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Our main aim is to examine salient features of 
Wittgenstein’s Categorial version of set theory which is 
similar to the characteristic features of lattice structure of 
sets. Whereas Toby Bartel’s categorical version is 
inadequate in comparison to the classical approach of set 
theoretic version of sets under containment. The 
occurrences of “set” by “object” and of “function” by 
“morphism”, “improper set” by “set of elements”, 
“underlying set” by “shadow”, all occurrences of “subset of” 
by “set in”, and all other occurrences of “subset” by “set” 
are replaced to formulate axioms of category to show its 
equivalence with lattice structure of ZF axiomatic set 
theory.  
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INTRODUCTION 

Let us choose a first-order dependently typed language with equality and a single 

ternary predicate which means that the composite of two terms equals the third, but that makes 
the axioms more exhaustive and full of paradoxes. We state the axioms of elementary category 
theory with the following notation. 

(i) terms of type S (for objects); 

(ii) a constant term • (the point) of type S; 

(iii) for each pair of terms X and Y of type S, terms of type FX, Y (for morphisms from X 
to Y), and an equality predicate for terms of type FX, Y, and 

(iv) for each triple of terms X, Y, and Z of type S, term f of type FX, Y and term g of type 
FY, Z, a term g ◦ f (the composite of g after f) of type FX, Z.  

FX, Y with “: X → Y”. “: X” as an abbreviation of “: • → X”; a term of type F•,X is an 
element of X.  

1.2 (i) Axiom of Associativity : 

	 	 ∀ W, ∀ X, ∀ Y, ∀ Z, ∀f : W → X, ∀ g : X → Y, ∀ h : Y → Z, (h ◦ g) ◦ f = h ◦ g ◦ f 

(ii) Axiom of Identities : 

	 	 ∀ X, ∃ I : X → X, ∀ Y, (∀f : X → Y, f = f ◦ i) ∧	∀  f : Y → X, f = i ◦ f 
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(iii) Axiom (Scheme) of Choice : For each formula  with a variable of type F•, X, a 
variable of type F•, Y, and an additional variables �⃗ whose types depend on X and Y the axiom 
is given by 

	 	 ∀ X, ∀ Y, ∀	�⃗, (∀ a : X, ∃ b : Y,  (a, b, �⃗)) ⇒	∃	f : X → Y, ∀ a : X,  (a,  f ◦ a, �⃗) 

(iv) Axiom of Extensionality 

	 	 	 ∀ X, ∀ Y, ∀	f : X → Y, ∀ g : X → Y, (∀ a : X, f ◦ a = g ◦ a) ⇒ f = g 

(v) Axiom of the Point : 

	 	 	 	 	 ∀u : •, ∀ v : •, u = v 

(vi) Axiom of Products : 

	 	 	 ∀ X, ∀ Y, ∃ C, ∃ p : C → X, ∃ q : C → Y, ∀ a : X, ∀ b : Y, ∃ u : C, 

   a = p ◦ u ∧ b = q ◦ u ∧	∀ v : C, a = p ◦ u ⇒ b = q ◦ u ⇒	 u = v 

(vii) Axiom of Power Objects : 

	 	 	 ∀ X, ∃ P, ∃ M, ∃ e : M → X, ∃ s : M → P, ∀ D, ∀ I : D → X, 

	 	 	 ∃	u : P, (∀ a : X, (∃ b : D, a = i ◦ b) ⇔	∃ c : M, a = e ◦ c ∧ u = s ◦ c) ∧ 

	 	 	 ∀	v : P, (∀ a : X, (∃ b : D, a = i ◦ b) ⇔	∃ c : M, a = e ◦ c ∧ v = s ◦ c) ⇒	u = v 

(viii) Axiom of Infinity : 

	 	 ∃ N, ∃ z : N, ∃ s : N → N, ∀ a : N, ￢ (z = s ◦ a) ∧	∀ b : N, s ◦ a = s ◦ b ⇒ a = b 

(ix) Axiom (Scheme) of Separation: For each formula  with a variable of type F•, X and 
additional variables �⃗ whose types depend on X, such that 

∀ X, ∀�⃗, ∃ S, ∃ i : S → X, (∀ a : S, ∀ b: S, i ◦ a = i ◦ b ⇒ a = b) ∧	∀ a : X,  (a, �⃗)  

      ⇔∃ b : S, i◦b = a 

(x) Axiom (Scheme) of Collection: For each formula  with a variable of type F•,X, a 
variable of type S, and an additional variables �⃗ whose types may depend on X, the axiom is 
expressed as follows.  

∀ X, ∀	�⃗, (∀ a : X, ∃ B,  (a, B, �⃗)) ⇒	∃ U, ∃ p : U → X, ∀ a : X, ∃ B,  (a, B, �⃗) ∧	∃ I : B 
→ U, (∀ y : B, ∀ z : B, i ◦ y = i ◦ z ⇒ y = z) ∧	∀ y : U, a = p ◦ y ⇔	∃ z : B, y = i ◦ z 

1.3 Theorem  

A morphism f : A → B is bijective if and only if it is both injective and surjective. 

