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In this paper, two definitions for commutative lattice 
ordered group implication algebra (or) commutative l-group 
implication algebra are introduced and it is established that 
they are equivalent. Some examples of commutative         
l-group implication algebra are given and established that 
class of commutative l-group implication algebras lies 
between class of l-groups and class of Boolean algebras. 
The relation between commutative l-group implication 
algebra,  Browerian algebra,  Boolean ring with identity are 
established and the Characterization for  Commutative      
l-group implication algebra is also discussed. 
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INTRODUCTION 

It is well known that a distributive complimented lattice is a Boolean algebra which is 

equivalent to Boolean ring with identity. Conversely Boolean ring with identity is equivalent 
to Boolean algebra. From this relation class of Lattice ordered groups (or) l-groups lies 
between class of lattices and class of Boolean algebras (rings). Hence Birkhaff, G. posed the 
problem. “Develop a common abstraction which includes Boolean Algebras (rings) and lattice 
ordered groups as special cases [problem 115 in [3])”. Many common abstractions namely 
Dually residuated lattice ordered groups or DRl-groups, lattice ordered commutative groups, 
lattice ordered near rings, lattice ordered modules are presented in [4], [6], [1] and [5] 
respectively. In connection with above problem we have introduced commutative l-group 
implication algebra in this paper. 

PRILIMINARIES 

In this section are listed a number of definitions and results which are made use of 

throughout the paper. The symbols ≤, +, −, ∨, ∧ , →,  and ∈ will denote inclusion, sum, 

difference,  join (least upper bound), meet (greatest lower bound), implication, symmetric 
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difference and membership in a lattice L or commutative l-group implication algebra G. Small 
letters a, b,…. will denote elements of the lattice L or commutative  l-group G. 

Definition 1.1 : A lattice L is called bounded lattice if it has least element 0 and greatest 
element 1. A bounded lattice L is called complemented lattice for each a in L there exists a’ in 
L such that a ∨ a’ = 1, a ∧ a’ = 0. 

Boolean Algebra B is a distributive complemented lattice. 

Definition 1.2 : A ring R is called Boolean ring if a2 = a for all a in R. A ring R is called 
Boolean ring with 1 if there exist 1 ∈ R such that 1.a = a.1 = a for all � ∈ �. 

Theorem 1.1 : If R is a Boolean ring then 

(i) a + a = 0 for all � ∈ �. 

(ii) a b =  b a  for all �, � ∈ �. 

Theorem 1.2 : The following systems are equivalent 

(i) Boolean ring B with 1 

(ii) Boolean algebra B 

Definition 1.3 : A non-empty set G is called an l-group if and only if  

(i) (G, +) is a group 

(ii) (G,  ≤) is a lattice 

(iii) If x ≤ �  then a + x + b ≤ a + y + b for all a, b, x, y in G. 

Or 

   (a + (x ∨ y) + b = (a + x + b) ∨ (a + y + b) 

   a + (x ∧ y) + b = (a + x + b) ∧  (a + y + b) for all a, b, x, y in G. 

Definition 1.4 : A system A = {A, +, ≤}  is called a dually residuated lattice ordered 
group or DRl-group if 

(i) (A, +) is an abelian group 

(ii) (A, ≤) is a lattice 

(iii) � ≤ � ⟹  a + b ≤ � + c for all a, b, c in A 

(iv) Given a, b in A there exist  least element x = a – b in A such that b + x ≥  � 

Definition 1.5 : A non-empty set B is called Browerian Algebra if and only if 

(i) (B, ≤) is a lattice 

(ii) B has a least element 

(iii) To each a, b in B, there exist a least x = a – b in B such that b ∨ x ≥ a. 

 Definition 1.6 :  Let L be a non empty set. 0 and 1 be the least and the greatest  element 
of L and → be a binary operation. If → satisfies the following conditions for all x, y, z  ∈ L 

         (I1)  x → (y → z) = y → (x → z),                       

         (I2)  x → x = 1,                                                    

         (I3)  1 → x = x,                                          

         (I4)  0 → x = 1  

         (I5)  (x → y) → y = (y → x) → x, 
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         (I6) (((y → z) → z) → x) → x = (((y → x) → x) → z) → z 

then  (L, →, 0, 1) is called implication algebra. 

