CHARACTERIZATIONS OF LOW SEPARATION AXIOMS VIA α^{s*} OPEN AND α^{s*} CLOSURE OPERATOR

G. HARI SIVA ANNAM

Research Scholar, Manonmaniam Sundaranar University, Abisekapatti, Tirunelveli-627 002 (India)

AND

A. PUNITHA THARANI

Department of Mathematics, St. Mary's College (Autonomous), Tuticorin 628 001 (India)

RECEIVED : 30 November, 2014

REVISED : 6 January, 2015

In this paper we introduce the concepts of using $\alpha^{s_*}T_i$ and $\alpha^{s_*}D_i$ spaces using $-\alpha^{s_*}$ open sets and investigate some of their basic properties and give characterizations for these spaces. We also study the relationships among themselves T_i Pre^{*} T_i and $\alpha - T_i$ spaces.

KEYWORDS AND PHRASES : α^{s_*} -open, α^{s_*-} closed, α^{s_*-} continuous, $\alpha^{s_*-}T_i$, $\alpha^{s_*-}D_i$ (*i* = 0, 1, 2)

INTRODUCTION

The notion of α -open sets was introduced by O. Njastad [12] in 1965. M. Cladas *et al* introduced the notion α - T_i , (i = 0, 1, 2) and α - D_i , (i = 0, 1, 2) spaces using α -open sets. Maheswari and Prasad [9] introduced the notion of semi- T_i , (i = 0, 1, 2) spaces using semi open sets in 1975. Askishkar and Bhattacha introduced the concepts of Pre- T_i , (i = 0, 1, 2) spaces. T. Selvi and A. Punitha Tharani introduced the concepts of Pre*- T_i , (i = 0, 1, 2) spaces. Quite recently, the authors introduced a new class of nearly open set namely α -open sets and studied some functions using these sets.

In this paper, we introduce $\alpha^{s*}-T_i$, and $\alpha^{s*}-D_i$ (i = 0, 1, 2) spaces using α^{s*} -open sets and investigate some of their basic properties. We also study the relationships among themselves and with known separation axioms $T_i \cdot \alpha - T_i$, pre*- T_i , D_i and $\alpha - D_i$ (i = 0, 1, 2).

Preliminaries

hroughout this paper clA and intA respectively closure and the interior of the set A where A is a subset of a Topological spaces (X, τ) on which no separation axioms are assumed unless explicitly stated. The following definitions and results are listed because of their use in the sequel.

Definition 2.1. A subset A of a topological space (X, τ) is called

- (i) generalized closed (briefly g-closed) if cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (ii) generalized open (briefly g-open) if $X \lor A$ is g-closed in X.

117/M014

Definition 2.2. Let A be a subset of X. The generalized closure of A is defined as the intersection of all g-closed sets containing A and is denoted by $cl^*(A)$.

Definition 2.3. A subset A of a topological space (X, τ) is called

- (i) semi-open [7] (resp. pre-open [10], α -open [12] and α^{s*} open [5]) if $A \subseteq cl$ (int (A)) (resp. $A \subseteq int (cl (A)), A \subseteq int (cl (int (A)))$ and $A \subseteq int*(cl (int (A)))$.
- (ii) semi-closed [7](resp. pre-closed [10], α -closed [12] and α^{s*} closed [5]) if X\A is semi-open (resp. pre-open, α -open and α^{s*} open) or equivalently if int (cl (A)) $\subseteq A$ (resp. cl (int (A)) $\subseteq A$, cl (int (cl (A))) $\subseteq A$ and cl*(int (cl (A))) $\subseteq A$),

Definition 2.4. Let A be a subset of X. Then the α^{s*} -closure of A is defined as the intersection of all $-\alpha^{s*}$ closed sets containing A and it is denoted by α^{s*} cl (A).

Definition 2.5. A space X is said to be T_0 [14] (resp. semi T_0 [9], pre- T_0 [1], α - T_0 [11]) if for every pair of distinct points x and y in X, there is an open (resp. semi open, pre-open, α -open) set in X containing one of x and y but not the other.