Proof : Let us suppose that f is bijective. Let x and y be elements of A such that f◦x = f◦y; 
then the following relation hold 

  x = idA ◦ x = (f −1 ◦ f) ◦ x = f −1◦ f ◦x = f −1 ◦ f ◦ y = (f −1 ◦ f) ◦ y = idA ◦ y = y, …(1) 

⟹	 so f is injective. Let x be an element of B; then 

     f ◦ f −1 ◦ x = (f ◦ f −1) ◦ x = idB ◦ x = x, 

⟹	 so f is surjective. 

Conversely, let us suppose that f is injective and surjective both By an appropriate 
application of the Axiom of Choice and a statement that x = f ◦ y, we obtain the following 
relation 

   (∀x : B, ∃ y : A, x = f ◦ y) ⇒	∃ g : B → A, ∀ x : B, x = f ◦ g ◦ x …(2) 
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Since f is surjective, it holds for g. If x is an element of B, then x = f ◦ g ◦ x; if y is an 
element of A, then f ◦ y = f ◦ g ◦ f ◦ y, so y = g ◦ f ◦ y since f is injective. Therefore, g is an 
inverse of f. 

1.4. Theorem (Morphism Comprehension Schema) 

Let A and B be objects, and let  (x, y, χ�⃗ ) be a property of elements of A, elements of B, 
and some other variables. It is each element x : A, there exists a unique element y : B such that 
 (x, y, χ�⃗ ) holds. Then there exists a unique morphism f : A → B such that, for every x : A and 
y : B, y = f ◦ x if and only if  (x, y, χ�⃗ ) holds. 

Proof : By an appropriate application of the Axiom of Choice to A, B, and , we get the 
following implication relation  

   (∀ x : A, ∃ y : B,  (x, y, �⃗)) ⇒	∃	f : A → B, ∀ x : A,  (x, f ◦ x, �⃗) …(3) 

Hence, the hypothesis of theorem is satisfied to get f. we now verify that it has the 
property is unique. If y = f ◦ x, then  (x, y, �⃗) holds; if, conversely,  (x, y, �⃗) holds, then        
y = f ◦ x by the condition of unicity. If g is a morphism satisfying the given property of f and x 
is an element of A, then  (x, g ◦ x, �⃗) holds, so f ◦ x = g ◦ x, by using axiom of extensionality,  
f = g. Here ψ (x, �⃗) stand for an element of B, let which states that y = ψ (x, �⃗), and the 
morphism is denoted by (ψ (x, �⃗)) x : A, in which x is a dummy variable. In particular, we 
obtain the relation  

     (ψ (x, �⃗)) x : A ◦ w = ψ (w, �⃗) 

for every element w:A; conversely, it implies that 

     (f ◦ x) x : A = f …(4) 

1.5. Theorem  

Let A, B, and G be objects. Then, for every Cartesian product A × B of A and B, and given 
morphisms x : G → A and y : G → B, there is a unique morphism from G to A × B, denoted   
(x, y), such that π ◦ (x, y) = x and ρ ◦ (x, y) = y. 

Proof : By an application of Morphism Comprehension to G, A × B, and a statement that 
the values in A and B it gives rise to the expression. 

     π ◦ u = x ◦ i ∧ ρ ◦ u = y ◦ I  …(5) 

(where i is an arbitrary element of G and u is the unique element of A × B). The Axiom of 
Products is applied to x ◦ i and y ◦ i, which gives a unique u satisfying the condition (5). We 
get a unique morphism (x, y) : G → A × B such that, for every i : G, given by (i) – (iii)             
π ◦ (x, y) ◦ i = x ◦ i and ρ ◦ (x, y) ◦ i = y ◦ i. By an application axioms of Associativity and 
Extensionality, π ◦ (x, y) = x and ρ ◦ (x, y) = y. Let e : G → A be any morphism such that π ◦ e 
= x and ρ ◦ e = y. Given any element I : G, π ◦ e ◦ i = (π ◦ e) ◦ i = x ◦ i similarly ρ ◦ e ◦ i = y ◦ i, 
so e ◦ i satisfies the requirement for v in the Axiom of Products. Which satisfies (x, y) ◦ i, so  
(x, y) ◦ i = e ◦ i; By an application of Extensionality, we get (x, y) = e.  

Conversely, any A × B, π, and ρ satisfy this universal property of a product of A and B, is 
obtained by taking G to be the point. In this case, we obtain the pairing (x, y) : A × B of 
elements x : A and y : B. 

1.6. Theorem  

Let A and B be objects, and fix a Cartesian product of A and B. If C, with p : C → A and  
q : C → B, is also a Cartesian product of A and B, then there is a unique bijection f : C → A × 
B such that p = π ◦ f and q = ρ ◦ f. 
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Proof : By an application of unique morphism  f, denoted by (p, q); it is only required to 
verify that f is a bijection. Given elements x and y of C such that f ◦ x = f ◦ y, it satisfies the 
relation.  

   p ◦ x = (π ◦ f) ◦ x = π ◦ f ◦ x = π ◦ f ◦ y = (π ◦ f) ◦ y = p ◦ y …(6) 

Similarly q ◦ x = q ◦ y; since C, with p and q, is a Cartesian product, we thus obtain x = y; 
therefore, f is injective. Given an element x of A × B, (since C is a Cartesian product) there 
exist an element y : C such that p ◦ y = π ◦ x and q ◦ y = ρ ◦ x. Which is the defining property of 
f ◦ y, so x = f ◦ y; therefore, f is surjective.  
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