COMMUTATIVE LATTICE ORDERED GROUP IMPLICATION ALGEBRA

R. PUNITHA

Asst. Professor and Head, Deptt. of Mathematics, Thassim Beevi Abdul Kader College for Women, Kilakarai

AND

DR. R. NATARAJAN

Department of Mathematics, Alagappa University, Karaikudi

RECEIVED : 17 December, 2014

REVISED : 13 January, 2015

In this paper, two definitions for commutative lattice ordered group implication algebra (or) commutative *l*-group implication algebra are introduced and it is established that they are equivalent. Some examples of commutative *l*-group implication algebra are given and established that class of commutative *l*-group implication algebras lies between class of *l*-groups and class of Boolean algebras. The relation between commutative *l*-group implication algebra, Browerian algebra, Boolean ring with identity are established and the Characterization for Commutative *l*-group implication algebra is also discussed.

KEYWORDS : Boolean algebra, *I*-group implication algebra, commutative *I*-group implication algebra, Boolean ring with identity and Browerian implication algebra.

INTRODUCTION

It is well known that a distributive complimented lattice is a Boolean algebra which is equivalent to Boolean ring with identity. Conversely Boolean ring with identity is equivalent to Boolean algebra. From this relation class of Lattice ordered groups (or) *l*-groups lies between class of lattices and class of Boolean algebras (rings). Hence Birkhaff, G. posed the problem. "Develop a common abstraction which includes Boolean Algebras (rings) and lattice ordered groups as special cases [problem 115 in [3])". Many common abstractions namely Dually residuated lattice ordered groups or DRI-groups, lattice ordered commutative groups, lattice ordered near rings, lattice ordered modules are presented in [4], [6], [1] and [5] respectively. In connection with above problem we have introduced commutative *l*-group implication algebra in this paper.

Priliminaries

In this section are listed a number of definitions and results which are made use of throughout the paper. The symbols \leq , +, -, V, \land , \rightarrow , * and \in will denote inclusion, sum, difference, join (least upper bound), meet (greatest lower bound), implication, symmetric

difference and membership in a lattice L or commutative l-group implication algebra G. Small letters a, b, \ldots will denote elements of the lattice L or commutative l-group G.

Definition 1.1 : A lattice *L* is called bounded lattice if it has least element 0 and greatest element 1. A bounded lattice *L* is called complemented lattice for each *a* in *L* there exists *a'* in L such that $a \lor a' = 1$, $a \land a' = 0$.

Boolean Algebra *B* is a distributive complemented lattice.

Definition 1.2 : A ring *R* is called Boolean ring if $a^2 = a$ for all *a* in *R*. A ring *R* is called Boolean ring with 1 if there exist $1 \in R$ such that 1.a = a.1 = a for all $a \in R$.

Theorem 1.1 : If *R* is a Boolean ring then

- (i) a + a = 0 for all $a \in R$.
- (ii) a b = b a for all $a, b \in R$.

Theorem 1.2 : The following systems are equivalent

- (i) Boolean ring *B* with 1
- (ii) Boolean algebra B

Definition 1.3 : A non-empty set G is called an *l*-group if and only if

- (i) (G, +) is a group
- (ii) (G, \leq) is a lattice
- (iii) If $x \le y$ then $a + x + b \le a + y + b$ for all a, b, x, y in G.

 $(a + (x \lor y) + b = (a + x + b) \lor (a + y + b)$

 $a + (x \wedge y) + b = (a + x + b) \wedge (a + y + b)$ for all a, b, x, y in G.

Definition 1.4 : A system $A = \{A, +, \leq\}$ is called a dually residuated lattice ordered group or DR*l*-group if

- (i) (A, +) is an abelian group
- (ii) (A, \leq) is a lattice
- (iii) $b \le c \implies a+b \le a+c$ for all a, b, c in A
- (iv) Given a, b in A there exist least element x = a b in A such that $b + x \ge a$

Definition 1.5 : A non-empty set B is called Browerian Algebra if and only if

- (i) (B, \leq) is a lattice
- (ii) *B* has a least element
- (iii) To each a, b in B, there exist a least x = a b in B such that $b \lor x \ge a$.

Definition 1.6 : Let *L* be a non empty set. 0 and 1 be the least and the greatest element of *L* and \rightarrow be a binary operation. If \rightarrow satisfies the following conditions for all *x*, *y*, *z* \in *L*

 $(I_1) \ x \to (y \to z) = y \to (x \to z),$ $(I_2) \ x \to x = 1,$ $(I_3) \ 1 \to x = x,$ $(I_4) \ 0 \to x = 1$ $(I_5) \ (x \to y) \to y = (y \to x) \to x,$ $(I_6) (((y \to z) \to z) \to x) \to x = (((y \to x) \to x) \to z) \to z$

then $(L, \rightarrow, 0, 1)$ is called implication algebra.

