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INTRODUCTION 

The notion of α-open sets was introduced by O. Njastad [12] in 1965. M. Cladas et al 

introduced the notion α-Ti, (i = 0, 1, 2) and α-Di, (i = 0, 1, 2) spaces using α-open sets. 
Maheswari and Prasad [9] introduced the notion of semi-Ti, (i = 0, 1, 2) spaces using semi 
open sets in 1975. Askishkar and Bhattacha introduced the concepts of Pre- Ti, (i = 0, 1, 2)  
spaces. T. Selvi and A. Punitha Tharani introduced the concepts of Pre*-Ti, (i = 0, 1, 2)  
spaces. Quite recently , the authors introduced a new class of nearly open set namely α-open 
sets and studied some functions using these sets. 

In this paper, we introduce αs*-Ti, and αs*-Di (i = 0, 1, 2) spaces using αs*-open sets and 
investigate some of their basic properties. We also study the relationships among themselves 
and with known separation axioms Ti.α-Ti, pre*-Ti, Di and  α-Di  (i = 0, 1, 2). 

PRELIMINARIES 

Throughout this paper clA and intA respectively closure and the interior of the set A 

where A is a subset of a Topological spaces (X, �) on which no separation axioms are assumed 
unless explicitly stated. The following definitions and results are listed because of their use in 
the sequel. 

Definition 2.1. A subset A of a topological space (X, �) is called  

(i) generalized closed (briefly g-closed) if cl (A) ⊆ U whenever A ⊆ U and U is open in 
X. 

(ii) generalized open (briefly g-open) if X\A is g-closed in X. 
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Definition 2.2. Let A be a subset of X. The generalized closure of A is defined as the 
intersection of all g-closed sets containing A and is denoted by cl*(A). 

Definition 2.3. A subset A of a topological space (X, �) is called  

(i) semi-open [7] (resp. pre-open [10], α-open [12] and αs* open [5]) if A ⊆ cl (int (A)) 
(resp. A ⊆ int (cl (A)), A ⊆ int (cl (int (A))) and A ⊆ int*(cl (int (A))). 

(ii) semi-closed [7](resp. pre-closed [10], α-closed [12] and αs* closed [5]) if  X\A is 
semi-open (resp. pre-open, α-open and αs* open) or equivalently if  int (cl (A)) ⊆ A 
(resp. cl (int (A)) ⊆ A, cl (int (cl (A))) ⊆ A and cl*(int (cl (A))) ⊆ A), 

Definition 2.4. Let A be a subset of X. Then the αs*-closure of A is defined as the 
intersection of all – αs*closed sets containing A and it is denoted by αs*cl (A). 

Definition 2.5. A space X is said to be T0 [14] (resp, semi T0 [9], pre-T0  [1], α-T0 [11]) if 
for every pair of distinct points x and y in X, there is an open (resp, semi open, pre-open,        
α-open) set in X containing one of x and y but not the other. 

Definition 2.6. A space X is said to be T1 [14] (resp, semi T1 [10], pre-T1  [1], α-T1 [12]) if 
for every pair of distinct points x and y in X, there are an open (resp, semi open, pre-open,     
α-open) sets U and V such that U contains x but not y and Vcontains y but not x. 

Definition 2.7. A space X is said to be T2 [14] (resp, semi T2 [19], pre-T2 [1], α-T2 [12]) if 
for every pair of distinct points x and y in X, there are disjoint open (resp, semi-open, pre-
open, α-open) sets U and V in X containing x and y respectively. 

Definition 2.8 [3]. A subset A of a topological space X is said to be αD-set if there are two 
U, V ∈ αO (X, �) such that U ≠ X and A = U − V. 

Definition 2.9 [3]. A space X is said to be α-D0  if for every pair of distinct points x and y 
in X, there exists an αD-set of X containing  x but not y or an αD–set of X containing y but not 
x. 

Definition 2.10 [3]. A space X is said to be α-D1 if for every pair of distinct points x and y 
in X, there exists an αD-set of X containing x but not y and an αD-set of X containing y but not 
x. 

Definition 2.11 [3]. A space X is said to be α-D2  if for every pair of distinct points x and y 
in X, there exists disjoint αD-sets G and E of X containing x and y respectively. 

Theorem 2.12 [5].  

(i) Every α-open set is ��∗ open and every α-closed set is ��∗closed. 

(ii) Every ��∗-open is pre*open and every ��∗-closed set is pre*-closed. 