Theorem 1.3 : If L is implication algebra then L is lattice implication algebra with respect 
to the following 

(i) x ≤ y  iff   x → y = 1 

(ii) x’ = x → 0 

(iii) x ∨ y = ( x → y) → y 

(iv) x ∧ y = ( x’ → y’)’ 

where  x, y, 1, 0  ∈ L. 

Theorem 1.4 : If L is a implication algebra then  

(i) 0 → x = 1,  1 → x = x,  x → 1 = 1 

(ii) x’ = x → 0 

(iii) x → y ≤ (y → z) → (x → z) 

(iv) x ∨ y = ( x → y) → y 

(v) x ≤ y  ⟹ y → z ≤ x → z,    z → x ≤ z → y 

(vi) x ≤ ( x → y) → y 

for all x, y, z  ∈ L. 

Hence definitions for lattice implication algebra and implication algebra are equivalent. 

COMMUTATIVE L-GROUP IMPLICATION ALGEBRA 

In this section two definitions for commutative l-group implication algebra are 

introduced and it is established that they are equivalent. 

Definition 2.1 :  A non-empty set G is called commutative l-group implication algebra if 
and   only if 

(i) (G, +) is a commutative group 

(ii) (G, →) is an implication algebra. 

(iii) x ≤ y ⟹   a +  x ≤ a + y 

   (a → x) → b  ≥ ( a →  y) → b   

   a → (x → b) ≥ a →  (y  → b)  for all a, b, x, y in G. 

Definition 2.2 : A non empty set G is called commutative l-group implication algebra iff 

(i) (G, + ) is a commutative group 

(ii) (G, →) is an implication algebra 

(iii) a + (x ∨ y) = (a + x) ∨ (a + y) 

  a + (x ∧ y) = (a + x) ∧ (a + y) 

  [a
 
→ (x ∨ y)] → b = [(a

 
→ x) → b] ∧ [(a

 
→ y) → b] =  a → [(x ∨ y) → b] 

  [a
 
→ (x ∧ y)] → b = [(a

 
→ x) → b] ∨ [(a → y) → b = a → [(x

 
∧ y) → b] 

for all x, y, a, b in G. 
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Theorem 2.1 : The above two definitions for commutative l-group implication algebra 
are equivalent 

Proof :  Assume that G is a commutative l-group implication algebra with respect to the 
first definition. 

 To prove that G is a commutative l-group implication algebra with respect to the second 
definition 

That is assume that x ≤ y ⟹ a + x ≤ a +
 
∨,  (a → x) → b ≥  (a → y) → b 

                          a → (x → b) ≥ a → (y → b) for all x, y, a, b in G. 

To prove 

(i) a + (x ∨ y) = (a + x) ∨ (a + y) 

(ii) a + (x ∧ y)  = (a + x) ∧ (a + y) 

(iii) [a
 
→ (x ∨ y)] → b = (a

 
→ x → b) ∧ (a

 
→ y → b) 

(iv) [a → (x ∧ y)] → b = (a
 
→ x → b) ∨ (a → � → b) 

Now let x, y, a, b  in G be arbitrary. 

For (i),  We have  

   x ≤ x ∨ y, y ≤ x ∨ y ⟹ a + x ≤ a + (x  ∨ y) a + y ≤ a + (x  ∨ y) …(1)   

Suppose  

a +  x ≤  a+u,  a +  y ≤  a + u ⟹  x ≤  u,   y ≤ u ⟹  x ∨ y ≤  u ⟹ a + ( x ∨ y) ≤ a + u  …(2) 

From (1) & (2),  a +( x ∨ y) is a l.u.b of a + x, a + y 

                    l.u.b of a + x,  a + y  is (a + x) ∨ (a + y)  

Hence by uniqueness of l.u.b.  a + ( x ∨ y ) = (a + x) ∨ (a + y) 