Theorem 1.3 : If L is implication algebra then L is lattice implication algebra with respect to the following

- (i) $x \le y$ iff $x \to y = 1$
- (ii) $x' = x \rightarrow 0$
- (iii) $x \lor y = (x \to y) \to y$
- (iv) $x \land y = (x' \rightarrow y')'$

where $x, y, 1, 0 \in L$.

Theorem 1.4 : If *L* is a implication algebra then

- (i) $0 \rightarrow x = 1, 1 \rightarrow x = x, x \rightarrow 1 = 1$
- (ii) $x' = x \rightarrow 0$
- (iii) $x \to y \le (y \to z) \to (x \to z)$
- (iv) $x \lor y = (x \to y) \to y$
- (v) $x \le y \implies y \to z \le x \to z, \quad z \to x \le z \to y$
- (vi) $x \le (x \rightarrow y) \rightarrow y$

for all $x, y, z \in L$.

Hence definitions for lattice implication algebra and implication algebra are equivalent.

Commutative *L*-group implication algebra

In this section two definitions for commutative *l*-group implication algebra are introduced and it is established that they are equivalent.

Definition 2.1 : A non-empty set G is called commutative *l*-group implication algebra if and only if

- (i) (G, +) is a commutative group
- (ii) (G, \rightarrow) is an implication algebra.
- (iii) $x \le y \Longrightarrow a + x \le a + y$ $(a \to x) \to b \ge (a \to y) \to b$ $a \to (x \to b) \ge a \to (y \to b)$ for all a, b, x, y in G.

Definition 2.2 : A non empty set G is called commutative *l*-group implication algebra iff

- (i) (G, +) is a commutative group
- (ii) (G, \rightarrow) is an implication algebra
- (iii) $\begin{aligned} a + (x \lor y) &= (a + x) \lor (a + y) \\ a + (x \land y) &= (a + x) \land (a + y) \\ [a \to (x \lor y)] \to b = [(a \to x) \to b] \land [(a \to y) \to b] = a \to [(x \lor y) \to b] \\ [a \to (x \land y)] \to b = [(a \to x) \to b] \lor [(a \to y) \to b = a \to [(x \land y) \to b] \end{aligned}$

for all x, y, a, b in G.

Theorem 2.1 : The above two definitions for commutative *l*-group implication algebra are equivalent

Proof: Assume that G is a commutative l-group implication algebra with respect to the first definition.

To prove that G is a commutative l-group implication algebra with respect to the second definition

That is assume that $x \le y \Longrightarrow a + x \le a + V$, $(a \to x) \to b \ge (a \to y) \to b$

$$a \to (x \to b) \ge a \to (y \to b)$$
 for all x, y, a, b in G.

