (1.1) : 

           (1)   Every gb-compact space is a  gb-Lindelöf space. 

           (2)   Every gb-Lindelöf space is a Lindelöf space. 

           (3)   Every countable space is a gb-Lindelöf space. 

        (3(a))  A gb-Lindelöf space need not be a gb-compact space. 

          (4)      gb-compactness is not hereditary. 

Proof:  The statement follows from definitions (1.6), (1.7) and (1.8). 

SECOND COUNTABLE gb-SPACE 

Definition (2.1) : A topological space (X, T) is said to be a second countable gb-space 

or a  second axiom gb-space if it carries the following axiom, known as the “Second Axiom of 
gb-countability” (framed analogous to second Axiom of countability) : 

[C1] There exists a countable gb-open base for the topology T. 

We, however, coin gb-open base for the space (X, T) as a sub collection B	⊆ GBO (X) 
such that every member of T is a union of members of B. 

Thus, a topological space (X, T) is called a second countable gb-space iff there exists a 
countable gb-open base for T. 

Theorem (2.1) : Every second countable gb-space is a gb-Lindelöf space. 

Proof : Let the topological space (X, T) be a second countable gb-space.  

Let  b b
G


 be a gb-open cover of X, Then  

     b
b

X G


   …(1) 

As X being  second countable gb-space, there exists a countable gb-open base for the 
topology T. Let B = (Vn) be a countable gb-open base for T. from (1) it follows that for each 

x	∈	X, there exists  xb  such that                                          

                                        
xbx G  …(2) 
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Now, since B is a gb-open base for T, each open set is a union of some members of B. It, 
therefore, follows from statement (2) that for each x	∈	X, .

xnV B  Such that 

     
x xn rx V G 

 
…(3) 

Hence,    
xn

x X

X V


   … (4) 

Since, the family { : }
xnV x X   B and B is countable, it follows that the family 

{ : }
xnV x X  is countable. Hence, we can write  

     0{ : } { : }
x kn nV x X V k    …(5)  

where 0  is a  countable index set. 

This means that for each 0 , kk x X    such that .
k xk

n nV V  

Hence, according to (2) and (3), for each 0 ,k  we select one index 
kx  such that  

     
x xk k

n rV G
 

…(6) 

Thus, from (4), (5), (6), we have  

     

0 0

x x xk k
n n

x X k k

X V V G
  

      

But always   

0

.
xk

b
k

G X


  

Hence,    

0

xk
b

k

X G


   … (7) 

Moreover the family 0{ : }
xk

rG k   is countable, hence by (7), this family  is a countable 

gb-open subcovering of X. 

Thus, every second countable gb-space is a gb-Lindelöf space. 

Hence, the theorem. 

SEQUENTIALLY gb-COMPACT SPACES 

The notion of convergence is fundamental in analysis and topology. Before we take up 

the concept of sequentially gb-compact spaces and countably gb-compact spaces, we project 
the notion of gb-convergence of a sequence, gb-limit of a sequence, gb-accumulation point of 
a set in a topological space in the following manner: 

Definition (3.1) : Let (X, T) be a topological space and A ⊆ X. 

A point p	∈ X is called a gb-limit point (or a gb-cluster point or a gb-accumulation point) 
of A iff every gb-open set containing p contains a point of A other than p.  

i.e.   symbolically [p	∈	(X, T) A	⊆ X]   [p = A gb-limit point for A] 

                                                           [∀N	∈	GBO (X) p	∈	X  [N-{p}] ∩	A	≠	φ]] 
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Definition (3.2) : gb-convergent sequences : 

A sequence {xn} in a topological space (X, T) is said to be gb-convergent to a point x0 or 

to converge to a point x0 ∈ X with respect to gb-open sets, written as 0 ,
gb cgt

nx x


  if  for 

every gb-open set L containing x0, there exists a positive integer m, s.t. n	≥	m ⇒ xn ∈	L. 

This concept is symbolically presented as: 

                             0 0lim
gb cgt

n n
n

x x gb x x



    

Obviously, a sequence {xn} in a topological space (X, T) is said to be gb-convergent to a 
point x0 in X iff it is eventually in every gb-open set containing x0. 

