ON β *g-CLOSED SETS AND β *-NORMAL SPACES

M. C. SHARMA

Department of Mathematics, N. R. E. C. College Khurja-203131 (U.P.), India

AND

HAMANT KUMAR

Department of Mathematics, S. S. (P. G.) College, Shikarpur-203395 (U.P.), India

RECEIVED : 30 January, 2015

REVISED : 19 April, 2015

In this paper, we introduce the notion of β^*g -closed sets and we show that the family of all β^*g -open sets in a topological space (*X*, τ) is a topology for *X* which is finer than τ . Further we obtain some characterizations and preservation theorems for β^* -normality and normality.

2000 AMS Subject Classification: 54D15, 54C10, 54C08.

KEYWORDS : *g*-closed, β^*g -closed, and β^*g -open sets; almost β^*g -closed, and almost β^*g -continuous functions; β^* -normal space.

INTRODUCTION

 $\mathbf{\Pi}$ he concept of closedness is fundamental with respect to the investigation of topological spaces. Levine [5] initiated the study of the so called g-closed set and by doing this he generalized the concept of closedness. β -open sets and β -closed sets were introduced by Monsef *et al.* [1]. Dontchev [2] defined and studied generalized β -closed (briefly g β -closed) sets in topological spaces. β -continuity has been introduced by Monsef *et al.* [1]. Mahmoud *et* al. [6] gave the concept of β -irresolute and β -normal spaces in topological spaces. Recently, Sharma and Hamant [8] introduced β -generalized closed (briefly β g-closed) sets. In 2011, Thabit and Kamarulhaili [13] presented some characterizations of weakly (resp. almost) regular spaces. Also object of this paper is to present some conditions to assure that the product of two spaces will be π -normal. In 2012, Thabit and Kamarulhaili [14] introduced a weaker version of p-normality called πp -normality and obtained some basic properties, examples, characterizations and preservation theorems of this property are presented. In 2014, Patil, Benchalli and Gonnagar [9] introduced and studied two new classes of spaces, namely $\omega\alpha$ -normal and $\omega\alpha$ - $\omega\alpha$ -closed sets. In 2015, Hamant et al [3] introduce a new class of normal spaces is called $\pi g\beta$ -normal spaces, by using $\pi g\beta$ -open sets. We proved that $\pi g\beta$ normality is a topological property and it is a hereditary property with respect to π -open, $\pi g\beta$ closed subspace. Further we obtain a characterization and preservation theorems for $\pi g\beta$ normal spaces.

Preliminaries

129/M015

hroughout this paper, spaces (X, τ) , (Y, σ) , and (Z, γ) (or simply X, Y and Z) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by Cl (A) and Int(A) respectively. A is said to be β -open [1] if $A \subset Cl$ (Int (Cl (A))) and preopen [7] (briefly p-open) if $A \subset$ Int (Cl (A)). The family of all β -open (resp. β -closed) sets of X is denoted by $\beta O(X)$ (resp. $\beta C(X)$). The complement of a β -open set is said to be β -closed [1]. The intersection of all β -closed sets containing A is called β -closure of A, and is denoted by βCl (A). The β -Interior of A, denoted by β Int (A), is defined as union of all β -open sets contained in A.

2.1 Definition: A subset A of a space X is said to be

(1) generalized closed (briefly *g*-closed) [5] if $Cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.

(2) generalized β -closed (briefly $g\beta$ -closed) [2] if β Cl (A) $\subset U$ whenever $A \subset U$ and $U \in \tau$.

(3) β - generalized closed [8] (briefly β g-closed) if β Cl (A) \subset U whenever A \subset U and U is β -open in X.

The complement of a *g*-closed (resp. $g\beta$ -closed, βg -closed) is said to be *g*-open (resp. $g\beta$ -open, βg -open).

β**g*-CLOSED SETS

Definition 3.1: A subset A of a space X is said to be

(1) β **g*-closed if Cl (*A*) \subset *U* whenever *A* \subset *U* and *U* is β -open in *X*. The collection of all β **g*-closed subsets in *X* is denoted by β **GC* (*X*). The intersection of all β **g*-closed sets containing *A* is denoted by β **g*-Cl (*A*).

(2) β **g*-open if *X**A* is β **g*-closed. The collection of all β **g*-open subsets in *X* is denoted by β **GO* (*X*).

Remark 3.2: We have the following implications for the properties of subsets:

closed	$\Rightarrow \beta^*g$ -closed	\Rightarrow	g-closed
\Downarrow	\downarrow		\Downarrow

 β -closed $\Rightarrow \beta g$ closed $\Rightarrow g\beta$ -closed

where none of the implications is reversible as can be seen from the following examples:

Example 3.3 : Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then $A = \{b\}$ is $g\beta$ -closed. But it is not g-closed not even closed.