To prove

(i) $a + (x \lor y) = (a + x) \lor (a + y)$ (ii) $a + (x \land y) = (a + x) \land (a + y)$ (iii) $[a \to (x \lor y)] \to b = (a \to x \to b) \land (a \to y \to b)$ (iv) $[a \to (x \land y)] \to b = (a \to x \to b) \lor (a \to y \to b)$ Now let x, y, a, b in G be arbitrary. For (i), We have $x \le x \lor y, y \le x \lor y \Longrightarrow a + x \le a + (x \lor y) a + y \le a + (x \lor y)$...(1) Suppose $a + x \le a + u$, $a + y \le a + u \Longrightarrow x \le u$, $y \le u \Longrightarrow x \lor y \le u \Longrightarrow a + (x \lor y) \le a + u$...(2) From (1) & (2), $a + (x \lor y)$ is a l.u.b of a + x, a + yl.u.b of a + x, a + y is $(a + x) \lor (a + y)$ Hence by uniqueness of l.u.b. $a + (x \lor y) = (a + x) \lor (a + y)$ For (ii), We have $x \land y \le x, x \land y \le y \Longrightarrow a + (x \land y) \le a + x, a + (x \land y) \le a + y$...(3) Suppose $a + v \le a + x, a + v \le a + y \Longrightarrow v \le x, v \le y \Longrightarrow v \le x \land y \Longrightarrow a + v \le a + (x \land y) \dots (4)$ From (3) & (4), we have $a + (x \land y)$ is a g.l.b of a + x, a + yg.l.b of a + x, a + y is $(a + x) \land (a + y)$ Hence by uniqueness of g.l.b. $a + (x \land y) = (a + x) \land (a + y)$ For (iii), we have $x \le x \lor y$, $y \le x \lor y \Longrightarrow (a \to x) \to b \ge [a \to (x \lor y)] \to b$ $(a \rightarrow y) \rightarrow b \ge [a \rightarrow (x \lor y)] \rightarrow b$... (5) Suppose $(a \to x) \to b \ge (a \to u) \to b$, $(a \to y) \to b \ge (a \to u) \to b$ $\Rightarrow a \rightarrow x \leq a \rightarrow u, a \rightarrow y \leq a \rightarrow u \Rightarrow x \leq u, y \leq u \Rightarrow x \lor y \leq u$ $\Rightarrow a \rightarrow (x \lor y) \le a \rightarrow u \Rightarrow a \rightarrow (x \lor y) \rightarrow b \ge (a \rightarrow u) \rightarrow b$...(6) From (5) & (6), $a \to x \lor y \to b$ is a g.l.b of $(a \to x) \to b$, $(a \to y) \to b$ g.l.b of $(a \rightarrow x) \rightarrow b, (a \rightarrow y) \rightarrow b$ is $[(a \rightarrow x) \rightarrow b] \land [(a \rightarrow y) \rightarrow b]$ Hence by uniqueness of g.l.b., $[a \rightarrow (x \lor y)] \rightarrow b = ((a \rightarrow x) \rightarrow b) \land [(a \rightarrow y) \rightarrow b]$

$$x \le x \lor y, y \le x \lor y \Longrightarrow x \to b \ge (x \lor y) \to b, y \to b \ge (x \lor y) \to b$$

34

$$\Rightarrow a \rightarrow (x \rightarrow b) \ge a \rightarrow [(x \lor y) \rightarrow b], \quad a \rightarrow (y \rightarrow b) \ge a \rightarrow [(x \lor y) \rightarrow b]$$

Suppose $a \rightarrow (x \rightarrow b) \ge a \rightarrow (v \rightarrow b) a \rightarrow (y \rightarrow b) \ge a \rightarrow (v \rightarrow b)$...(7)
 $x \rightarrow b \ge v \rightarrow b, \quad y \rightarrow b \ge v \rightarrow b$
 $x \le v, \quad y \le v \Rightarrow x \lor y \le v \Rightarrow (x \lor y) \rightarrow b \ge v \rightarrow b \Rightarrow a \rightarrow [(x \lor y) \rightarrow b] \ge a \rightarrow (y \rightarrow b)$...(8)
From (7) & (8), $a \rightarrow [(x \lor y) \rightarrow b]$ is a g.l.b of $a \rightarrow (x \rightarrow b), \quad a \rightarrow (y \rightarrow b),$
g.l.b of $a \rightarrow (x \rightarrow b), \quad a \rightarrow (y \rightarrow b)$ is $[a \rightarrow (x \rightarrow b)] \land [a \rightarrow (y \rightarrow b)]$
Hence by uniqueness of g.l.b., $a \rightarrow [(x \lor y) \rightarrow b] = [a \rightarrow (x \rightarrow b) \land [a \rightarrow (y \rightarrow b)]$
For (iv), We have $x \le x \land y, \quad y \le x \land y \Rightarrow a \rightarrow x \ge a \rightarrow x \land y, \quad a \rightarrow y \ge a \rightarrow x \land y$
 $(a \rightarrow x) \rightarrow b \le (a \rightarrow v) \rightarrow b, \quad (a \rightarrow y) \rightarrow b \le (a \rightarrow v) \rightarrow b$...(9)
 $a \rightarrow x \ge a \rightarrow v, \quad a \rightarrow y \ge a \rightarrow v \Rightarrow x \ge v, \quad y \ge v \Rightarrow x \land y \ge v,$
 $a \rightarrow x \land y \ge a \rightarrow v [a \rightarrow (x \land y)] \rightarrow b \le a \rightarrow v \rightarrow b$...(10)
From (9) and (10) we have $[a \rightarrow (x \land y)] \rightarrow b$ is the l.u.b. of $(a \rightarrow x) \rightarrow b, \quad (a \rightarrow y) \rightarrow b$

l.u.b. of $(a \rightarrow x) \rightarrow b$, $(a \rightarrow y) \rightarrow b$ is $[(a \rightarrow x) \rightarrow b] \lor [(a \rightarrow y) \rightarrow b]$