For (ii),  We have  

   x ∧ y ≤ x,  x ∧ y ≤ y ⟹ a + (x ∧ y) ≤ � + x,  a + (x ∧ y) ≤ a + y …(3)   

Suppose   

 a + v ≤ � + x,  a + v ≤ � + y ⟹ v ≤ x, v ≤ y ⟹ v ≤ x ∧ y ⟹ a + v ≤ a + (x ∧ y) …(4)                                

From (3) & (4),  we have a +(x ∧ y)  is a g.l.b of  � + x, � + y    

                                  g.l.b of  � +x,  � + y is (a + x) ∧ (a + y) 

Hence by uniqueness of g.l.b.   a +(x ∧ y)  = (a + x) ∧ (a + y) 

For (iii), we have    x ≤ x ∨ y,  y ≤ x ∨ y ⟹ (a → x ) → b ≥ [a → (x ∨ y)] → b 

                                                                        (a →  y) →  b ≥ [a →
 
(x ∨ y)] → �    … (5) 

Suppose   (a  → x) → b ≥ (a → u) → b,  (a → y) → b ≥
 
(a  → u) → b 

  ⟹ a → x ≤ a → u, a → y ≤ a → u ⟹ x ≤ u,  y ≤ u ⟹  x ∨  y ≤ u 

   ⟹ a
 
→ (x ∨ y)  ≤ a →

 
u ⟹  a

 
→

 
 (x ∨ y) → b ≥ (a → u) → b  …(6) 

From (5) & (6),   a
 
→ x ∨ y → b  is a g.l.b of  (a  → x) → b,  (a → y) → b 

    g.l.b of (a  → x) → b,(a → y) → b is [(a → x) → b] ∧ [(a
 
→ y) → b] 

Hence by uniqueness of g.l.b.,  [a
 
→ (x ∨ y)] → b = ((a

 
→ x) → b) ∧ [(a

 
→ y) → b] 

       x ≤  x ∨ y,    y ≤ x ∨ y ⟹ x → � ≥ (x ∨ y) →
 
b,  y → � ≥ (x ∨ y) →

 
b 
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⟹ a
 
→ (x → �) ≥ a → [(x ∨ y) →

 
b],    a

 
→ (y → �) ≥ a → [(x ∨ y) →

 
b] 

Suppose   a
 
→ (x → �) ≥ � → (� → �) a

 
→ (y → �) ≥ � → (� → �)  ...(7) 

     x → � ≥  � → �,    y → � ≥  � → � 

x ≤ v,  y ≤ v ⟹ x ∨ y ≤ v ⟹ (x ∨ y) → b ≥  � → � ⟹ a → [(x ∨ y)
 
→ b] ≥ a → (y → �) …(8)                                                                                                                    

From (7)  & (8),    a → [(x ∨ y) → b]  is a g.l.b of a → (x → �),  a → (y→ �),   

g.l.b of a → (x→ �),  a
 
→ (y →  �) is [a→ (x → b)] ∧ [a → (y → b)] 

Hence by uniqueness of g.l.b.,   a → [(x ∨ y) → b] = [a → (x → b) ∧ [a → (y → b)] 

For (iv),   We have      x ≤ x ∧ y,  y ≤ x ∧ y ⟹  a
 
→  x ≥  � → x ∧ y,  a

 
→ y ≥ a → x ∧ y 

              (a → x) → b ≤ a
 
→ (x ∧ y)] → b  (a → y) → b ≤ a

 
→ (x ∧ y)] → b 

Suppose    (a → x) → b
 
≤ (a → v) → b,  (a → y) → b

 
≤ (a → v) → b               …(9) 

            a  → x  ≥ a  → �,  a → y ≥  a  → � ⟹  x  ≥ �,  � ≥ � ⟹ x ∧ y ≥ �,    

                    a → x ∧ y ≥  � → � [a
 
→ (x ∧ y)] → b ≤  � → � → �                   …(10)  

From (9) and (10) we have   [a → (x ∧ y)] → b is the l.u.b.  of  (a → x) → b,   (a →  y) → b 

l.u.b.  of   (a  → x) → b,  (a → y) → b is [(a → x ) → b] ∨ [(a → y) → b] 

