RINGS ON PRE $\boldsymbol{A} *$-ALGEBRAS

Dr. Mrs. Y. PRAROOPA
Associate Professor, Department of Mathematics, S \& H, Andhra Loyola Institute of Engineering \& Technology, Vijayawada-8 (A.P.) India

RECEIVED : 21 November, 2014

Abstract

This paper is a study on algebraic structure of Pre A^{*} algebra and proves basic theorems on Pre A^{*}-algebra. This paper defines p-ring, Boolean ring and 3 -ring. Establish Pre A^{*}-algebra as a Boolean ring and Boolean ring as a Pre A^{*}-algebra. It includes to prove Pre A^{*} algebra as a 3 -ring and 3 -ring as a Pre A^{*}-algebra.

KEYWORDS : Pre A^{*}-algebra, p-ring, ring on Pre A^{*} algebra, Boolean ring, 3 -ring.

Introduction

\squarea draft paper [4], The Equational theory of Disjoint Alternatives, around 1989, E.G. Manes introduced the concept of Ada (Algebra of disjoint alternatives) $\left(A, V,(-)^{I},(-), 0,1,2\right)$ (Where, V are binary operations on $A,(-)^{I},(-)$ are unary operations and $0,1,2$ are distinguished elements on A) which is however differ from the definition of the Ada of his later paper [5] Adas and the equational theory of if-then-else in 1993. While the Ada of the earlier draft seems to be based on extending the If-Then-Else concept more on the basis of Boolean algebras and the later concept is based on C-algebras $\left.\left(A,, V,(-)^{\sim}\right)\right)$ (where, V are binary operations on $A,(-)^{\sim}$ is a unary operation) introduced by Fernando Guzman and Craig C. Squir [2]. In 1994, P. Koteswara Rao [3] first introduced the concept of A^{*}-algebra $\left.\left(A,, V, *,(-)^{\sim},(-), 0,1,2\right)\right)$ (where, $V, *$ are binary operations on $A,(-)^{\sim},(-)$ are unary operations and $0,1,2$ are distinguished elements on A) not only studied the equivalence with Ada, C-algebra, Ada's connection with 3-Ring, Stone type representation but also introduced the concept of A^{*}-clone, the If-Then-Else structure over A^{*}-algebra and Ideal of A^{*}-algebra. In 2000, J. Venkateswara Rao [6] introduced the concept Pre A^{*}-algebra (A, , , (-$)^{*}$) (where, V are binary operations on $A,(-)^{\sim}$ is a unary operation on A analogous to C-algebra as a reduct of A^{*} - algebra, studied their subdirect representations, obtained the results that $2=\{0,1\}$ and $3=\{0,1,2\}$ are the subdirectly irreducible Pre- A^{*}-algebras and every Pre- A^{*}-algebra can be imbedded in 3^{X} (where 3^{X} is the set of all mappings from a nonempty set X into $3=\{0,1,2\}$). Praroopa, Y. [13] introduced the specific concepts on Pre A^{*}-algebra and of the papers [8], [9], studied Pre A^{*}-algebra as a semilattice, lattice in Pre A^{*}-algebra.

Preliminaries

1.1 Definition : An algebra $\left(A,,,(-)^{\text {I }}\right)$ satisfying

- $\left(x^{\sim}\right)^{\sim}=x, x A$
- $x x=x, x A$
- $\quad x \quad y=y x, x, y A$
- $(x y)^{\sim}=x^{\sim} y^{\sim}, x, y A$
- $\quad x\binom{y}{z}=\left(\begin{array}{ll}x & y\end{array}\right) z, x, y, z A$
- $\quad x\left(\begin{array}{ll}y & z\end{array}\right)=\left(\begin{array}{ll}x & y\end{array}\right)\left(\begin{array}{ll}x & z\end{array}\right), x, y, z A$
- $\quad x y=x\left(x^{\sim} y\right), x, y A$
is called a Pre A^{*} - algebra.

1.2 Example :

$3=\{0,1,2\}$ with operations $\wedge, \vee(-)^{\sim}$ defined below is a Pre A^{*}-algebra.

| \wedge | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 2 |
| 1 | 0 | 1 | 2 |
| 2 | 2 | 2 | 2 |

V	0	1	2
0	0	1	2
1	1	1	2
2	2	2	2

x	x^{2}
0	1
1	0
2	2

1.3 Note :

The elements $0,1,2$ in the above example satisfy the following laws:
(a) $2^{\sim}=2$
(b) $1 \wedge x=x$ for all $x \in 3$
(c) $0 \vee x=x, \forall x \in 3$
(d) $2 \wedge x=2 \vee x=2, \quad \forall x \in 3$.
1.4 Example : $2=\{0,1\}$ with operations $\wedge, \vee,(-)^{\sim}$ defined below is a Pre A^{*}-algebra.