Example 3.4: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a, b\}, \{a, b, c\}, X\}$. Then $A = \{a, b, d\}$ is g-closed as well as g β -closed. But it is not closed.

Example 3.5: Let $X = \{a, b, c,\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then $A = \{a, c\}$ is β^*g -closed but it is not closed.

Example 3.6: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$. Then $A = \{a, b\}$ is β *g-closed as well as g-closed. But it is not β -closed.

Theorem 3.7: The union of two β^*g -closed sets (and hence the finite union of β^*g -closed sets) in a space *X* is β^*g -closed.

Proof: Let G be a β -open set containing $A \cup B$. Then $Cl(A) \subset G$ and $Cl(B) \subset G$ implies that $Cl(A \cup B) \subset G$. This proves that $A \cup B$ is $\beta * g$ -closed.

Remark 3.8: Arbitrary union of β **g*-closed sets may not be β **g*-closed as shown by the following example.

Example 3.9: Let X = N and τ be the cofinite topology. Let $\{A_n : A_n = \{2, 3, ..., n + 1\}$, $n \in N$ be a collection of β *g-closed sets in X. Then $\bigcup A_n = N \setminus \{1\} = A$ (say) having a finite complement is open and hence β -open not closed. As $Cl(A) = N \not\subset A$ gives, A is not β *g-closed.

Definition 3.10 : The intersection of all β -open subsets of a space *X* containing a set *A* is called the β -kernel of *A* and denoted by β ker (*A*).

Lemma 3.11 : A subset A of a space X is β *g-closed if and only if Cl (A) $\subset \beta$ ker (A).

Proof : Assume that A is a β^*g -closed set in X. Then Cl $(A) \subset G$ whenever $A \subset G$ and G is β -open in X. This implies Cl $(A) \subset \cap \{G : A \subset G \text{ and } G \in \beta O(X)\} = \beta \ker (A)$. For the converse, assume that Cl $(A) \subset \beta \ker (A)$. This implies Cl $(A) \subset \cap \{G : A \subset G \text{ and } G \in \beta O(X)\}$. This shows that Cl $(A) \subset G$ for all β -open sets G containing A. This proves that A is β^*g -closed.

Remark 3.12 : Every pre-open set is β -open.

Lemma 3.13 [3, Lemma 2] : Every singleton $\{x\}$ in a space X is either nowhere dense or preopen.

Theorem 3.14 : Arbitrary intersection of β *g-closed sets in a space X is β *g-closed.

Proof: It is obvious.

Corollary 3.15 : For any space (X, τ) , $\beta^*GO(X)$ is a topology for *X*.

β*-NORMAL SPACES

Definition 4.1: A space X is said to be β -normal [6] (resp. $\beta\beta$ -normal [8]) if for every pair of disjoint closed (resp. β -closed) sets A and B in X, there exist disjoint β -open sets U and V such that $A \subset U$ and $B \subset V$.

Definition 4.2: A space X is said to be β^* -normal if for each pair of disjoint β -closed sets A and B, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$.

Example 4.3 : Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. Then the space X is β -normal but it is not normal.

Example 4.4 : Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. Then the space X is $\beta\beta$ -normal as well β -normal. But it is not β^* -normal, not even normal.

Remark 4.5 : The following diagram holds. It is shown that normality and β -normality are independent; none of the implications is reversible.

By the definitions and examples stated above, we have the following diagram:

β*–normality	\Rightarrow	ββ-normality	
\Downarrow		\Downarrow	
normality	\Rightarrow	β-normality	

Theorem 4.6: For a topological space *X*, the following properties are equivalent:

(1) *X* is β^* -normal;

(2) for any disjoint $H, K \in \beta C(X)$, there exist disjoint $\beta * g$ -open sets U, V such that $H \subset U$ and $K \subset V$;

(3) for any $H \in \beta C(X)$ and any $V \in \beta O(X)$ containing H, there exists a β^*g -open set U of X such that $H \subset U \subset \beta^*g$ -Cl $(U) \subset V$;

(4) for any $H \in \beta C(X)$ and any $V \in \beta O(X)$ containing H, there exists an open set U of X such that $H \subset U \subset Cl(U) \subset V$;

(5) for any disjoint $H, K \in \beta C(X)$, there exist disjoint regular open sets U, V such that $H \subset U$ and $K \subset V$.

Proof : (1) \Rightarrow (2) : Since every open set is β **g*-open, the proof is obvious.

(2) \Rightarrow (3) : Let $H \in \beta C(X)$ and V be any β -open set containing H. Then $H, X \setminus V \in \beta C(X)$ and $H \cap (X \setminus V) = \emptyset$. By (2), there exist β^*g -open sets U, G such that $H \subset U, X \setminus V \subset G$ and $U \cap G = \emptyset$. Therefore, we have $H \subset U \subset X \setminus G \subset V$. Since U is β^*g -open and $X \setminus G$ is β^*g -closed, we obtain $H \subset U \subset \beta^*g$ -Cl $(U) \subset X \setminus G \subset V$.