Definition 2.6. A space X is said to be T_1 [14] (resp. semi T_1 [10], pre- T_1 [1], α - T_1 [12]) if for every pair of distinct points x and y in X, there are an open (resp. semi open, pre-open, α -open) sets U and V such that U contains x but not y and V contains y but not x.

Definition 2.7. A space X is said to be T_2 [14] (resp. semi T_2 [19], pre- T_2 [1], α - T_2 [12]) if for every pair of distinct points x and y in X, there are disjoint open (resp. semi-open, preopen, α -open) sets U and V in X containing x and y respectively.

Definition 2.8 [3]. A subset A of a topological space X is said to be αD -set if there are two U, $V \in \alpha O(X, \tau)$ such that $U \neq X$ and A = U - V.

Definition 2.9 [3]. A space X is said to be α - D_0 if for every pair of distinct points x and y in X, there exists an αD -set of X containing x but not y or an αD -set of X containing y but not x.

Definition 2.10 [3]. A space X is said to be α - D_1 if for every pair of distinct points x and y in X, there exists an αD -set of X containing x but not y and an αD -set of X containing y but not x.

Definition 2.11 [3]. A space X is said to be α - D_2 if for every pair of distinct points x and y in X, there exists disjoint α D-sets G and E of X containing x and y respectively.

Theorem 2.12 [5].

- (i) Every α -open set is α^{s*} open and every α -closed set is α^{s*} closed.
- (ii) Every α^{s*} -open is pre*open and every α^{s*} -closed set is pre*-closed.
- (iii) Every open set is α^{s*} open and every closed set is α^{s*} closed

Theorem 2.13 [5]. Let $A \subseteq X$ and let $x \in X$. Then $x \in \alpha^{s*}$ cl (A) if and ony if every α^{s*} -open set in X containing x intersects A.

Theorem 2.14 [5]. If $\{A_{\alpha}\}$ is a collection of α^{s*} -open sets in X, then $\bigcup A\alpha$ is also α^{s*} -open in X.

Lemma 2.15. A topological space (X, τ) is T_1 if and only if $\{x\}$ is closed for every $x \in X$. [15]

Definition 2.16 [6]. A function $f: X \rightarrow Y$ is said to be

- (i) α^{s*} -continuous if $f^{-1}(V)$ is α^{s*} open in X. for every open set V in Y.
- (ii) $M\alpha^{s*}$ -continuous if $f^{-1}(V)$ is α^{s*} open in X. for every α^{s*} -open set V in Y.

- (iii) α^{s*} -open if f(V) is α^{s*} open in Y.for every open set V in X.
- (iv) $M \alpha^{s*}$ -open if f(V) is α^{s*} open in Y.for every α^{s*} -open set V in X.
- (v) α^{s*} -closed if f(V) is α^{s*} closed in Y.for every closed set V in X.
- (vi) $M \alpha^{s*}$ -closed if f(V) is α^{s*} closed in Y for every α^{s*} -closed set V in X.

Theorem 2.17 [14]. A space X is α -T₀ iff α cl{x} $\neq \alpha$ cl{y} for every pair of distinct points of x, y of X.

α^{s*} - T_0 SPACE

Definition 3.1. A topological space X is said to be an $\alpha^{s*}-T_0$ if for any two distinct points x and y of X, there exists an α^{s*} -open set G in X such that $x \in G$ and $y \notin G$ or $(y \in G$ and $x \notin G)$

Theorem 3.2. Every $\alpha - T_0$ space is $\alpha^{s*} - T_0$ space

Proof: Let X be a α - T_0 space. Let x and y be two distinct points in X. since X is α - T_0 , there exists an α -open set U such that $(x \in U \text{ and } y \notin U)$ or $(y \in U \text{ and } x \notin U)$. By Theorem 2.12, U is α^{s*} -open set such that $(x \in U \text{ and } y \notin U)$ or $(y \in U \text{ and } x \notin U)$. Thus X is α^{s*} - T_0 .