Definition (3.3) : gb-limit point of a sequence : 

A point x0 in X is said to be gb-limit point of a sequence {xn} in a topological space (X, T) 
iff every gb-open set L containing x0 there exists a +ve integer n for each +ve integer m such 
that n	≥ m ⟹	xn ∈  L. 

This means that a sequence {xn} in a topological space (X, T) is said to have x0 ∈ X  as a 
gb-limit point iff for every gb-open set  containing x0 contains xn for finitely many n. 

Definition (3.4) : Sequentially gb-compact spaces : 

A topological space (X, T)  is said to be sequentially gb-compact iff every sequence in X 
contains a sub-sequence which is gb-convergent to a point of X. 

Definition (3.5) : Countably gb-compact spaces : 

A topological space (X, T) is said to be countably gb-compact (or to have gb-Bolzano 
Weierstrass Property) iff every infinite subset of X has at least one gb-limit point in X. 

                                                       Or  

A topological space (X, T) is known as countably gb-compact iff every countable T-gb-
open cover of X has a finite sub-cover. 

Remark (3.1) :  

(i) Every finite subspace of a topological space is sequentially gb-compact. 

(ii) Every  gb-compact space is a countably gb-compact space. 

(iii)  Every cofinite topological space is a countably gb-compact space. 

Theorem (3.1) : Every sequentially gb-compact topological space (X, T) is countably gb-
compact . 

Proof : Let (X, T) be a sequentially gb-compact topological space. Let E be any infinite 
subset of X. Then there exists an infinite sequence {xn} in E with distinct terms. 

Since (X, T) is  sequentially gb-compact, the sequence {xn} contains a sub sequence {xnk} 
which is gb-convergent  to x0 ∈	X. 

This means that each gb-open set containing x0 contains an infinite number of elements of 
E. 

Hence, x0 is an gb-accumulation point of E. 

Thus, every infinite subset E of X has at least one gb-accumulation point in X. 
Consequently (X, T) is countably gb-compact. 

i.e.  sequentially gb-compactness implies countable gb-compactness. 

Hence, the theorem. 
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Remark (3.2):  

A countably gb-compact space is not necessarily sequentially gb-compact  as illustrated 
by following example: 

Example (3.1): 

Let N = {n : n is a natural number}. 

Let T be topology on N generated by the family H = {{2n – 1, 2n} : n	∈ N} of subsets of 
N. 

Let E be a non-empty subset of N. 

Let m0	∈  E. If m0 is even m0 – 1 is a gb-accumulation point of E and if m0 is odd m0 + 1 is 
a gb-accumulation point of E. Hence, every non-empty subset of N has a gb-accumulation 
point, so that (N, T) is countably gb-compact. 

Also, (N, T) is not sequentially gb-compact because the sequence {2n – 1 : n	∈ N} has no 
gb-convergent sub-sequence. 

Therefore,  

   Countably gb-compactness ⇏ gb-sequentially compactness. 

                                            																						⇏ gb-compactness. 

Definition (3.6) : gb-continuity at a point : 

A mapping : ( , ) ( , )f X T Y   from one topological space (X, T) to another topological 

space (Y, σ) is said to be gb-continuous at a point x0 ∈	X if for every σ-open set V containing     
f (x0) there exists a gb-open set L in (X, T) containing x0 such that f (L) ⊆ V. 

Definition (3.6) (a) : gb-irresolute at a point : 

A mapping : ( , ) ( , )f X T Y   from one topological space (X, T) to another topological 

space (Y, σ) is said to be gb-irresolute at a point x0	∈ X if for every gb-open set V containing     
f (x0) there exists a gb-open set L in (X, T) containing x0 such that f (L) ⊆	V. 

We, here, produce the following two theorems concerned with gb-convergence and 
convergence of a sequence and its image sequence under gb-continuity and gb-
irresoluteness: 

Theorem (3.2) : In a topological space (X, T) if a sequence  {xn} is gb-convergent to a 
point x0	∈	X, then it is also simply convergent to  that point . But the converse may not be true. 

Proof : Let K be an open set in a topological space (X, T) containing x0	∈	X, then K is also 
a gb-open set. 

Now, let {xn} be a gb-convergent sequence which gb-converges to the point x0	∈	X. Then 
for every gb-open set L containing x0 there exists a +ve integer m such that xn	∈ L for all      
n	≥ m. 