(iii) Every open set is ��∗ open and every closed set is ��∗closed 

Theorem 2.13 [5]. Let A ⊆ X and let x ∈ X. Then x ∈ ��∗cl (A) if and ony if every ��∗-
open set in X containing x intersects A. 

Theorem 2.14 [5]. If {Aα} is a collection of ��∗-open sets in X, then ⋃ �α is also ��∗–
open in X. 

Lemma 2.15. A topological space (X, �) is T1 if and only if {x} is closed for every x ∈ X. 
[15] 

Definition 2.16 [6].  A function f : X → Y is  said to be   

(i) ��∗-continuous if f –l (V) is ��∗open in X. for every open set V in Y. 

(ii) M��∗-continuous if f –l (V) is ��∗open in X. for every ��∗-open set V in Y. 
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(iii) ��∗-open if f (V) is ��∗open in Y.for every open set V in X. 

(iv) M ��∗-open if f (V) is ��∗open in Y.for every ��∗-open set V in X. 

(v) ��∗-closed if f (V) is ��∗closed in Y.for every closed set V in X. 

(vi) M ��∗-closed  if f (V) is ��∗closed in Y.for every ��∗-closed set V in X. 

Theorem 2.17 [14]. A space X is α-T0 iff αcl{x} ≠ αcl{y} for every  pair of distinct points 
of x, y of X. 

��∗-T0 SPACE 

Definition 3.1. A topological space X is said to be an ��∗-T0  if for any two distinct 

points x and y of X, there exists an ��∗-open set G in X such that x ∈ G and y ∉ G or (y ∈ G and 
x ∉ G) 

Theorem 3.2. Every α–T0 space is ��∗–T0 space 

Proof : Let X be a α-T0 space. Let x and y be two distinct points in X. since X is α-T0, 
there exists an α-open set U such that (x ∈ U and y ∉ U) or (y ∈ U and x ∉ U). By Theorem 
2.12, U is ��∗-open set such that (x ∈ U and y ∉ U) or (y ∈ U and x ∉ U). Thus X is ��∗–T0. 

Conversely, suppose for any x, y ∈ X with x ≠ y, ��∗cl{x} ≠ ��∗cl{y}. Without any loss of 
generality, Let z ∈ X such that z ∈ ��∗cl{x} but z ∉ ��∗cl {y}. Now we claim that x ∉ ��∗cl{y}. 
For if x ∈ ��∗cl{y} then {x} ⊆ ��∗cl {y} which implies that ��∗cl {x} ⊆ ��∗cl {y}. This 
contradicts the fact that z ∉ ��∗cl{y}. Consequently x belongs to the ��∗-open set [��∗cl{y}]c 
to which y does not belong . Hence the space is an ��∗–T0-space 

Theorem 3.3. A space X is ��∗-T0 iff the ��∗-closures of distinct points are distinct. 

Proof : Let x and y be two distinct points of a space X. Since X is ��∗-T0, Now by 
definition, there exists a ��∗-open set U such that x ∈ U but y ∉ U or y ∈ U but x ∉ U. If x ∈ U 
and y ∉ U, then U is a ��∗-open set containing x that does not intersect {y}. By using Theorem 
2.13, it follows that x ∉ ��∗cl ({y}). But x ∈ ��∗cl ({x}), so we get ��∗cl ({x}) ≠ ��∗cl ({y}). 
The proof of the other case is similar. 

��∗–T1 SPACE  

In this section we introduce ��∗–T1 spaces and investigate some of their basic properties. 

Definition 4.1. A topological space X is said to be an ��∗-T1  if for every pair of distinct 
points x and y of X, there exists an ��∗-open sets U and V such that x ∈ U and y ∉ U and y ∈ V 
but x ∉ V. 

Theorem 4. 2 

(i) Every α–T1 space is ��∗–T1 space 

(ii) Every T1  space is ��∗–T1 space 

(iii) Every ��∗–T1 space  is pre*–T1 

Proof : (i) Suppose X is α–T1 space. Let x and y be two distinct points in X. since X is α–
T1 space, there exists α-open sets U and V such that x ∈ U but y ∉ U and y ∈ V but x ∉ V. By 
Theorem 2.12 U and V are ��∗-open sets such that x ∈ U but y ∉ U and y ∈ V but x ∉ V. Hence 
X is    ��∗–T1 . 
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(ii) Suppose X is T1 space. Let x and y be two distinct points in X. since X is T1 space, 
there exists open sets U and V such that x ∈ U but y ∉ U and y ∈ V but x ∉ V. By Theorem 2.12 
U and V are ��∗-open sets such that x ∈ U but y ∉ U and y ∈ V but x ∉ V. Hence X is ��∗–T1. 