Conversely, suppose for any $x, y \in X$ with $x \neq y$, $\alpha^{s*} cl\{x\} \neq \alpha^{s*} cl\{y\}$. Without any loss of generality, Let $z \in X$ such that $z \in \alpha^{s*} cl\{x\}$ but $z \notin \alpha^{s*} cl\{y\}$. Now we claim that $x \notin \alpha^{s*} cl\{y\}$. For if $x \in \alpha^{s*} cl\{y\}$ then $\{x\} \subseteq \alpha^{s*} cl\{y\}$ which implies that $\alpha^{s*} cl\{x\} \subseteq \alpha^{s*} cl\{y\}$. This contradicts the fact that $z \notin \alpha^{s*} cl\{y\}$. Consequently x belongs to the $\alpha^{s*} - open$ set $[\alpha^{s*} cl\{y\}]^c$ to which y does not belong. Hence the space is an $\alpha^{s*} - T_0$ -space

Theorem 3.3. A space X is α^{s*} - T_0 iff the α^{s*} -closures of distinct points are distinct.

Proof: Let x and y be two distinct points of a space X. Since X is $\alpha^{s*}-T_0$, Now by definition, there exists a α^{s*} -open set U such that $x \in U$ but $y \notin U$ or $y \in U$ but $x \notin U$. If $x \in U$ and $y \notin U$, then U is a α^{s*} -open set containing x that does not intersect $\{y\}$. By using Theorem 2.13, it follows that $x \notin \alpha^{s*}$ cl ($\{y\}$). But $x \in \alpha^{s*}$ cl ($\{x\}$), so we get α^{s*} cl ($\{x\} \neq \alpha^{s*}$ cl ($\{y\}$). The proof of the other case is similar.

α^{s*} - T_1 SPACE

In this section we introduce $\alpha^{s*}-T_1$ spaces and investigate some of their basic properties.

Definition 4.1. A topological space X is said to be an $\alpha^{s*}-T_1$ if for every pair of distinct points x and y of X, there exists an α^{s*} -open sets U and V such that $x \in U$ and $y \notin U$ and $y \in V$ but $x \notin V$.

Theorem 4.2

- (i) Every αT_1 space is $\alpha^{s*} T_1$ space
- (ii) Every T_1 space is $\alpha^{s*}-T_1$ space
- (iii) Every $\alpha^{s*}-T_1$ space is pre*- T_1

Proof : (i) Suppose X is α - T_1 space. Let x and y be two distinct points in X. since X is α - T_1 space, there exists α -open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. By Theorem 2.12 U and V are α^{s*} -open sets such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Hence X is α^{s*} - T_1 .

(ii) Suppose X is T_1 space. Let x and y be two distinct points in X. since X is T_1 space, there exists open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. By Theorem 2.12 U and V are α^{s*} -open sets such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Hence X is $\alpha^{s*}-T_1$.

(iii) Suppose X is $\alpha^{s*}-T_1$ space. Let x and y be two distinct points in X. since X is $\alpha^{s*}-T_1$ space, there exists α^{s*} -open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. By Theorem 2.12 U and V are pre*-open sets such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Hence X is pre*- T_1 .

Remark 4.3. The converse of the above theorem is not true as shown in the following Example.

Example 4.4. Consider the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ then (X, τ) is $\alpha^{s*}-T_1$ but not $\alpha-T_1$. Hence $\alpha^{s*}-T_1$ does not implies $\alpha-T_1$.

Example 4.5. Consider the space (X, τ) where $X = \{a, b, c, d, e, f, g\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}, X\}$ then (X, τ) is $\alpha^{s*}-T_1$ but not T_1 . Hence $\alpha^{s*}-T_1$ does not implies T_1 .

Example 4.6. Consider the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a, b, c\}, X\}$ then (X, τ) is pre*- T_1 but not $\alpha^{s*}-T_1$. Hence pre*- T_1 does not implies $\alpha^{s*}-T_1$.

Theorem 4.7. For a topological space X, the following are equivalent.

- (i) X is $\alpha^{s*}-T_1$ space.
- (ii) Each singleton set is α^{s*} -closed in X.
- (iii) The intersection of all α^{s*} -open sets containing the set A is A.
- (iv) The intersection of all α^{s*} -open sets containing the point $x \in X$ is $\{x\}$.

