
Acta Ciencia Indica, Vol. XLI M, No. 1 (2015) 21 

 AN ALGEBRAIC CONCEPT ON DISTRIBUTIVE 
SUBSEMILATTICE 

 

J. GOLDEN EBENEZER JEBAMANI
 

Assistant Professor, Department of Mathematics, Sarah Tucker College, Tirunelveli 7 

DR. P.DHARMALINGAM 

Associate Professor, Department Of Mathematics, Periyar Maniammai University, Vallam, Thanjavur 

AND 

DR. P.THANGAVELU  

Associate Professor, Department Of Mathematics, Karunya University Of Technology, Coimbatore 

RECEIVED : 3 December, 2014 

REVISED : 6 January, 2015 
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PRELIMINARIES 

A lattice is a poset in which any two elements have a g.l.b and l.u.b. 
A lattice L is called a distributive lattice if a a  ( b  c) = ( a  b )  ( a  c ) for all a, 

b, c  L. 

A non empty subset S of a lattice L is called sublattice if a, b in S implies a  b, a  b in 
S.  

A meet-semilattice is distributive, if for all a, b, and x: 

  If a ∧ b ≤ x then there exist a' and b' such that a ≤ a' , b ≤ b' and x = a' ∧ b' . 

A join-semilattice is distributive, if for all a, b, and x: 

  If x ≤ a ∨ b then there exist a' and b' such that a' ≤ a, b' ≤ b and x = a' ∨ b' . 

Any distributive meet-semilattice in which binary joins exist is a distributive lattice. A 
join-semilattice is distributive if and only if the lattice of its ideals is distributive. 

A filter F of a lattice is called distributive filter 

    if  F  (X  Y) = (F  X)   (F  Y) for all X, Y in F (L). 

Let S be a semilattice and D a non-empty subset of S, then D is called a convex 
subsemilattice if, 

(i) a , b  D   
	
⇒ a  b  D,  (ii) x, y  D,  c  s  and  x  ≤  c  ≤  y 	

	
⇒ 	�  D 

A convex subsemilattice is generated by a subset A of a semilattice S will be denoted <A> 
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For any two non empty subsets of A and B of a semilattice S, it is defined that 

       A  B =  < {a  b/a  A, b  B} > and  A  B =  < {x/x  A, x  B} >  

That is A  B and A  B are convex subsemilattices of S generated by the elements a  b 
and x = a = b (where a  A, b  B} respectively. 

Theorem 1. For each d  S, {d} is a distributive convex subsemilattice of S. 

Proof : Take D = {d} 

              D Ç X  f 
	
⇒ d ∈ X 

	
⇒  < D, X >  =  X     … (1) 

              D Ç Y  f 
	
⇒ d ∈ Y 

	
⇒   < D, Y >  = Y    … (2) 

Now d ∈ X, d ∈ Y implies d ∈ X  Y  and  d ∈ X  Y 

	
⇒           < D, X  Y >  =  X  Y 

and         < D, X  Y > = X  Y 

Using (1) & (2) 

So           < D, X  Y >  =  X  Y  =  < D, X >  < D, Y > and 

               < D, X  Y >  =  X  Y  =   < D, X >  < D, Y > 

Whenever D Ç X    f  and  D Ç Y    f. 

Hence {d} is a distributive convex subsemilattice of S. 
Theorem 2. A filter F of a semilattice S is distributive if and only if it is a distributive 

convex  subsemilattice of S. 

Proof : Assume that a filter F is a distributive convex subsemilattice. 
To prove : F is a distributive filter 

                 Let X, Y be any two arbitrary filters of S 

Then X, Y are convex subsemilattice of S 

Moreover        F Ç  X    {1}  f 

                        F Ç  Y   {1}  f 

Then we have by definition of convex subsemilattice. 
             <  F, X  Y  >  =  < F, X >    < F, Y > 

               < F,  X  Y  >  =  < F, X >    < F, Y > 

Since < X, Y >  =  X  Y for the filter X, Y of S, so we arrive at 

             F  (X  Y)  =  (F  X)  (F  Y)  for all X, Y of F (S) 

        
	
⇒   F is a distributive filter 

Conversely, let a filter F be a distributive filter of a semilattice S. 

To prove F is a distributive convex subsemilattice. 

Let X, Y be any two arbitrary convex subsemilattice of S. 

We  have     [X  Y)  =  [X)    [Y) 

Claim :             < F, X  Y >  =  < F, X >    < F, Y > 

               F ≤  < F, X >,  F ≤  < F, Y > 
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⇒       F  F  ≤  < F, X >    < F, Y > 

        
	
⇒       F  ≤  < F, X >    < F, Y >               … (1) 

                     X 	≤  <  F, X >, Y  ≤  < F, Y > 

        
	
⇒               X  Y ≤  < F, X >    < F, Y >              … (2) 

Therefore from (1) and (2),  

     < F, X  Y >		≤  < F, X >    < F, Y > … (3) 

Clearly, 

                  < F, X >  =  F  [X) 

                   < F, Y >  =  F  [Y) 

and                  < F, X  Y >  =  F  [X  Y) 

Clearly  < F, X >    < F, Y >  is a convex subsemilattice 

Let      t ∈ < F, X >    < F, Y > 

       
	
⇒          t = a  b where a ∈ < F, X >,  b ∈ < F, Y > 

       
	