(iii) Suppose X is ��∗–T1 space. Let x and y be two distinct points in X. since X is ��∗–T1 
space, there exists ��∗-open sets U and V such that x ∈ U but y ∉ U and y ∈ V but x ∉ V. By 
Theorem 2.12 U and V are pre*-open sets such that x ∈ U but y ∉ U and y ∈ V but x ∉ V. 
Hence X is pre*-T1. 

Remark 4.3. The converse of the above theorem is not true as shown in the following 
Example. 

Example 4.4. Consider the space (X, �) where X = {a, b, c, d} and � = {∅, {a}, {b},    
{a, b}, X} then (X, �) is ��∗–T1 but not α–T1. Hence ��∗–T1 does not implies α–T1. 

Example 4.5. Consider the space (X, �) where X = {a, b, c, d, e, f, g} and � = {∅, {a}, 
{b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}, X} then (X, �) is ��∗–T1 but not T1 . Hence ��∗–T1  
does not implies T1. 

Example 4.6. Consider the space (X, �) where X = {a, b, c, d} and � = {∅, {a, b, c}, X} 
then (X, �)  is pre*–T1 but not ��∗–T1. Hence pre*–T1 does not implies ��∗–T1. 

Theorem 4.7. For a topological space X, the following are equivalent. 

(i) X is ��∗–T1  space. 

(ii) Each singleton set is ��∗-closed in X. 

(iii) The intersection of all ��∗-open sets containing the set A is A. 

(iv) The intersection of all  ��∗-open sets containing the point x ∈ X is {x}. 

Proof : (i) ⇒ (ii) 

Let X be a ��∗–T1   space and x ∈ �. Then for every y ≠ x there exists an ��∗-open set Uy 
in X such that containing y but not x. That is y ∈ Uy ⊆ X\{x}. Therefore, X\{x}  = ∪ {Uy : y ∈
 X\{x}} is ��∗-open in X. By Theorem (2.14), it follows that {x} is ��∗-closed. 

(ii) ⇒ (iii) 

Let A ⊆ X then for each x ∈ X\A, {x} is ��∗-closed in X and hence X\{x} is ��∗-open. 
Clearly A ⊆ X\{x} for each x ∈ X\A. Therefore A ⊆ ∩ {X\{x} : x ∈ X\A}. On the other hand, if  
y ∉ A then y ∈ X\A and y ∉ X\{y}. Therefore y ∉ ∩ {X\{x} : x ∈ X\A} and hence ∩ {X\{x} : x ∈
 X\A} ⊆ A. This proves (iii). 

(iii) ⇒ (iv) 

Take A = {x}. Then A = {x} = ∩ {U : U is ��∗-open  and x ∈ U}. This proves (iv). 

(iv) ⇒ (i) 

Let x, y ∈ X and y ≠ x. Then y ∉ {x} = ∩ {U : U is ��∗-open and x ∈ U}. Hence there 
exists ��∗-open set U containing x but not y. Similarly, there exists a ��∗-open set V containing 
y but not x. Thus X is ��∗–T1 space. 

Theorem 4.8. Let f : X → Y be a function  

(i) If f is a ��∗-closed surjection and X is T1, then Y is ��∗–T1. 

(ii) If f is a M- ��∗closed surjection and X is ��∗–T1, then Y is ��∗–T1. 

(iii) If f is a ��∗-continuous bijection and Y is T1 then X is ��∗–T1. 

(iv) If f is a M-��∗ continuous bijection and Y is ��∗–T1, then X is ��∗–T1. 

Proof: (i) Suppose f : X → Y is ��∗-closed and X is T1. Let y ∈ Y. Since f is onto, there 
exists     x ∈ X, such that f (x) = y. Since X is T1, By Lemma (2.15), {x} is closed in X. Since f 
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is       ��∗-closed map, f ({x}) = {y} is ��∗-closed. Since every singleton set in Y is ��∗-closed, 
by Theorem Y is ��∗–T1. 

(ii) Suppose f is M-��∗closed and X is ��∗–T1. Let y ∈ Y. since f is onto, there exists x ∈ X, 
such that f (x) = y. since X is ��∗–T1, by Theorem (4.7), {x} is ��∗-closed in X. Since f is       
M-��∗cosed, f ({x}) = {y} is ��∗-closed in Y. Since every singleton set in Y is –��∗closed, 
again by Theorem 4.7, Y is ��∗–T1. 