Proof : (i) \Rightarrow (ii)

Let X be a $\alpha^{s*}-T_1$ space and $x \in X$. Then for every $y \neq x$ there exists an α^{s*} -open set U_y in X such that containing y but not x. That is $y \in U_y \subseteq X \setminus \{x\}$. Therefore, $X \setminus \{x\} = \bigcup \{U_y : y \in X \setminus \{x\}\}$ is α^{s*} -open in X. By Theorem (2.14), it follows that $\{x\}$ is α^{s*} -closed.

(ii) \Rightarrow (iii)

Let $A \subseteq X$ then for each $x \in X \land \{x\}$ is α^{s*} -closed in X and hence $X \backslash \{x\}$ is α^{s*} -open. Clearly $A \subseteq X \backslash \{x\}$ for each $x \in X \land A$. Therefore $A \subseteq \cap \{X \setminus \{x\} : x \in X \land A\}$. On the other hand, if $y \notin A$ then $y \in X \land A$ and $y \notin X \backslash \{y\}$. Therefore $y \notin \cap \{X \setminus \{x\} : x \in X \land A\}$ and hence $\cap \{X \setminus \{x\} : x \in X \land A\}$ and hence $\cap \{X \setminus \{x\} : x \in X \land A\}$ and hence $\cap \{X \setminus \{x\} : x \in X \land A\}$ and hence $\cap \{X \land \{x\} :$

 $(iii) \Rightarrow (iv)$

Take $A = \{x\}$. Then $A = \{x\} = \cap \{U : U \text{ is } \alpha^{s*}\text{-open and } x \in U\}$. This proves (iv). (iv) \Rightarrow (i)

Let $x, y \in X$ and $y \neq x$. Then $y \notin \{x\} = \cap \{U : U \text{ is } \alpha^{s*}\text{-open and } x \in U\}$. Hence there exists α^{s*} -open set U containing x but not y. Similarly, there exists a α^{s*} -open set V containing y but not x. Thus X is α^{s*} - T_1 space.

Theorem 4.8. Let $f: X \rightarrow Y$ be a function

- (i) If f is a α^{s*} -closed surjection and X is T_1 , then Y is $\alpha^{s*}-T_1$.
- (ii) If f is a M- α^{s*} closed surjection and X is $\alpha^{s*}-T_1$, then Y is $\alpha^{s*}-T_1$.
- (iii) If f is a α^{s*} -continuous bijection and Y is T_1 then X is $\alpha^{s*}-T_1$.
- (iv) If f is a $M \alpha^{s*}$ continuous bijection and Y is $\alpha^{s*} T_1$, then X is $\alpha^{s*} T_1$.

Proof: (i) Suppose $f : X \to Y$ is α^{s*} -closed and X is T_1 . Let $y \in Y$. Since f is onto, there exists $x \in X$, such that f(x) = y. Since X is T_1 , By Lemma (2.15), $\{x\}$ is closed in X. Since f

Acta Ciencia Indica, Vol. XLI M, No. 1 (2015)

is α^{s*} -closed map, $f(\{x\}) = \{y\}$ is α^{s*} -closed. Since every singleton set in Y is α^{s*} -closed, by Theorem Y is α^{s*} -T₁.

(ii) Suppose f is $M-\alpha^{s*}$ closed and X is $\alpha^{s*}-T_1$. Let $y \in Y$. since f is onto, there exists $x \in X$, such that f(x) = y. since X is $\alpha^{s*}-T_1$, by Theorem (4.7), $\{x\}$ is α^{s*} -closed in X. Since f is $M-\alpha^{s*}$ cosed, $f(\{x\}) = \{y\}$ is α^{s*} -closed in Y. Since every singleton set in Y is $-\alpha^{s*}$ closed, again by Theorem 4.7, Y is $\alpha^{s*}-T_1$.

(iii) Suppose $f: X \to Y$ is α^{s*} -continuous bijection and Y is T_1 . Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is one-one, $y_1 \neq y_2$. Since Y is T_1 , there exists open sets U and V such that $y_1 \in U$ but $y_2 \notin U$ and $y_2 \in V$ but $y_1 \notin V$. Again since f is a bijection, $x_1 \in f^{-1}(U)$ but $x_2 \notin f^{-1}(U)$ and $x_2 \in f^{-1}(V)$ but $x_1 \notin f^{-1}(V)$. since f is α^{s*} -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are α^{s*} -open sets in X. This shows that X is $\alpha^{s*} - T_1$.