\wedge	0	1
0	0	0
1	0	1

V	0	1
0	0	1
1	1	1

x	x^{\sim}
0	1
1	0

1.5 Note : $\left(2, \vee, \wedge,(-)^{\sim}\right)$ is a Boolean algebra. So every Boolean algebra is a Pre A^{*} algebra
1.6 Note : If $(m n)$ is an axiom in Pre A^{*}-algebra, then $(m n)^{\sim}$ is its dual.

Pre \boldsymbol{f}^{*}-algebras and rings

2.1 Basic Theorems in Pre A^{*}-algebra :

Theorem 1 : De-Morgan laws :
Let $\left(A, \wedge,(-)^{\sim}, 1,\right)$ be a Pre A^{*}-algebra. Then,
(i) $(a \wedge b)^{\sim}=a^{\sim} \vee b^{\sim}$
(ii) $(a \vee b)^{\sim}=a^{\sim} \wedge b^{\sim}$
2.2 Lemma 1 : Uniqueness of identity in a Pre A^{*}-algebra :

Let $\left(A, \wedge,(-)^{\sim}, 1\right)$ be a Pre A^{*}-algebra and $a \in B(A)$ be an identity for \wedge, then a^{\sim} is an identity for \vee, a is unique if it exists, denoted by 1 and a ${ }^{\sim}$ by 0 where $B(A)=\left\{x / x \vee x^{\sim}=1\right\}$ i.e., (a) $1 \wedge x=x, \forall x \in A \quad$ (b) $0 \vee x=x, \forall x \in A$.
2.3 Lemma 2 : Let A be a Pre A^{*}-algebra with 1 and 0 and let $x, y \in A$.
(i) If $x \vee y=0$, then $x=y=0$
(ii) If $x \vee y=1$, then $x \vee \sim \sim=1$
2.4 Theorem 2 : Let A, be a $\operatorname{Pre} A^{*}$-algebra with 1 and $x, y \in A$.

If $x \wedge y=0, x \vee y=1$, then $y=x^{\sim}$
2.5 Theorem 3 : Let $\left(A, \wedge,(-)^{\sim}, 1\right)$ be a Pre A^{*}-algebra.

Then we have the following (i) Involution law : $\left(a^{\sim}\right)^{\sim}=a, \forall a \in A$
(ii) $0^{\sim}=1,1^{\sim}=0$
2.6 Pre A^{*}-algebra as a ring : Theorem 4: If $\left(\mathrm{A}, \wedge,(-)^{\sim}, 1\right)$ is a Pre A^{*} - algebra, then $(A,+, ., 1)$ is a ring where,+ are defined as follows.
(i) $a+b=\left(a \wedge b^{\sim}\right) \vee\left(b \wedge a^{\sim}\right)$, where

$$
a \vee b=\left(a^{\sim} \wedge b^{\sim}\right)^{\sim}
$$

(ii) $a \cdot b=a \wedge b$
$2.7 \boldsymbol{p}$-ring : \boldsymbol{p} is an integer. A ring $(R,+, ., 0)$ is called a p-ring if
(i) $x^{p}=x, \forall x \in R$,
(ii) $p x=0, \forall x \in R$
2.8 Example : If $p=3$ then $(R,+, ., 0)$ is called 3-ring.