Hence by uniqueness of l.u.b.,

$$[a \to (x \land y)] \to b = [(a \to x) \to b] \lor [(a \to y) \to b]$$

Converse part: Assume that G is a commutative l-group implication algebra with respect to second definition

To prove that G is a commutative l-group implication algebra with respect to first definition

It is sufficient to prove
$$x \le y \Rightarrow a + x \le a + y \Rightarrow (a \to x) \to b \ge (a \to y) \to b$$

 $a \to (x \to b) \ge a \to (y \to b)$ for all a, b, x, y in G
Let a, b, x, y in G be arbitrary and $x \le y$
 $x \le y \Rightarrow x \lor y = y, x \land y = x$...(1)
For (i), $(a+x) \lor (a+y) = a + x \lor y$, by definition (2)
 $= a + y$ by (1)
 $\Rightarrow a + x \le a + y$
For (ii), $[(a \to x) \to b] \land [(a \to y) \to b] = [a \to (x \lor y)] \to b$ by definition (2)
 $= (a \to y) \to b$
 $\Rightarrow (a \to x) \to b \ge (a \to y) \to b$
For (iii), $[a \to (x \to b)] \lor [(a \to (y \to b)] = a \to [(x \land y)] \to b]$
 $= a \to (x \to b)$

$$\Rightarrow a \to (x \to b) \ge a \to (y \to b)$$

Examples

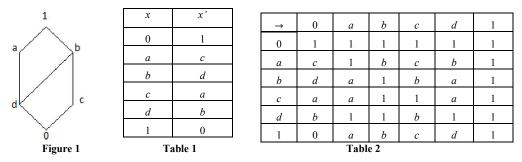
In this section we have given some examples of commutative *l*-group implication algebra and established that class of commutative *l*-group implication algebras lies between class of Browerian algebras and class of *l*-groups.

Theorem 3.1 : Every Boolean ring with identity is a commutative *l*-group implication algebra. Converse is not true.

Theorem 3.2 : Every commutative *l*-group implication algebra is a *l*-group.

Theorem 3.3 : Any Browerian implication algebra is a commutative *l*-group implication algebra.

Example 3.4 : Let $L = \{0, a, b, c, d, 1\}$ be a set with Figure 1 as a partial ordering. Define a unary operation " ' " and a binary operation \rightarrow denoted by juxt a position on L as follows (Tables 1 and 2 respectively)



Then implication algebra is not a commutative *l*-group implication algebra.

PROPERTIES OF COMMUTATIVE *L***-GROUP IMPLICATION ALGEBRA**

In this section properties of commutative *l*-group implication algebra are derived. The relation between commutative *l*-group implication algebra, Browerian Algebra and Boolean Algebra are established.

It is evident that, the commutative *l*-group implication algebra has the following properties:

Property 4.1 : $[(a-b) \lor 0] + b = a \lor b$ for all a, b in G. **Property 4.2 :** $a \le b$ $a-c \le b-c$ and $c-b \le c-a$, for all a, b, c in G. **Property 4.3 :** $(a \lor b) - c = (a-c) \lor (b-c)$ for all a, b, c in G. **Property 4.4 :** $a - (b \lor c) = (a-b) \land (a-c)$ for all a, b, c in G. **Property 4.5 :** $a \ge b, (a-b) + b = a$ for all a, b, c in G. **Property 4.6 :** $a \lor b + a \land b = a + b$, for all a, b in G. **Property 4.7 :** $(a-b) \lor 0 + a \land b = a$, for all a, b in G. **Property 4.8 :** $a \lor b - a \land b = (a-b) \lor (b-a)$ for all a, b in G. **Property 4.9 :** (i) $a - (b-c) \le (a-b) + c$ $(a+b) - c \le (a-c) + b$ for all a, b in G. **Theorem 4.1 :** Any *l*-group implication algebra is a distributive lattice.

36

Theorem 4.2 : If G is a commutative *l*-group implication algebra and $a + b = a \lor b$ to each a, b in G then there exists least element x in G such that $b \lor x = b + x \ge a$ then G is a Browerian algebra.

Theorem 4.3 : If G is a commutative *l*-group implication algebra and G is a Browerian algebra then $a + b = a \lor b$ for all a, b in G.

Theorem 4.4 : If G is a commutative *l*-group implication algebra then

(i)
$$a * b \ge 0$$

- (ii) a * b = 0 iff a = b
- (iii) a * b = b * a
- (iv) $(a \lor b) * (a \land \land b) = a * b$ for all a, b in G.