(iv) Suppose $f: X \to Y$ is a M- α^{s*} continuous bijection and Y is $\alpha^{s*}-T_1$. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is one-one, $y_1 \neq y_2$. Since Y is $\alpha^{s*}-T_1$. There exists α^{s*} -open sets U and V such that $y_1 \in U$ but $y_2 \notin U$ and $y_2 \in V$ but $y_1 \notin V$. Again since f is a bijection, $x_1 \in f^{-1}(U)$ but $x_2 \notin f^{-1}(U)$ and $x_2 \in f^{-1}(V)$ but $x_1 \notin f^{-1}(V)$. Since f is M- α^{s*} continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are α^{s*} -open sets in X. This shows that X is $\alpha^{s*}-T_1$.

α^{s*} - T_2 SPACE

n this section we introduce $\alpha^{s*}-T_2$ spaces and investigate some of their basic properties.

Definition 5.1. A topological space X is said to be $\alpha^{s*}-T_2$ if for every pair of distinct points x and y in X, there are disjoint α^{s*} -open sets U and V in X containing x and y respectively.

Theorem 5.2.

- (i) Every αT_2 space is $\alpha^{s*} T_2$ space.
- (ii) Every T_2 space is $\alpha^{s*}-T_2$ space.
- (iii) Every $\alpha^{s*}-T_2$ space is pre*- T_2 .

Proof: (i) Let X be a α - T_2 space. Let x and y be two distinct points in X. since X is α - T_2 space, there exists disjoint α -open sets U and V such that $x \in U$ and $y \in V$. By Theorem (2.12), U and V are disjoint α^{s*} -open sets such that $x \in U$ and $y \in V$. Hence X is α^{s*} - T_2 .

(ii) Suppose X is T_2 space. Let x and y be two distinct points in X. since X is T_2 space, there exists disjoint open sets U and V such that $x \in U$ and $y \in V$. By theorem (2.12) U and V are disjoint α^{s*} -open sets such that $x \in U$ and $y \in V$. Hence X is $\alpha^{s*}-T_2$.

(iii) Suppose X is $\alpha^{s*}-T_2$ space. Let x and y be two distinct points in X. since X is $\alpha^{s*}-T_2$ space, there exists disjoint α^{s*} -open sets U and V such that $x \in U$ and $y \in V$. By Theorem (2.12) U and V are pre*-open sets such that $x \in U$ and $y \in V$. Hence X is pre*- T_2 .

Remark 5.3. The converse of the statements (i), (ii) and (iii) of the above theorem is not true as shown in the following example.

Example 5.4. Consider the space (X, τ) where $X = \{a, b, c, d, e, f, g\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}, X\}$ then (X, τ) is $\alpha^{s*}-T_2$ but not α - T_2 and not T_2 . Hence $\alpha^{s*}-T_2$ does not implies α - T_2 and T_2 .

Example 5.5. Consider the space (X, τ) where $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a, b\}, \{c, d\}, X\}$ then (X, τ) is pre*- T_2 but not $\alpha^{s*}-T_2$. Hence pre*- T_2 does not implies $\alpha^{s*}-T_2$.

Theorem 5.6. Every $\alpha^{s*}-T_2$ space is $\alpha^{s*}-T_1$.

Proof: Let X be a $\alpha^{s*}-T_2$. Let x and y be two distinct points in X. Since X is $\alpha^{s*}-T_2$. There exists disjoint α^{s*} -open sets U and V such that $x \in U$ and $y \in V$. Since U and V are disjoint, $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Hence X is $\alpha^{s*}-T_1$.

However the converse is not true as shown in the following

Example 5.7. Consider $X = \{a, b, c, d\}$ where $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then X is $\alpha^{s*}-T_1$ but not $\alpha^{s*}-T_2$.

Theorem 5.8. For a topological space *X*, the following are equivalent.