Pre $\boldsymbol{a}^{* *}$-algebras and boolean rings, $\mathbf{3}$-rings

3.1 Boolean ring : A ring $(R,+,$.$) is said to be a Boolean ring if it satisfies the$ idempotent law i.e., $x^{2}=x, \forall x \in R$
3.2 Pre \boldsymbol{A}^{*}-algebra as a Boolean ring : Theorem 5 : If $\left(A, \wedge,(-)^{\sim}, 1\right)$ is a Pre A^{*} algebra, then $(A,+, ., 1)$ is a Boolean ring where + , are defined as follows:
(i) $\quad a+b=\left(a \wedge b^{\sim}\right) \vee\left(b \wedge a^{\sim}\right)^{\sim}$, where
$a \vee b=\left(a^{\sim} \wedge b^{\sim}\right)^{\sim}$
(ii) $a \cdot b=(a \wedge b)$
3.3 Theorem 6 : If $(A,+, ., 1)$ is a Boolean ring, then $\left(A, \wedge,(-)^{\sim}, 1\right)$ is a Pre A^{*}-algebra, where
(i) $a^{\sim}=1-a$
(ii) $a \wedge b=[1-(1-a)][1-(1-b)]$
3.4 Pre \boldsymbol{A}^{*}-algebra as 3-ring :Theorem $7:$ If $\left(A, \wedge,(-)^{\sim}, 1\right)$ is a Pre A^{*}-algebra then $(A,+, ., 1)$ is a 3-ring where + , are defined as follows.
(i) $a+b=\left(a \wedge b^{\sim}\right) \vee\left(b \wedge a^{\sim}\right)$, where
$a \vee b=\left(a^{\sim} \wedge b^{\sim}\right)^{\sim}$
(ii) $a \cdot b=a \wedge b$
3.5 Theorem 8 : If $(A,+, ., 1)$ is a 3-ring, then $\left(A, \wedge,(-)^{\sim}, 1\right)$ is a Pre A^{*}-algebra, where

$$
\begin{equation*}
a^{\sim}=1-a \tag{i}
\end{equation*}
$$

(ii) $a \wedge b=-[1-(1-a)][1-(1-b)]$

Conclusion

This paper is a study on algebraic structure of $\operatorname{Pre} A^{*}$-algebra and proves basic theorems on Pre A^{*}-algebra. This paper defines p-ring, Boolean ring and 3-ring. Establish Pre A^{*} algebra as a Boolean ring and Boolean ring as a Pre A^{*}-algebra. It includes to prove Pre A^{*} algebra as a 3 -ring and 3 -ring as a Pre A^{*}-algebra.

References

1. Birkoff, G., Lattice Theory, American Mathematical Society, Colloquium Publications, Vol. 25, New York (1948).
2. Fernando, Guzman and Craig, C. Squir, The Algebra of Conditional logic, Algebra Universalis, 27, 88-110 (1990).
3. Rao, P. Koteswara, A^{*}-Algebra, an If-Then-Else Structures (Thesis), Nagarjuna University, A.P., India (1994).
4. Manes, E.G., The Equational Theory of Disjoint Alternatives, Personal Communication to Prof. N.V. Subrahmanyam (1989).
5. Manes, E.G., Ada and the Equational Theory of If-Then-Else, Algebra Universalis, 30, 373-394 (1993).
6. Rao, J. Venkateswara, On A^{*}-Algebras (Thesis), Nagarjuna University, A.P., India (2000).
7. Rao, J. Venkateswara, Praroopa, Y., "Boolean algebras and Pre A^{*}-Algebras", Acta Ciencia Indica (Mathematics), (ISSN: 0970-0455), 32, pp 71-76. (2006).
8. Rao, J. Venkateswara and Praroopa, Y., "Pre A^{*}-Algebra as a semilattice", Asian Journal of Algebra, Volume 4, Number 1, 12-22 (2011).
9. Rao, J. Venkateswara and Praroopa, Y., "Lattice in Pre A^{*}-Algebra", Asian Journal of Algebra, ISSN 1994-540X, Volume 4, Number 1, 1-11 (2010).
10. Rao, J. Venkateswara and Praroopa, Y., "Pre A^{*}-Algebras and Rings", International Journal of Computational Science and Mathematics, ISSN 0974-3189, Volume 3, Number 2, pp. 161-172 (2011).
11. Rao, J. Venkateswara and Praroopa, Y., "Homomorphisms, Ideals and Congruence Relations on Pre A*-Algebra", Global Journal of Mathematical Sciences : Theory and Practical, ISSN No. 0974 3200, Volume 3, Number 2, pp. 111-125 May (2011).
12. Rao, J. Venkateswara and Praroopa, Y., "Logic circuits and Gates in Pre A^{*}-Algebra", Asian Journal of Applied Sciences, 4(1), 89-96 (2011).
13. Praroopa, Y., On Pre A^{*}-Algebras (Thesis), Nagarjuna University, A.P., India (2012).
14. Praroopa, Y., "Pre A^{*}-Homomorphism", Asian Journal of Mathematics \& Statistics, ISSN 19945418, 29-34, Feb. (2014).
