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INTRODUCTION    

A self mapping f defined on metric space ( , )X d is called a contraction map if for some 

0 1k  , 

                              ( ( ), ( )) ( , )d f x f y kd x y , for all ,x y X  

Banach (1922) established the existence of the unique fixed point for a contraction map in 
a complete metric space. This celebrated principle has been generalized by many authors Chu 
and Diaz [7], Holmes [9], Reich [15], Hardy and Rogers [8], Wong [17], Smart [16] etc. in 
taking various mappings on different spaces and in early years. In twenty first century the 
work in fixed theory has been rapidly expanded for taking weaker conditions on the spaces as 
well as on the defined mappings on the spaces.  Some results also have found by taking the 
sequence of mappings on the spaces. Branciari [5], Bonsall [6], Kannan [10], Nadlar [12] have 
investigated results on fixed point theorem for mappings satisfying a general contractive 
condition of integral type. Later Zhang [18], Agarwal et al. [2], Altun and Simsek [3] have 
discussed fixed theorems for some new generalized contractive type mappings and in partially 
ordered metric spaces.  Common fixed point of four maps in partially ordered metric spaces is 
discussed by Abbas et al. [1], Amini-Harandi et al. [4]. Results on weakly contractive maps 
studied Radenovic et al. [14]. Recently a common fixed point result for weakly increasing 
mappings satisfying generalized contractive type of Zhang [18] in ordered metric spaces are 
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derived by  Nashine and  Altun [13]. Kalyani et al. [11] have studied a unique fixed point on 
Hilbert space with rational term in the inequality. 

The main aim of this paper is to find a fixed point of a self mapping T on a closed subset
X of a Hilbert space H satisfying inequality having square terms. The theorem follows with 

the statement   

Theorem : Let X be a closed subset of a Hilbert space H and T be a self mapping defined 
on X satisfying

  

                           
2 2 2 2

Tx Ty a x y b x Ty c y Tx          

for all ,x y X and  ,x y  where , , 0a b c  with 0 4 1.a b c     Then T has a unique 

fixed point in .X  

Proof : Let us consider 0 .x X  Then we define a sequence { }nx of iterations T of as 

follows: 

             1 0x Tx , 2 1x Tx , 3 2x Tx , ……i.e. 1n nx Tx  , for 0,1, 2, 3, ......n    

Case (i) : For some ,n  1 ,n nx x  then it immediately follows that nx  is a fixed point of 

.T  

Case (ii) : Now we suppose that 1 ,n nx x  for every 0,1, 2, 3, ........n    

Then, we have                                     

              
2 2

1 1 ,n n n nx x Tx Tx     1n   

Now by making use of the hypothesis, we get                                            

             

2 2 2 2
1 1 1 1n n n n n n n nx x a x x b x Tx c x Tx           

2 2
1 1(1 2 ) ( 2 )n n n nc x x a c x x        

                  1 1n n n nx x k x x    ,     where 

1

22

1 2

a c
k

c

 
  

 
 

Clearly 1,k   as 0 4 1.a b c    Using the inequality from the hypothesis 

successively, we get  

                                      
2

1 1 0
n

n nx x k x x     

                                   1 0n nx x     as n   

Now, we have to show that { }nx  is a Cauchy sequence in .X  For this, for every positive 

integer ,p  we have

        1 1 2 1................n n p n n n n n p n px x x x x x x x             

  

                       

1 0
1

nk
x x

k
 


  0,   n  because 1k 
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Hence { }nx is a Cauchy sequence in X and since X is closed, there exists an element 

X which is the limit of the sequence{ }.nx  Next, we have to show that  is a fixed point of 

.T  In view of the hypothesis it is observe that  

              

2 2 2 22
1 1

2

n n n n

n n

T x a x b x T c x

x x T

               

    
 

Taking ,n   we find that 

                                       
2 2

T b T      
 

Since 0 1,b   it follows that .T    Hence   is a fixed point of .T  For the 

uniqueness of the fixed point, let ,v v  in X be another fixed point of .T  Then it is clear 

that   

                                       2 2 2 2
v a v b Tv v T            

which implies that 

                                         2 2
( )v a b c v      

 

This is a contradiction for 1.a b c    Hence T has a unique fixed point in .X  

CONCLUSION 

The result which is found here is the generalization of the Kann’s type condition and the 

result of Koparde and Waghmode. By taking variation in the last two terms of the above 
mention result,we can get the result of Pandhare and Waghmode. 
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