(3) \Rightarrow (4) : Let $H \in \beta C(X)$ and $H \subset V \in \beta O(X)$. By (3), there exist a β^*g -open set U_0 of X such that $H \subset U_0 \subset \beta^*g$ -Cl $(U_0) \subset V$. Since β^*g -Cl (U_0) is β^*g -closed and $V \in \beta O(X)$, Cl $(\beta^*g$ -Cl $(U_0)) \subset V$. Put Int $(U_0) = U$, then U is open and $H \subset U \subset$ Cl $(U) \subset V$.

 $(4) \Rightarrow (5)$: Let H, K be disjoint β -closed sets of X. Then $H \subset X \setminus K \in \beta O(X)$ and by (4), there exists an open set U_0 such that $H \subset U_0 \subset \operatorname{Cl}(U_0) \subset X \setminus K$. Therefore, $V_0 = X \setminus \operatorname{Cl}(U_0)$ is an open set such that $H \subset U_0, K \subset V_0$ and $U_0 \cap V_0 = \emptyset$. Moreover, put $U = \operatorname{Int}(\operatorname{Cl}(U_0))$ and $V = \operatorname{Int}(\operatorname{Cl}(V_0))$, then U, V are regular open sets such that $H \subset U, K \subset V$ and $U \cap V = \emptyset$.

 $(5) \Rightarrow (1)$: This is obvious.

By using β *g-open sets, we obtain a characterization of normal spaces.

Theorem 4.7: For a topological space *X*, the following properties are equivalent:

(1) X is normal;

(2) for any disjoint closed sets A and B, there exist disjoint β^*g -open sets U and V such that $A \subset U$ and $B \subset V$;

(3) for any closed set A and any open set V containing A, there exists a β^*g -open set U of X such that $A \subset U \subset Cl(U) \subset V$.

Proof : (1) \Rightarrow (2) : This is obvious since every open set is β **g*-open.

 $(2) \Rightarrow (3)$: Let *A* be a closed set and *V* an open set containing *A*. Then *A* and $X \setminus V$ are disjoint closed sets. There exist disjoint β^*g -open sets *U* and *W* such that $A \subset U$ and $X \setminus V \subset W$. Since $X \setminus V$ is closed, we have $X \setminus V \subset$ Int (*W*) and $U \cap$ Int (*W*) = \emptyset . Therefore, we obtain Cl (*U*) \cap Int (*W*) = \emptyset and hence $A \subset U \subset$ Cl (*U*) $\subset X \setminus$ Int (*W*) $\subset V$.

(3) \Rightarrow (1) : Let *A*, *B* be disjoint closed sets of *X*. Then $A \subset X \setminus B$ and $X \setminus B$ is open. By (3), there exists a β **g*-open set *G* of *X* such that $A \subset G \subset Cl(G) \subset X \setminus B$. Since *A* is closed, we

have $A \subset \text{Int}(G)$. Put U = Int(G) and $V = X \setminus \text{Cl}(G)$. Then U and V are disjoint open sets of X such that $A \subset U$ and $B \subset V$. Therefore, X is normal.

Functions and β^* -normal spaces

Definition 5.1 : A function $f: X \rightarrow Y$ is said to be :

(1) almost β *g-continuous if for any regular open set V of Y, $f^{-1}(V) \in \beta$ *GO (X);

(2) almost β^*g -closed if for any regular closed set F of $X, f(F) \in \beta^*GC(Y)$.

Definition 5.2 : A function $f: X \rightarrow Y$ is said to be :

(1) β -irresolute [6] (resp. β -continuous [1]) if for any β -open (resp. open) set V of Y, $f^{-1}(V)$ is β -open in X;

(2) pre β -closed (resp. β -closed [1]) if for any β -closed (resp. closed) set F of X, f(F) is β -closed in Y.

Theorem 5.3 : A function $f : X \to Y$ is an almost $\beta * g$ -closed surjection if and only if for each subset S of Y and each regular open set U containing $f^{-1}(S)$, there exists a $\beta * g$ -open set V such that $S \subset V$ and $f^{-1}(V) \subset U$.

Proof : Necessity. Suppose that f is almost β^*g -closed. Let S be a subset of Y and U a regular open set of X containing $f^{-1}(S)$. Put $V = Y \setminus f(X \setminus U)$, then V is a β^*g -open set of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Sufficiency : Let *F* be any regular closed set of *X*. Then $f^{-1}(Y \setminus f(F)) \subset X \setminus F$ and $X \setminus F$ is regular open. There exists a β^*g -open set *V* of *Y* such that $Y \setminus f(F) \subset V$ and $f^{-1}(V) \subset X \setminus F$. Therefore, we have $f(F) \supset Y \setminus V$ and $F \subset f^{-1}(Y \setminus V)$. Hence, we obtain $f(F) = Y \setminus V$ and f(F) is β^*g -closed in *Y*. This shows that *f* is almost β^*g -closed.

