RINGS ON PRE A*-ALGEBRAS

Dr. Mrs. Y. PRAROOPA

Associate Professor, Department of Mathematics, S & H, Andhra Loyola Institute of Engineering & Technology, Vijayawada-8 (A.P.) India

RECEIVED : 21 November, 2014

This paper is a study on algebraic structure of Pre A^* -algebra and proves basic theorems on Pre A^* -algebra. This paper defines *p*-ring, Boolean ring and 3-ring. Establish Pre A^* -algebra as a Boolean ring and Boolean ring as a Pre A^* -algebra. It includes to prove Pre A^* algebra as a 3-ring and 3-ring as a Pre A^* -algebra.

KEYWORDS : Pre *A**-algebra, *p*-ring, ring on Pre *A**-algebra, Boolean ring, 3-ring.

INTRODUCTION

In a draft paper [4], The Equational theory of Disjoint Alternatives, around 1989, E.G. Manes introduced the concept of Ada (Algebra of disjoint alternatives) $(A, V, (-)^{I}, (-), 0, 1, 2)$ (Where, V are binary operations on A, $(-)^{l}$, (-) are unary operations and 0, 1, 2 are distinguished elements on A) which is however differ from the definition of the Ada of his later paper [5] Adas and the equational theory of if-then-else in 1993. While the Ada of the earlier draft seems to be based on extending the If-Then-Else concept more on the basis of Boolean algebras and the later concept is based on C-algebras $(A, V, (-)^{\sim})$ (where, V are binary operations on A, $(-)^{\sim}$ is a unary operation) introduced by Fernando Guzman and Craig C. Squir [2]. In 1994, P. Koteswara Rao [3] first introduced the concept of A*-algebra $(A, V, *, (-)^{\sim}, (-), 0, 1, 2)$ (where, V, * are binary operations on $A, (-)^{\sim}, (-)$ are unary operations and 0, 1, 2 are distinguished elements on A) not only studied the equivalence with Ada, C-algebra, Ada's connection with 3-Ring, Stone type representation but also introduced the concept of A^* -clone, the If-Then-Else structure over A^* -algebra and Ideal of A^* -algebra. In 2000, J. Venkateswara Rao [6] introduced the concept Pre A*-algebra $(A_{1,1}, (-))$ (where, V are binary operations on A, $(-)^{\sim}$ is a unary operation on A analogous to C-algebra as a reduct of A*- algebra, studied their subdirect representations, obtained the results that $2 = \{0, 1\}$ and $3 = \{0, 1, 2\}$ are the subdirectly irreducible Pre-A*-algebras and every Pre-A*-algebra can be imbedded in 3^X (where 3^X is the set of all mappings from a nonempty set X into $3 = \{0, 1, 2\}$). Praroopa, Y. [13] introduced the specific concepts on Pre A*-algebra and of the papers [8], [9], studied Pre A*-algebra as a semilattice, lattice in Pre A*-algebra.

Preliminaries

1.1 Definition : An algebra $(A, , , (-)^{\sim})$ satisfying

- $(x^{\sim})^{\sim} = x, x A$
- x x = x, x A

116/M014

- x y = y x, x, y A
- $(x \ y)^{\sim} = x^{\sim} \ y^{\sim}, \ x, y \ A$
- x (y z) = (x y) z, x, y, z A
- x (y z) = (x y) (x z), x, y, z A
- $x y = x (x^{\sim} y), x, y A$

is called a Pre A* - algebra.

1.2 Example :

 $3 = \{0, 1, 2\}$ with operations $\land, \lor (-)^{\sim}$ defined below is a Pre A*-algebra.

۸	012	V	0 1 2	x x~
0	0 0 2	0	0 1 2	0 1
1	0 1 2	1	1 1 2	1 0
2	2 2 2	2	222	2 2
		· · · · ·		

1.3 Note :

The elements 0, 1, 2 in the above example satisfy the following laws:

(a) $2^{\sim} = 2$ (b) $1 \wedge x = x$ for all $x \in 3$ (c) $0 \vee x = x$, $\forall x \in 3$ (d) $2 \wedge x = 2 \vee x = 2$, $\forall x \in 3$.