(iii) Suppose f : X → Y is ��∗-continuous bijection and Y is T1. Let x1, x2 ∈ X with x1 ≠ x2. 
Let y1 = f (x1) and y2  = f (x2). Since f is one-one, y1 ≠  y2. Since Y is T1, there exists  open sets 
U and V such that y1 ∈ U  but y2 ∉ U and y2 ∈ V but y1 ∉ V. Again since f is a bijection,            
x1 ∈ f –l (U) but x2 ∉ f –l (U) and x2 ∈ f –l (V) but x1 ∉ f –l (V). since f is ��∗-continuous, f –l (U) and  
f –l (V) are ��∗-open sets in X. This shows that X is ��∗–T1. 

(iv) Suppose f : X → �is a M-��∗continuous bijection and Y is ��∗–T1. Let x1, x2 ∈ X with 
x1 ≠ x2. Let y1 = f (x1) and y2 = f (x2). Since f is one-one, y1 ≠ y2. Since Y is ��∗–T1. There exists 
��∗-open sets U and V such that y1 ∈ U but y2 ∉ U and y2 ∈ V but y1 ∉ V. Again since f is a 
bijection, x1 ∈ f –l (U) but x2 ∉ f –l (U) and x2 ∈ f

 –l (V) but x1 ∉ f –l (V). Since f is M-��∗continuous, 
f –l (U) and f –l (V) are ��∗-open sets in X. This shows that X is ��∗–T1. 

��∗–T2 SPACE  

In this section we introduce ��∗–T2 spaces and investigate some of their basic properties.  

Definition 5.1. A topological space X is said to be ��∗-T2 if for every pair of distinct 
points x and y in X, there are disjoint ��∗-open sets U and V in X containing x and y 
respectively. 

Theorem 5.2. 

 (i) Every α–T2 space is ��∗–T2 space. 

(ii) Every T2  space is ��∗–T2 space. 

(iii) Every ��∗–T2 space  is pre*–T2. 

Proof : (i) Let X be a α–T2 space. Let x and y be two distinct points in X. since X is α–T2 
space, there exists disjoint α-open sets U and V such that x ∈ U and y ∈ V. By Theorem (2.12), 
U and V are disjoint ��∗-open sets such that x ∈ U and y ∈ V.  Hence X is ��∗–T2. 

(ii) Suppose X is T2 space. Let x and y be two distinct points in X. since X is T2 space, 
there exists disjoint open sets U and V such that x ∈ U and y ∈ V. By theorem (2.12) U and V 
are disjoint ��∗-open sets such that x ∈ U and y ∈ V. Hence X is ��∗–T2. 

(iii) Suppose X is ��∗–T2 space. Let x and y be two distinct points in X. since X is ��∗–T2 
space, there exists disjoint ��∗–open sets U and V such that x ∈ U and y ∈ V. By Theorem 
(2.12) U and V are pre*-open sets such that x ∈ U and y ∈ V. Hence X is pre*-T2. 

Remark 5.3. The converse of the statements (i), (ii) and (iii) of the above theorem is not 
true as shown in the following example. 

Example 5.4. Consider the space (X, �) where X = {a, b, c, d, e, f, g} and � ={∅, {a}, 
{b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}, X} then (X, �) is ��∗–T2 but not α-T2 and not T2. 
Hence ��∗–T2  does not implies α-T2 and T2.  

Example 5.5. Consider the space (X, �) where X = {a, b, c, d} and � ={∅, {a, b}, {c, d}, 
X} then (X, �)  is pre*-T2 but not ��∗–T2 . Hence pre*-T2 does not implies ��∗–T2. 

Theorem 5.6. Every ��∗–T2 space is ��∗–T1. 
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Proof : Let X be a ��∗–T2. Let x and y be two distinct points in X. Since X is ��∗–T2. 
There exists disjoint ��∗-open sets U and V such that x ∈ U and y ∈ V. Since U and V are 
disjoint, x ∈ U but y ∉ U and y ∈ V but x ∉ V. Hence X is ��∗–T1. 

However the converse is not true as shown in the following  

Example 5.7. Consider X = {a, b, c, d} where � ={∅, {a}, {b}, {a, b}, X}. Then X is 
��∗–T1 but not  ��∗–T2. 