Theorem 5.4 : If $f : X \to Y$ is an almost β^*g -closed β -irresolute (resp. β -continuous) surjection and X is β^* -normal, then Y is β^* -normal (resp. normal).

Proof : Let *A* and *B* be any disjoint β -closed (resp. closed) sets of *Y*. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint β -closed sets of *X*. Since *X* is β^* -normal, there exist disjoint open sets *U* and *V* of *X* such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Put G = Int(Cl(U)) and H = Int(Cl(V)), then *G* and *H* are disjoint regular open sets of *X* such that $f^{-1}(A) \subset G$ and $f^{-1}(B) \subset H$. By Theorem 5.3, there exist β^*g -open sets *K* and *L* of *Y* such that $A \subset K$, $B \subset L$. $f^{-1}(K) \subset G$ and $f^{-1}(L) \subset H$. Since *G* and *H* are disjoint, *K* and *L* are also disjoint. It follows from Theorem 4.6 (resp. Theorem 4.7) that *Y* is β^* -normal (resp. normal).

Theorem 5.5 : If $f: X \to Y$ is a continuous almost β^*g -closed surjection and X is a normal space, then Y is normal.

Proof : The proof is similar to that of Theorem 5.4.

Theorem 5.6 : If $f : X \to Y$ is an almost β *g-continuous pre β -closed (resp. β -closed) injection and Y is β *-normal, then X is β *-normal (resp. normal).

Proof: Let *H* and *K* be disjoint β -closed (resp. closed) sets of *X*. Since *f* is a pre β -closed (resp. β -closed) injection, *f*(*H*) and *f*(*K*) are disjoint β -closed sets of *Y*. Since *Y* is β^* -normal, there exist disjoint open sets *P* and *Q* such that *f*(*H*) \subset *P* and *f*(*K*) \subset *Q*. Now, put U = Int(Cl(P)) and V = Int(Cl(Q)), then *U* and *V* are disjoint regular open sets such that

 $f(H) \subset U$ and $f(K) \subset V$. Since *f* is almost β^*g -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint β^*g -open sets such that $H \subset f^{-1}(U)$ and $K \subset f^{-1}(V)$. It follows from Theorem 4.6 (resp. Theorem 4.7) that *X* is β^* -normal (resp. normal).

Conclusion

L. this paper, we have introduced weak form of normality namely softly-normality and established their relationships with some weak forms of normal spaces in topological spaces.

References

- 1. Abd EI-Monsef, M.E., EI Deeb, S.N. and Mohamoud, R.A., β-open sets and β-continuous mappings, *Bull. Fac. Assiut Univ. Sci.*, **12**, 77-90 (1983).
- 2. Dontchev, J., On generalizing semi- preopen sets, Mem. Fac. Sci. Kochi Univ. (Math.), 16, 35 (1995).
- 3. Hamant, K., Umesh, C. and Rajpal, R., $\pi g\beta$ -normal spaces in topological spaces, *International J. of Science and Research*, **4** (2), 1531-1534 (2015).
- 4. Jankovic, D. S. and Reilly, I. L., Ind. Appl. Math., 21, 717 (1990).
- 5. Levine, N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2), 89-96 (1970).
- Mahmoud, R. A. and Abd EI-Monsef, M.E., β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci., 27, 285 (1990).
- 7. Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N., On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, **53**, 47-53 (1982).
- 8. Sharma, M. C. and Kumar, H., βg -closed sets, $\beta\beta$ -normal spaces and some functions (*communicated*).
- Patil, P. G., Benchalli, S. S. and Gonnagar, P. K., ωα-separation axioms in topological spaces, Jour. of New Results in Science, 5, 96-103 (2014).
- Singal, M. K. and Arya, S. P., Almost normal and almost completely regular spaces, *Glasnik Mathematicki Tom.*, 5(25) 1, 141-152 (1970).
- 11. Singal, M. K. and Singal, A. R., Mildly normal spaces, Kyungpook Math. J., 13, 27-31 (1973).
- 12. Shchepin, E. V., Real functions and near normal spaces, *Sibirskii Mat. Zhurnal*, **13**, 1182-1196 (1972).
- 13. Thabit, S. A. S. and Kamaruihaili, H., p-normality, weak regularity and the product of topological spaces, *European Journal of Scientific Research*, **51**(1), 29-39 (2011).
- Thabit, S. A. S. and Kamaruihaili, H., π-normality on topological spaces, *Int. J. Math. Anal.*, 6(21), 1023-1033 (2012).