1.4 Example : $2 = \{0,1\}$ with operations $\land, \lor, (-)^{\sim}$ defined below is a Pre A*-algebra.

٨	0	1	V	0	1	x	x~
0	0		0	0	1	0	1
1	0	1	1	1	1	1	0

1.5 Note : $(2, \lor, \land, (-)^{\sim})$ is a Boolean algebra. So every Boolean algebra is a Pre A^* -algebra

1.6 Note : If (mn) is an axiom in Pre A*-algebra, then $(mn)^{\sim}$ is its dual.

PRE A*-ALGEBRAS AND RINGS

2.1 Basic Theorems in Pre *A**-algebra :

Theorem 1 : De-Morgan laws :

- Let $(A, \wedge, (-)^{\sim}, 1)$ be a Pre A*-algebra. Then,
- (i) $(a \wedge b)^{\sim} = a^{\sim} \vee b^{\sim}$
- (ii) $(a \lor b) \simeq = a \simeq \land b \simeq$

2.2 Lemma 1 : Uniqueness of identity in a Pre A*-algebra :

10

Let $(A, \land, (-)^{\sim}, 1)$ be a Pre A*-algebra and $a \in B(A)$ be an identity for \land , then a^{\sim} is an identity for \lor, a is unique if it exists, denoted by 1 and a^{\sim} by 0 where $B(A) = \{x/x \lor x^{\sim} = 1\}$ *i.e.*, (a) $1 \land x = x, \forall x \in A$ (b) $0 \lor x = x, \forall x \in A$.

2.3 Lemma 2 : Let A be a Pre A^* -algebra with 1 and 0 and let $x, y \in A$.

- (i) If $x \lor y = 0$, then x = y = 0
- (ii) If $x \lor y = 1$, then $x \lor x^{\sim} = 1$

2.4 Theorem 2 : Let A, be a Pre A^* -algebra with 1 and $x, y \in A$.

If $x \wedge y = 0$, $x \vee y = 1$, then $y = x^{\sim}$

2.5 Theorem 3 : Let $(A, \land, (-)^{\sim}, 1)$ be a Pre A*-algebra.

Then we have the following (i) Involution law : $(a)^{=} = a, \forall a \in A$

(ii) $0^{\sim} = 1, 1^{\sim} = 0$

2.6 Pre A*-algebra as a ring : Theorem 4: If $(A, \land, (-), 1)$ is a Pre A* - algebra, then (A, +, ., 1) is a ring where +, . are defined as follows.

- (i) $a + b = (a \wedge b^{\sim}) \vee (b \wedge a^{\sim})$, where
 - $a \lor b = (a^{\sim} \land b^{\sim})^{\sim}$
- (ii) $a \cdot b = a \wedge b$

2.7 *p*-ring : *p* is an integer. A ring (R, +, ., 0) is called a *p*-ring if

- (i) $x^p = x, \forall x \in R$,
- (ii) $px = 0, \forall x \in R$

2.8 Example : If p = 3 then (R, +, ., 0) is called 3-ring.

$\mathbf{P}_{\mathbf{RE}} \mathbf{A}^*$ -Algebras and Boolean Rings, 3-Rings

3.1 Boolean ring : A ring (R, +, .) is said to be a Boolean ring if it satisfies the idempotent law *i.e.*, $x^2 = x$, $\forall x \in R$

3.2 Pre A*-algebra as a Boolean ring : Theorem 5 : If $(A, \land, (-)^{\sim}, 1)$ is a Pre A*-algebra, then (A, +, ., 1) is a Boolean ring where +, . are defined as follows:

- (i) $a + b = (a \wedge b^{\sim}) \vee (b \wedge a^{\sim})^{\sim}$, where $a \vee b = (a^{\sim} \wedge b^{\sim})^{\sim}$
- (ii) $a \cdot b = (a \wedge b)$

3.3 Theorem 6 : If (A, +, ., 1) is a Boolean ring, then $(A, \land, (-)^{\sim}, 1)$ is a Pre A*-algebra, where

- (i) $a^{\sim} = 1 a$
- (ii) $a \wedge b = [1 (1 a)] [1 (1 b)]$

3.4 Pre A*-algebra as 3-ring :Theorem 7 : If $(A, \land, (-)^{\sim}, 1)$ is a Pre A*-algebra then (A, +, ., 1) is a 3-ring where +, . are defined as follows.