- (i) X is α^{s*} -T₂ space
- (ii) Let $x \in X$, then for each $y \neq x$ there exists a α^{s*} -open sets U such that $x \in U$ and $y \notin \alpha^{s*}$ cl (U).
- (iii) for each $x \in X$, $\cap \{ \alpha^{s*} \text{cl}(U) : U \in \alpha^{s*} O(X) \text{ and } x \in U \} = \{ x \}$

Proof: (i) \Rightarrow (ii)

Let X be a $\alpha^{s*}-T_2$ space. then for every $y \neq x$ there exists disjoint α^{s*} -open set U and V such that $x \in U$ and $y \in V$. Since V is α^{s*} -open, X V is α^{s*} -closed and $U \subseteq X \setminus V$. This implies that α^{s*} cl $(U) \subseteq X \setminus V$. Since $y \notin X \setminus V$, $y \notin \alpha^{s*}$ cl (U).

(ii) \Rightarrow (iii)

If $y \neq x$, then there exists an α^{s*} -open set U such that $x \in U$ and $y \notin \alpha^{s*}$ cl (U). Therefore $y \notin \cap \{\alpha^{s*}$ cl (U) : $U \in \alpha^{s*} O(X)$ and $x \in U\}$. This proves (iii).

 $(iii) \Rightarrow (i)$

Let $y \neq x$ in X. then $y \notin \{x\} = \cap \{\alpha^{s*} cl (U) : U \in \alpha^{s*} O(X) \text{ and } x \in U\}$. This implies that there exists an α^{s*} -open set U such that $x \in U$ and $y \notin \alpha^{s*} cl (U)$. Let $V = X \setminus \alpha^{s*} cl (U)$. Then V is $-\alpha^{s*}$ open and $y \in V$. Now $U \cap V = U \cap (X \setminus \alpha^{s*} cl (U)) \subseteq U \cap (X \setminus U) = \emptyset$. Therefore X is a $\alpha^{s*} - T_2$ space.

Theorem 5.9. Let $f: X \rightarrow Y$ be a bijection

- (i) If f is a α^{s*} -open and X is T_2 , then Y is $\alpha^{s*}-T_2$.
- (ii) If f is a M- α^{s*} open and X is $\alpha^{s*}-T_2$, then Y is $\alpha^{s*}-T_2$.
- (iii) If f is α^{s*} -continuous and Y is T_2 then X is $\alpha^{s*}-T_2$.
- (iv) If f is $M \alpha^{s*}$ continuous and Y is $\alpha^{s*} T_2$, then X is $\alpha^{s*} T_2$.

Proof: Let $f: X \to Y$ be a bijectioin.

(i) Suppose f is α^{s*} -open and X is T_2 . Let $y_1 \neq y_2 \in Y$. Since f is a bijection function, there exists $x_1, x_2 \in X$, such that $f(x_1) = y_1$ and $f(x_2) = y_2$ with $x_1 \neq x_2$. since X is T_2 , There exists disjoint open sets U and V in X such that $x_1 \in U$ and $x_2 \in V$. since f is α^{s*} -open map, f(U) and f(V) are α^{s*} -open in Y such that $y_1 = f(x_1) \in f(U)$ and $y_2 = f(x_2) \in f(V)$. Again since f is a bijection f(U) and f(V) are disjoint in Y. Thus Y is $\alpha^{s*}-T_2$.

(ii) Suppose f is $M - \alpha^{s*}$ open and X is $\alpha^{s*} - T_2$. Let $y_1 \neq y_2 \in Y$. Since f is a bijection function, there exists $x_1, x_2 \in X$, such that $f(x_1) = y_1$ and $f(x_2) = y_2$ with $x_1 \neq x_2$. Since X is $\alpha^{s*} - T_2$. There exists disjoint α^{s*} open sets U and V in X such that $x_1 \in U$ and $x_2 \in V$. Since f is $M - \alpha^{s*}$ open map, f(U) and f(V) are disjoint α^{s*} -open in Y containing y_1 and y_2 . This shows that X is $\alpha^{s*} - T_2$.