Thus, 0 0( ) and
rb cgt

nx x L RBO X x L


     implies that there exists a positive 

integer m	>	0 such that  n	≥	m	⇒ xn	∈ 
L. This is also true for every open set K ∈ T. Since K 

is an agbitrary open set containing x0, hence,
 0.

cgt
nx x  

But “the converse is not true” is supported by the following example: 

Example (3.2) : 

Let    X = {a, b, c}, T = {φ, {a, b}, X}.  
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Then {b} is a gb-open set but not an open set. Let  xn = a for all n, then ,
cgt

nx a
 
as 

well as ,
cgt

nx b  because open subsets containing a and b are {a, b} and X. 

But {xn} is not gb-cgt to “b” because there exists a gb-open set containing “b” as {b} 
which does not contain “a”. 

Hence, the theorem. 

Theorem (3.3) : If  f (X, T) ⟶	(Y, σ) be a gb-continuous mapping from a topological 
space (X, T) into another topological space (Y, σ) and {xn} be gb-convergent to x0 ∈	X, then    
{f (xn)} is convergent to f (x0) ∈ Y. 

Proof : Given that the mapping f : (X, T) ⟶ (Y, σ) is gb-continuous so that it is gb-
continuous at every point of X. 

Let {xn} be a sequence in (X, T), which is gb-convergent to x0	∈	X. 

Let V be a σ-open set in (Y, σ) containing f (x0). Then the gb-continuity of f at x0 implies 
that there is an gb-open set L in (X, T) containing x0 such that f (L) ⊆ V. 

Since, 0 ,
rb cgt

nx x


  there exists an natural number m such that n	≥ m	⟹ xn	∈	L  

⟹ �(xn) ∈ V. Combining these, we say that the sequence {f (xn)} is cgt. to f (x0) because for 
every σ-open set V containing f (x0), there exists an natural number m such that                    
n	≥	m	⟹  �(xn) ∈ V.    

Hence, Symbolically, 0 0( ) ( ),
rb cgt cgt

n nx x f x f x


     gb-continuous maps f. 

Hence, the theorem. 

Corollary (3.1) : If f : (X, T) ⟶	(Y, σ) be a gb-irresolute mapping and {xn} be gb-
convergent to x0 ∈	X, then  

     0 0( ) ( ).
rb cgt rb cgt

n nx x f x f x
 

    

Proof: The proof is straight forward and natural, so omitted. 

We, now, produce the following theorem concerned with gb-continuous image of a 
sequentially gb- compact set of a topological space. 

Theorem (3.4) : A gb-continuous image of a sequentially gb-compact set is sequentially 
compact. 

Proof : Suppose, f is a gb-continuous mapping. Let A be a sequentially gb-compact set in 
topological space (X, T) and we have to show that f (A) is sequentially compact subset of (Y, σ) 
where f (X, T) ⟶	(Y, σ). 

Let {yn} be an arbitrary sequence of points in f (A), then for each n	∈	N there exists xn	∈	A 
such that f (xn) = yn and thus we obtain a sequence {xn} of points of A. 

But A is sequentially gb-compact w.r.t. T so that there is a subsequence {xnk} of {xn} 
which is gb-compact to a point say, x of A. 

Therefore, ( ) ( ) ( )
rb cgt

nk nkx x f x f x f A


     as f is gb-continuous. 

Hence, f (xnk) is a subsequence of the sequence {yn} of f (A), converging to a point f (x) in 
f (A). Consequently, f (A) is sequentially compact. 

Corollary (3.2) : The gb-irresolute image of a sequentially gb-compact set is a 
sequentially gb-compact.  

This means that sequentially gb-compactness is a topological property under gb-irresolute 
mappings. 
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CONCLUSION 

Since, compactness is one of the most important useful and fundamental concepts in 

topology so its structural properties as emphasized in the form of gb-open sets, gb-convergent 
sequences, gb-Lindelöf spaces etc have been analyzed  to create the vast canvas  in the world 
of Mathematics through this paper. The structures mentioned in the paper have wide 
applications and it surely pleases the Mathematician if one of his abstract structures finds an 
application. 

The future scope of study is to obtain results in respective paracompactness. 
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