Theorem 5.8. For a topological space X, the following are equivalent. 

(i) X is ��∗–T2  space 

(ii) Let x ∈ X, then for each y ≠ x there exists a ��∗-open sets U such that x ∈ U and 
y ∉ ��∗cl (U). 

(iii) for each x ∈ X, ∩{��∗cl (U) : U ∈ ��∗ O (X) and x ∈ U}= {x} 

Proof : (i) ⇒ (ii) 

Let X be a ��∗–T2 space. then for every y ≠ x there exists disjoint ��∗-open set U and V  
such that x ∈ U and y ∈ V. Since V is ��∗-open, X\V is ��∗-closed and U ⊆ X\V. This implies 
that ��∗cl (U) ⊆ X\V. Since y ∉ X\V, y ∉ ��∗cl (U). 

(ii) ⇒ (iii) 

If y ≠ x, then there exists an ��∗-open set U such that x ∈ U and y ∉ ��∗cl (U). Therefore   
y ∉ ∩ {��∗cl (U) : U ∈ ��∗ O (X) and x ∈ U}. This proves (iii). 

(iii) ⇒ (i) 

Let y ≠ x in X . then y ∉ {x} = ∩ {��∗cl (U) : U ∈ ��∗O (X) and x ∈ U}. This implies that 
there exists an ��∗-open set U such that x ∈ U and y ∉ ��∗cl (U). Let V = X\��∗ cl (U). Then V 
is –��∗open and y ∈ V. Now U ∩ V = U ∩ (X\��∗ cl (U)) ⊆ U ∩ (X\U) = ∅. Therefore X is a 
��∗-T2 space. 

Theorem 5.9. Let f : X → Y be a bijection  

(i) If f is a ��∗-open  and X is T2, then Y is ��∗–T2. 

(ii) If f is a M- ��∗open and X is ��∗–T2, then Y is ��∗–T2. 

(iii) If f is  ��∗-continuous  and Y is T2 then X is ��∗–T2. 

(iv) If f is M-��∗ continuous and Y is ��∗–T2, then X is ��∗–T2. 

Proof : Let f : X → Y be a bijectioin. 

(i) Suppose f is ��∗-open and X is T2. Let y1 ≠ y2 ∈ Y. Since f is a bijection function, there 
exists x1, x2 ∈ X, such that f (x1) = y1 and f (x2) = y2 with x1 ≠ x2. since X is T2, There exists 
disjoint open sets U and V in X such that x1 ∈ U and x2 ∈ V.  since f is ��∗-open map, f (U) and 
f (V)  are ��∗-open in Y such that y1 = f (x1) ∈  f (U) and y2 = f (x2) ∈ f (V). Again since f is a 
bijection f (U) and f (V) are disjoint in Y.  Thus Y is ��∗–T2. 

(ii) Suppose f is M-��∗open and X is ��∗ −T2. Let y1 ≠ y2 ∈ Y. Since f is a bijection 
function, there exists x1, x2 ∈ X, such that f (x1)  = y1 and f (x2) = y2 with x1 ≠  x2. Since X is 
��∗ −T2. There exists disjoint ��∗open sets U and V in X such that x1 ∈ U and x2 ∈ V.  Since f is 
M-��∗open map, f (U) and f (V) are disjoint ��∗-open in Y containing  y1 and y2. This shows 
that X is ��∗–T2. 

(iii) Suppose f : X → � is a ��∗continuous bijection and Y is T2. Let x1, x2 ∈ X with x1 ≠ x2. 
Let y1 = f (x1) and y2 = f (x2). Since f is one-one, y1 ≠ y2. Since Y is T2. There exists disjoint 
open sets U and V containing y1 and y2 respectively. Again since f is ��∗continuous  bijection, f 



Acta Ciencia Indica, Vol. XLI M, No. 1 (2015) 19 

–l (U) and f –l (V) are disjoint ��∗open sets in X containing x1 and x2 respectively. Thus  X is 
��∗–T2 

(iv) Suppose f : X → � is a M-��∗continuous bijection and Y is ��∗ −T2. Let x1, x2 ∈ X with 
x1 ≠ x2. Let y1 = f (x1) and y2 = f (x2). Since f is one-one, y1≠ y2. Since Y is ��∗ −T2. There exists 
disjoint ��∗-open sets U and V containing y1 and y2 respectively. Again since f is                    
M-��∗continuous  bijection, f –l (U) and f –l (V) are disjoint ��∗open sets in X containing x1 and 
x2 respectively. Thus  X is ��∗–T2. 