(iii) Suppose $f: X \to Y$ is a α^{s*} continuous bijection and Y is T_2 . Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is one-one, $y_1 \neq y_2$. Since Y is T_2 . There exists disjoint open sets U and V containing y_1 and y_2 respectively. Again since f is α^{s*} continuous bijection, f ⁻¹ (U) and $f^{-1}(V)$ are disjoint α^{s*} open sets in X containing x_1 and x_2 respectively. Thus X is $\alpha^{s*}-T_2$

(iv) Suppose $f: X \to Y$ is a M- α^{s*} continuous bijection and Y is $\alpha^{s*} - T_2$. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is one-one, $y_1 \neq y_2$. Since Y is $\alpha^{s*} - T_2$. There exists disjoint α^{s*} -open sets U and V containing y_1 and y_2 respectively. Again since f is M- α^{s*} continuous bijection, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint α^{s*} open sets in X containing x_1 and x_2 respectively. Thus X is $\alpha^{s*} - T_2$.

α^{s*} –**D**

Definition 6.1. A subset A of a Topological space X is called an $\alpha^{s*}-D$ set if there are two U, $V \in \alpha^{s*}O(X, \tau)$ such that $U \neq X$ and A = U - V.

Observe that every α^{s*} -open set *U* different from *X* is an α^{s*} -*D* set if A = U and $V = \emptyset$. **Theorem 6.2.** Every α -*D* set is α^{s*} -*D* set.

Proof: Let $\underline{A} \subseteq X$ and A is an α -D set . then there are two $U, V \in \alpha O(X, \tau)$ such that $U \neq X$ and A = U - V. By Theorem (2.12), $U, V \in \alpha^{s*} O(X, \tau)$. Hence A is $\alpha^{s*} - D$ set.

But the converse is not true as shown in the following example.

Example 6.3. Let $X = \{a, b, c, d\}$ $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Here $\{c, d\}$ is $\alpha^{s*}-D$ set but not $\alpha-D$ set.

Definition 6.4. A topological space X is called $\alpha^{s*}-D_0$ if for any distinct pair of points x and y in X there exists an $\alpha^{s*}-D$ set of X containing x but not y or an $\alpha^{s*}-D$ set of X containing y but not x.

Definition 6.5. A topological space (X, τ) is called $\alpha^{s*}-D_1$ if for any distinct pair of points x and y of X there exists an $\alpha^{s*}-D$ set of X containing x but not y and an $\alpha^{s*}-D$ set of X containing y but not x.

Definition 6.6. A topological space (X, τ) is called $\alpha^{s*}-D_2$ if for any pair of distinct points x and y of X there exists disjoint $\alpha^{s*}-D$ sets G and E of X containing x and y respectively.

Theorem 6.7. Every α - D_i is α^{s*} - D_i , (*i* = 0, 1, 2).

Proof: Form the Theorem (2.12) and Definition of α - D_i and α^{s*} - D_i , (i = 0, 1, 2).

Remark 6.8.

(i) If (X, τ) is α^{s*}-T_i then (X, τ) is α^{s*}-D_i,(i = 0, 1, 2)
(ii) If (X, τ) is α^{s*}-D_i then (X, τ) is α^{s*}-D_{i-1}, (i = 0, 1, 2)

Theorem 6.9.

(i) (X, τ) is $\alpha^{s*}-D_0$ iff it is $\alpha^{s*}-T_0$

(ii) (X, τ) is $\alpha^{s*}-D_1$ iff it is $\alpha^{s*}-D_2$

Proof: (i) The sufficiency is stated in Remark (6.10). The prove necessity, let (X, τ) be $\alpha^{s*}-D_0$ then for each distinct pair of $x, y \in X$, at least one of x, y say x belongs to an $\alpha^{s*}-D$ -set G where $y \notin G$. Let $G = U_1 \setminus U_2$ such that $U_1 \neq X$ and $U_1, U_2 \in \alpha^{s*}O(X, \tau)$ then $x \in U_1$. For $y \notin G$ we have two cases (a) $y \notin U_1$ (b) $y \in U_1$ and $y \in U_2$.

In case (a), $x \in U_1$ but $y \notin U_1$

In case (b), $y \in U_2$ but $x \notin U_2$. Hence X is α^{s*} - T_0 .