Hence  by uniqueness of l.u.b.,  

          [a
 
→ (x ∧ y)] → b = [(a

 
→

 
x) → b] ∨ [(a → �) → b] 

Converse part:  Assume that G is a commutative l-group implication algebra with 
respect to second definition 

To prove that G is a commutative l-group implication algebra with respect to first 
definition 

It is sufficient to prove   x ≤ y ⟹ a + x ≤ � + y ⟹   (a → x) → b ≥ (a → y) → b 

      a
 
→  (x → �) ≥ a → (y → b) for all a, b, x, y in G 

Let a, b, x, y in G be arbitrary and x ≤ y   

        x ≤ y ⟹ x ∨ y = y,  x ∧ � = x    ...(1) 

For (i),      (a+ x) ∨ ( a  + y) = a + x ∨ y, by definition (2) 

                                             = a + y by  (1) 

                               ⟹ a + x ≤ a +  y 

For (ii),    [(a  →x) → b] ∧ [(a → y) → b] = [a
 
→ (x ∨ y)] → b      by definition (2) 

                                                                 = (a → y) → b 

                                        ⟹ (a
 
→ x) → b

 
≥ (a

 
→ y) → b 

For (iii),    [a → (x  → b)] ∨ [(a → (y→ b)]  =  a→ [(x  ∧  y)] → b]  

                                                                     =   a → (x → b) 

                                    ⟹ a → (x → b) ≥ a → (y → b) 

EXAMPLES 

In this section we have given some examples of commutative l-group implication algebra 

and established that class of commutative l-group implication algebras lies between class of 

Browerian  algebras and class of  l-groups. 
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Theorem 3.1 : Every Boolean ring with identity is a commutative l-group implication 
algebra. Converse is not true. 

Theorem 3.2 : Every commutative l-group implication algebra is a l-group. 

Theorem 3.3 : Any Browerian implication algebra is a commutative l-group implication 
algebra. 

Example 3.4 :  Let L = {0, a, b, c, d, 1} be a set with Figure 1 as a partial ordering. 
Define a unary operation “ ‘ “ and a binary operation → denoted by juxt a position on L as 
follows (Tables 1 and 2 respectively) 

 
 
 
 
 
 

 

 

       Figure 1                               Table 1                                                        Table 2 

Then implication algebra is not a commutative l-group implication algebra. 

PROPERTIES OF COMMUTATIVE L-GROUP IMPLICATION ALGEBRA 

In this section properties of commutative l-group implication algebra are derived. The 

relation between commutative l-group implication algebra, Browerian Algebra and Boolean 
Algebra are established. 

It is evident that, the commutative l-group implication algebra has the following 
properties: 

Property 4.1 : [(a – b)  ∨ 0] + b = a ∨  b for all a, b in G. 

Property 4.2 : a ≤ b   a –
 
c ≤ b – c and  c – b ≤  c – a, for all a, b, c in G. 

Property 4.3 : (a ∨ b) –
 
c = (a –

 
c)  ∨ (b –

 
c)  for all a, b, c in G. 

Property 4.4 : a – (b ∨ c) = (a – b)  ∧ (a − c)  for all a, b, c in G. 

Property 4.5 : a ≥ b,   (a –
 
b) + b = a for all a, b, c in G. 

Property 4.6 :   a ∨ b + a ∧ b = a + b,   for all a, b in G. 

Property 4.7 :  (a –
 
b) ∨ 0 + a ∧ b = a, for all a, b in G. 

Property 4.8 :   a ∨ b –  a ∧ b = (a –
 
b) ∨ (b –

 
a) for all a, b in G. 

Property 4.9 :  (i) a – (b – c) ≤  (a – b) + c 

             (a +  b) –
 
c ≤ (a –  c) +  b for all a, b in G. 

Theorem 4.1 : Any l-group implication algebra is a distributive lattice. 

x x’ 

0 1 

a c 

b d 

c a 

d b 

1 0 

→ 0 a b c d 1 

0 1 1 1 1 1 1 

a c 1 b c b 1 

b d a 1 b a 1 

c a a 1 1 a 1 

d b 1 1 b 1 1 

1 0 a b c d 1 
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Theorem 4.2 : If G is a commutative l-group implication algebra and a + b = a ∨ b to 

each a, b in G then there exists least element x in G such that b  ∨ x = b + x ≥ a then G is a 
Browerian algebra. 