��∗–D 

Definition 6.1. A subset A of a Topological space X is called an ��∗–D set if there are 

two U, V ∈ ��∗O (X, �) such that U ≠ X and A = U − V. 

Observe that every ��∗-open set U different from X is an ��∗ –D set if A = U and V= ∅. 

Theorem 6.2. Every α–D set is ��∗–D set. 

Proof : Let A ⊆ X and A is an α–D set . then there are two U, V ∈ � O (X, �) such that 
U ≠ X and A = U−V. By Theorem (2.12), U, V ∈ ��∗ O (X, �). Hence A is ��∗–D set. 

But the converse is not true as shown in the following example. 

Example 6.3. Let X = {a, b, c, d} � ={∅, {a}, {b}, {a, b}, X}. Here {c, d} is ��∗–D set 
but not α–D set. 

Definition 6.4. A topological space X is called ��∗–D0  if for any distinct pair of points x 
and y in X there exists an ��∗–D set of X containing x but not y or an ��∗–D set of X containing 
y but not x. 

Definition 6.5. A topological space (X, �) is called ��∗–D1 if for any distinct pair of 
points x and y of X there exists an ��∗–D set of  X containing x but not y and an ��∗–D set of X 
containing y but not x. 

Definition 6.6. A topological space (X, �) is called ��∗–D2 if for any pair of distinct 
points x and y of X there exists disjoint ��∗–D sets G and E of X containing x and y 
respectively. 

Theorem 6.7. Every α-Di is ��∗-Di, (i = 0, 1, 2).  

Proof : Form the Theorem (2.12) and Definition of α-Di and ��∗-Di, (i = 0, 1, 2).  

Remark 6.8.  

(i) If (X, �) is ��∗-Ti  then (X, �) is ��∗-Di,(i = 0, 1, 2) 

(ii) If (X, �) is ��∗-Di  then (X, �) is ��∗-Di–1, (i = 0, 1, 2) 

Theorem 6.9. 

(i) (X, �) is ��∗-D0    iff  it is ��∗-T0 

(ii) (X, �) is ��∗-D1   iff  it is ��∗-D2 

Proof : (i) The sufficiency is stated in Remark (6.10). The prove necessity, let (X, �) be 
��∗-D0. then for each distinct pair of x, y ∈ X, at least one of x, y say x belongs to an ��∗-D-set 
G where y ∉ G. Let G = U1\U2 such that U1 ≠ X and U1, U2 ∈ ��∗O (X, �) then x ∈ U1. For y ∉ 
G we have two cases (a) y ∉ U1   (b) y ∈ U1 and y ∈ U2. 

In case (a), x ∈ U1 but y ∉ U1 

In case (b), y ∈ U2 but x ∉ U2. Hence X is ��∗-T0. 

(ii) Sufficiency: Remark (6.10)  
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Necessity. Suppose that X is ��∗-D1. then for each distinct pair x, y ∈ X. We have ��∗–D 
sets G1, G2 such that x ∈ G1, y ∉ G1, y ∈ G2, x ∉ G2. Let G = U1\U2, G = U3\U4. By x ∉ G2, it 
follows that either x ∈ U3 or x ∈ U3 and x ∈ U4.Now we consider two cases. 

(i) x ∉ U3. By y ∉ G1, we have two sub cases 

  (a) y ∉ U1. But x ∈ U1\U2, it follows that x ∈ U1\(U2 ∪ U3) and by y ∈ U3\U4 we 
have y ∈ U3\(U4  ∪  U1). Hence (U1\(U2 ∪ U3) ∩ U3\(U1 ∪ U4)= ∅. 

  (b) y ∈ U1 and y ∈ U2, we have x ∈ U1\U2, y ∈ U2, (U1\U2) ∩ U2 = ∅. 

(ii) x ∈ U3 and x ∈ U4 . we have y ∈ U3\U4, x ∈ U4, (U3\U4) ∩ U4 = ∅. 

Therefore X is ��∗-D2. 

Theorem 6.10. If (X,) is ��∗-D1 then it is �
�∗-T0 

Proof : Follows Remark 6.10 and Theorem 6.9.  

Example 6.11. Consider the space (X, �), where X = {a, b, c, d} and � ={∅, {a, b},      
{c, d}, {b}, {b, c, d}, X}. Then X is ��∗T0 but not ��∗D1. 
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