⇒			        t = a  b,    a = f1  x1 with f1 ∈ F,   x1 ≥ �, �	in	� 

                                       b  =  f2  y1 with f2 ∈ F,   y1	≥ �,			�	in	� 

       
	
⇒				       t  = a  b,  a  b  =  f1  f2  x1 y1 with   f1 f2 ∈ F 

                                                                       x1  y1≥ x  y,   x  y ∈ X  Y 

       
	
⇒          t  = a  b, a  b  =  (f1  f2)  (x1 y1)  

with    (f1  f2)  (x1 y1)   ∈ 	 (�, X  Y) 

                   t  ∈ < F, X  Y > 

Therefore ,   < F, X >    < F, Y >			≤  < F, X  Y >  …(4) 

From (3) and (4) 

               < F, X >  < F, Y >		=  < F, X  Y > 

Next we claim that   < F, X  Y >  =  < F, X >    < F, Y > 

We have  

              F ≤  < F, X >,    F ≤	< F, Y > 

	
⇒           F  F 	≤		< �,			� >    < F, Y > 

	
⇒      	    F 	≤  < F, X >   < F, Y > 

Also        X ≤  < F, X >,  Y ≤		< �, � > 

	
⇒            X  Y  ≤  < F, X >    < F, Y > 

Therefore     < F, X  Y > 	≤  < F,  X >    < F, Y > ... (5) 

Let  t  ∈ < F, X >     < F, Y > be arbitrary 

 
	
⇒                t ∈ (F  [X) )    (F  [Y))    
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⇒			           t   ≥  a  b, with a		∈ F  [X) 

                                              b 	∈ F  [Y) 

	
⇒              t  ≥  a  b, with  a	≥  f1   x1,  f1		∈  F, x1	≥ x,   x ∈ X 

                                             b	≥ f2   y1, f2		∈ F,  y1	≥ y,  y ∈ Y 

	
⇒              t ≥	 (f1 f2)    (x1   y1) 

                           with   f1 f2		∈  F ,  x1  y1  ≥  x    y,  x  y  ∈ X  Y 

	
⇒              t	∈   < F, X  Y > 

Therefore,    < F, X >    < F, Y >  ≤  < F, X  Y > …(6) 

From (5) and (6) 

           < F, X >    < F, Y > = < F, X    Y >  for all X, Y ∈ F (S) 

Hence  F is a distributive convex subsemilattice of S. 

Theorem 3. A dual filter D of a semilattice S is distributive if and only if it is distributive 
convex subsemilattice of S. 

Proof : Assume that the dual filter D of a semilattice S is a distributive convex 
subsemilattice of S. To prove that D is a distributive dual filter. 

Let X, Y be two arbitrary dual filters of S. Then the dual filter X, Y are Convex 
subsemilattices. 

Moreover            D Ç  X   {0} 		f  

                           D 	Ç Y   {0} 		f.        

                           < D, X  Y > = < D, X >    < D, Y >  …(1) 

                           < D, X  Y > =  < D, X >    < D, Y >  …(2) 

Since     < X, Y >  = X  Y  …(3) 

      for the dual filter X, Y of S. so we arrive  

Using (3) in (1) 

                          D  (X  Y)  =  (D  X)  (D  Y)  …(4)  

      for all X, Y ∈ F (S) 

                          D  (X  Y)  =  (D  X)  (D  Y)  

Equation (4) gives that D is a distributive dual filter. 

Conversely, let D be a distributive dual filter of a semilattice S. 

To prove that D is a distributive convex subsemilattice of S. 

Using the obvious equality 

                     (X  Y] = (X]   (Y] valid for any subsets X, Y of S. 

We have for convex subsemilattices of X, Y of S 

Now                    < D, X  Y >  = D  (X  Y] 

                                                  = D  ((X]  (Y]) 

                              = (D  (X] )  (D  (Y]) 
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     < D, X >  < D, Y > =  < D, X >  < D, Y > 

And the distributive dual filter property gives 

                      < D, X  Y>  =  < D, X >   < D, Y > 

Next we claim that (2) is valid for every dual filter D of S 

                       D ≤ < D, X >    and   D ≤ < D, Y > 

	
⇒     D  D  ≤  < D,  X >    < D,Y > 

	
⇒	    D  ≤  < D,  X >    < D, Y > 

                     X 	≤  < D, X >    and   Y	≤	 < D, Y > 

Implies that    X  Y 	≤  < D,  X >    < D, Y > 

Therefore      < D,  X  Y >  ≤  < D, X >   < D, Y > 

Now              < D, X >  =  D  (X] 

                      < D, Y >  = D  (Y] 

	
⇒     < D,  X >    < D, Y >  = (D  (X])  (D  (Y]) 

and           < D, X  Y >  =  D  (X  Y] 

Clearly < D, X >  < D, Y > is a convex subsemilattice generated by the elements of the 
form (d1  x1 )  (d2 v  y1) where d1, d2 in D,  x1 in x,  x in X and y1	≤ y, y in Y 

	
⇒        x1  y1 in  < D, X  Y >,  (d1  d2)    (x  y) in  < D, X  Y > 

By the convexity of   < D, X  Y > 

        x1   y1		≤  (d1  x1)    (d2  y1)   ≤   (d1  x)   (d2   y) 

                                                            =   (d1   d2)   (x   y) 

Implies (d1   x1)  (d2   y1)  in  < D,  X   Y > 

Thus     < D, X  Y >  =  < D, X >   < D, Y > 

Hence D is a distributive convex subsemilattice. 
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