Theorem 4.3 :  If G is a commutative l-group implication algebra and G is a Browerian 
algebra then a + b = a ∨ b for all a, b in G. 

Theorem 4.4 :   If G is a commutative l-group implication algebra then 

(i) a * b ≥ 0 

(ii) a * b = 0 iff a =  b 

(iii) a * b = b * a 

(iv) (a ∨ b) ∗ (� ˄ ∧  �) = a * b for all a, b in G. 

Theorem 4.5 : If the symmetric difference is associative is a commutative l-group 

implication algebra G then (G, ∗, ˄) is a Boolean algebra and further 

            a + b = � ˄ � = a *  b ∗ (� ˄ �) 

             a – b =  a * (� ˄ �) for all a, b in G. 

CHARACTERIZATION THEOREM 

In this section, to establish the characterization theorem for commutative l-group 

implication algebra G. 

Theorem 5.1 : Any commutative l-group implication algebra G is a direct product of  
Browerian implication algebra and an l-group implication algebra S iff 

(i) (a + b) − (c + c) ≥ (a –
 
c) + (b –

 
c) and 

(ii) (ma + nb) – (a + b) ≥ (m a –
 
a) + (nb –

 
b) 

for all a, b, c in G and any positive integers m, n. 

Proof : Assume that 

     (a + b) − ( c + c) ≥ ( a –
 
c) + (b – c)      … (1) 

     (ma + nb) – (a + b) ≥  (ma –
 
a) + (nb –

 
b) 

for all a, b, c in G and any positive integers m, n   …(2) 

Then     (a + b) −  (c + c) ≤   a –
 
c) + (b –

 
c) and ...(3) 

     (ma + nb) – (a + b) ≤ (ma –
 
a) + (nb –

 
b) …(4) 

From (1) and (3) we have 

     (a + b) − (c + c) = (a –
 
c) + (b –

 
c) 

From (2) and (4) we have 

     (ma + nb) – (a + b) = (ma – a) + (nb –
 
b) 

To prove       G = B × S 

Let        B = {a/a + a –
 
a = 0} 

             S = {a/a + a –
 
a = a} 

Then we observe that B is a Browerian Algebra. S is a l-group implication algebra. 
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It is easy to prove for any a in G 

                       y = (a + a) –
 
a 

     x = a – [(a + a) –
 
a] 

                          ⟹ y ∈ �,    x ∈  B 

and  a = x + y where y ∈ �,    x ∈ B in a unique way. 

Hence G is the direct product of Browerian Algebra B and an l-group implication algebra 
S. 

Conversely assume that a commutative l=group implication algebra G = B × S where B is 
a Browerian algbra and S is a l-group implication algebra 

To prove: 

     (a + b) − (c + c) ≥ (a –
 
c) + (b –

 
c)  

     (ma + nb) – (a + b) ≥ (ma –
 
a) + (nb –

 
b) 

for all a, b, c in G and any positive integers m, n. 

Let a, b, c in G be arbitrary 

  ⟹ (i) To each [(a –
 
c) + (b –

 
c)], a +  b ∈ B there exist a least –

 
(c + c) ∈ B 

Such that (a + b) −  (c + c) ≥ (a –
 
c) + (b –

 
c) and 

 ⟹ (i) To each   (ma –
 
a) + (nb –

 
b),  ma +  b ∈ B  there exist a  least –

 
(a + b) ∈ B 

Such that  (ma + nb) – (a + b) ≥ (ma − a) + (nb –
 
b) 

Since B is a Browerian algebra, 

⟹ (i) (a + b) − (c + c) ≥ (a –
 
c) + (b –

 
c)  

     (ii) (ma + nb) – (a + b) ≥ (ma –
 
a) + (nb –

 
b) 

for all a, b, c in G and any positive integers m, n. 
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