Theorem 4.5 : If the symmetric difference is associative is a commutative *l*-group implication algebra G then $(G, *, \wedge)$ is a Boolean algebra and further

$$a + b = a \land b = a^* b^* (a \land b)$$
$$a - b = a^* (a \land b) \text{ for all } a, b \text{ in } G$$

CHARACTERIZATION THEOREM

In this section, to establish the characterization theorem for commutative l-group implication algebra G.

Theorem 5.1 : Any commutative l-group implication algebra G is a direct product of Browerian implication algebra and an l-group implication algebra S iff

- (i) $(a+b) (c+c) \ge (a-c) + (b-c)$ and
- (ii) $(ma + nb) (a + b) \ge (ma a) + (nb b)$

for all *a*, *b*, *c* in *G* and any positive integers *m*, *n*.

Proof: Assume that

$$(a+b) - (c+c) \ge (a-c) + (b-c)$$
 ... (1)

$$(ma + nb) - (a + b) \ge (ma - a) + (nb - b)$$

for all a, b, c in G and any positive integers m, n

Then

To prove Let

$$(a+b) - (c+c) \le a-c) + (b-c)$$
 and ...(3)

$$(ma + nb) - (a + b) \le (ma - a) + (nb - b)$$
 ...(4)

From (1) and (3) we have

$$(a + b) - (c + c) = (a - c) + (b - c)$$

From (2) and (4) we have

(ma + nb) - (a + b) = (ma - a) + (nb - b) $G = B \times S$ $B = \{a/a + a - a = 0\}$ $S = \{a/a + a - a = a\}$

Then we observe that B is a Browerian Algebra. S is a l-group implication algebra.

...(2)

It is easy to prove for any *a* in *G*

$$y = (a + a) - a$$
$$x = a - [(a + a) - a]$$
$$\Rightarrow y \in S, \quad x \in B$$

and a = x + y where $y \in S$, $x \in B$ in a unique way.

Hence G is the direct product of Browerian Algebra B and an l-group implication algebra S.

Conversely assume that a commutative *l*=group implication algebra $G = B \times S$ where *B* is a Browerian algebra and *S* is a *l*-group implication algebra

To prove:

$$(a+b) - (c+c) \ge (a-c) + (b-c)$$

 $(ma+nb) - (a+b) \ge (ma-a) + (nb-b)$

for all *a*, *b*, *c* in *G* and any positive integers *m*, *n*.

Let *a*, *b*, *c* in G be arbitrary

 \Rightarrow (i) To each [(a-c)+(b-c)], $a+b \in B$ there exist a least $-(c+c) \in B$

Such that $(a + b) - (c + c) \ge (a - c) + (b - c)$ and

 \Rightarrow (i) To each (ma - a) + (nb - b), $ma + b \in B$ there exist a least $- (a + b) \in B$

Such that $(ma + nb) - (a + b) \ge (ma - a) + (nb - b)$

Since *B* is a Browerian algebra,

 $\Rightarrow (i) (a+b) - (c+c) \ge (a-c) + (b-c)$

(ii)
$$(ma + nb) - (a + b) \ge (ma - a) + (nb - b)$$

for all *a*, *b*, *c* in *G* and any positive integers *m*, *n*.

References

- 1. Ayyappan, M., and Natarajan, R., Lattice ordered near ring, *Acta Ciencia Indica*, Vol. **XXXVIII** M, No. **4**, 727 (2012).
- 2. Belsch, G., Near Rings and Near Fields, North Holland, Amsterdam (1987).
- 3. Birkhoff, G., Lattice Theory, *Amer. Math. Soc. Colloq., Publ.*, **XXV**, Providence R.I, Third Edition, Third Printing (1979).
- 4. Jeyalakshmi, M. and Natarajan, R., DR *l*-group, *Acta Ciencia Indica*, Vol. XXIX M, No. 4, 823-830 (2003).
- 5. Meenakshi, R. and Natarajan, R., *l*-module over a ring *R*, *International Journal of Algebra*, Vol. 4, No. 18, 851-858 (2010).
- 6. Natarajan, R. and Thenmozhy. R., *l*-filters in commutative *l*-group, *Acta Ciencia Indica*, Vol. **XXXIV** M, No. **3**, 1203-1216 (2008).
- Natarajan, R. and Vimala, J., Distributive *l*-ideals in commutative *l*-group, *Acta Ciencia Indica*, Vol. XXXIII M, No. 2, 517-526 (2007).