(i) $a + b = (a \wedge b^{\sim}) \vee (b \wedge a^{\sim})$, where

$$a \lor b = (a^{\sim} \land b^{\sim})^{\sim}$$

(ii) $a \cdot b = a \wedge b$

3.5 Theorem 8 : If (A, +, ., 1) is a 3-ring, then $(A, \land, (-)^{\sim}, 1)$ is a Pre A*-algebra, where

- (i) $a^{\sim} = 1 a$
- (ii) $a \wedge b = -[1 (1 a)][1 (1 b)]$

Conclusion

his paper is a study on algebraic structure of Pre A^* -algebra and proves basic theorems on Pre A^* -algebra. This paper defines *p*-ring, Boolean ring and 3-ring. Establish Pre A^* algebra as a Boolean ring and Boolean ring as a Pre A^* -algebra. It includes to prove Pre A^* algebra as a 3-ring and 3-ring as a Pre A^* -algebra.

References

- 1. Birkoff, G., *Lattice Theory*, American Mathematical Society, Colloquium Publications, Vol. 25, New York (1948).
- Fernando, Guzman and Craig, C. Squir, The Algebra of Conditional logic, *Algebra Universalis*, 27, 88-110 (1990).
- 3. Rao, P. Koteswara, A*-Algebra, an If-Then-Else Structures (*Thesis*), Nagarjuna University, A.P., India (1994).
- 4. Manes, E.G., The Equational Theory of Disjoint Alternatives, *Personal Communication to Prof. N.V. Subrahmanyam* (1989).
- 5. Manes, E.G., Ada and the Equational Theory of If-Then-Else, *Algebra Universalis*, **30**, 373-394 (1993).
- 6. Rao, J. Venkateswara, On A*-Algebras (Thesis), Nagarjuna University, A.P., India (2000).
- Rao, J. Venkateswara, Praroopa, Y., "Boolean algebras and Pre A*-Algebras", Acta Ciencia Indica (Mathematics), (ISSN: 0970-0455), 32, pp 71-76. (2006).
- 8. Rao, J. Venkateswara and Praroopa, Y., "Pre A*-Algebra as a semilattice", Asian Journal of Algebra, Volume 4, Number 1, 12-22 (2011).
- 9. Rao, J. Venkateswara and Praroopa, Y., "Lattice in Pre A*-Algebra", Asian Journal of Algebra, ISSN 1994-540X, Volume 4, Number 1, 1-11 (2010).
- Rao, J. Venkateswara and Praroopa, Y., "Pre A*-Algebras and Rings", International Journal of Computational Science and Mathematics, ISSN 0974-3189, Volume 3, Number 2, pp. 161-172 (2011).
- Rao, J. Venkateswara and Praroopa, Y., "Homomorphisms, Ideals and Congruence Relations on Pre A*-Algebra", Global Journal of Mathematical Sciences : Theory and Practical, ISSN No. 0974 – 3200, Volume 3, Number 2, pp. 111-125 May (2011).
- 12. Rao, J. Venkateswara and Praroopa, Y., "Logic circuits and Gates in Pre A*-Algebra", Asian Journal of Applied Sciences, 4(1), 89-96 (2011).
- 13. Praroopa, Y., On Pre A*-Algebras (Thesis), Nagarjuna University, A.P., India (2012).
- Praroopa, Y., "Pre A*-Homomorphism", Asian Journal of Mathematics & Statistics, ISSN 1994-5418, 29-34, Feb. (2014).