(ii) Sufficiency: Remark (6.10)

Necessity. Suppose that X is $\alpha^{s*}-D_1$. then for each distinct pair x, $y \in X$. We have $\alpha^{s*}-D$ sets G_1, G_2 such that $x \in G_1, y \notin G_1, y \in G_2, x \notin G_2$. Let $G = U_1 \setminus U_2, G = U_3 \setminus U_4$. By $x \notin G_2$, it follows that either $x \in U_3$ or $x \in U_3$ and $x \in U_4$. Now we consider two cases.

- (i) $x \notin U_3$. By $y \notin G_1$, we have two sub cases
 - (a) $y \notin U_1$. But $x \in U_1 \setminus U_2$, it follows that $x \in U_1 \setminus (U_2 \cup U_3)$ and by $y \in U_3 \setminus U_4$ we have $y \in U_3 \setminus (U_4 \cup U_1)$. Hence $(U_1 \setminus (U_2 \cup U_3) \cap U_3 \setminus (U_1 \cup U_4) = \emptyset$.
 - (b) $y \in U_1$ and $y \in U_2$, we have $x \in U_1 \setminus U_2$, $y \in U_2$, $(U_1 \setminus U_2) \cap U_2 = \emptyset$.

(ii) $x \in U_3$ and $x \in U_4$. we have $y \in U_3 \setminus U_4$, $x \in U_4$, $(U_3 \setminus U_4) \cap U_4 = \emptyset$.

Therefore *X* is α^{s*} -*D*₂.

Theorem 6.10. If (X,) is α^{s*} - D_1 then it is α^{s*} - T_0

Proof: Follows Remark 6.10 and Theorem 6.9.

Example 6.11. Consider the space (X, τ) , where $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a, b\}, \{c, d\}, \{b\}, \{b, c, d\}, X\}$. Then X is $\alpha^{s*}T_0$ but not $\alpha^{s*}D_1$.

References

- 1. Ashishkar and Bhattacharyya, Some weak separation axioms, *Bull. Cal. Math. Soc.*, **82**,415-422 (1990).
- 2. Subramanian, Bala, Generalized separation axioms, *Scientia Magna*, 6(4), 1-14 (2010).
- 3. Caldas, M., Gorgiou, D.N. and Jafari, S., Characterizations of low seperartion axioms via α-open sets and α-closure operator, *Bol. Soc. Paran. Mat.*, (3s)v, **21**, 1-14 (2003).
- 4. Dunham, W., A new closure operator for Non-T1 topologies, Kyungpook Math. J., 22, 55-60 (1982).
- Hari Siva Annam, G. and Punitha Tharani, A., On some New Class of Nearly closed and Open sets, International Journal of Mathematical Archive, 5(11), 47-52 Nov. (2014).
- Punitha Tharani, A. and Hari Siva Annam, G., On α^{s*}-conitinuous and M α^{s*}-continuous mappings, Archimedes J. Math., 4(4), 179-186 (2014).
- 7. Levine, N., Semi-open sets and semi-continuity in topological space *s*, *Amer. At. Monthly*, **70(1)**, 36-41 (1963).
- 8. Levine, N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2), 89-96 (1970).
- 9. Maheswari, S. N. and Prasad, R., Some new separation axioms, *Annales de la Societe Scientifique de Bruxelles T.*, **89 III**, 395-402 (1975).
- Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N., On Precontinuous and Weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53, 47-53 (1982).
- Maki, H., Devi, R. and Balachandran, K., Generalized α-closed sets in topology, *Bull. Fukuoka* Univ. Ed., Part III, 42, 13-21 (1993).
- 12. Njastad, O., Some classes of nearly open sets, Pacific J. Math., 15, 961-970 (1965).
- 13. Selvi, T., Punitha Tharani, A., Lower Separation Axioms Using Pre*-open Sets, Asian Journal of Current Engineering and Maths, 5, 305-307 (2012).
- Thakur, C. K., Raman, et. al., α-Generalized amd α*-Separation Axioms for Topological Spaces, IOSR Journal of Mathematics, 3, 32-36 (2014).
- 15. Willard, S., General Topology, Addison-Wesley Publishing Company, Inc. (1970).