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This paper is a study on algebraic structure of Pre A*-
algebra and proves basic theorems on Pre A*-algebra. 
This paper defines p-ring, Boolean ring and 3-ring. 
Establish Pre A*-algebra as a Boolean ring and Boolean 
ring as a Pre A*-algebra. It includes to prove Pre A*-
algebra as a 3-ring and  3-ring as a Pre A*-algebra. 
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INTRODUCTION 

In a draft paper [4], The Equational theory of Disjoint Alternatives, around 1989, E.G. 

Manes introduced the concept of Ada (Algebra of disjoint alternatives) (A, , V, (–)I, (–), 0, 1, 2) 

(Where, V are binary operations on A, (–)I, (–) are unary operations and 0, 1, 2 are 
distinguished elements on A) which is however differ from the definition of the Ada of his 
later paper [5] Adas and the equational theory of if-then-else in 1993. While the Ada of the 
earlier draft seems to be based on extending the If-Then-Else concept more on the basis of 
Boolean algebras and the later concept is based on C-algebras (A, , V, (–) ~ ) ) (where , V are 
binary operations on A, (–) ~ is a unary operation ) introduced by Fernando Guzman and Craig 
C. Squir [2]. In 1994, P. Koteswara Rao [3] first introduced the concept of A*-algebra          
(A, , V, *, (–) ~, (–), 0, 1, 2)) (where, V, * are binary operations on A, (–) ~ , (–)  are unary 
operations and 0, 1, 2 are distinguished elements on A) not only studied the equivalence with 
Ada, C-algebra, Ada’s connection with 3-Ring, Stone type representation but also introduced 
the concept of A*-clone, the If-Then-Else structure over A*-algebra and Ideal of A*-algebra. 
In 2000, J. Venkateswara Rao [6] introduced the concept Pre A*-algebra  (A, , , (–)~) (where, V 
are binary operations on A, (–)~ is a unary operation on A analogous to C-algebra as a reduct of 
A*- algebra, studied their subdirect representations, obtained the results that 2 = {0, 1} and     
3 = {0, 1, 2} are the subdirectly irreducible Pre-A*-algebras and every Pre-A*-algebra can be 
imbedded in 3X  (where 3X is the set of all mappings from a nonempty set X into 3 = {0, 1, 2}). 
Praroopa, Y. [13] introduced the specific concepts on Pre A*-algebra and of the papers [8], 
[9], studied Pre A*-algebra as a semilattice, lattice in Pre A*-algebra.   

PRELIMINARIES 

1.1 Definition :  An algebra (A, , , (–)~) satisfying 

 (x~) ~ =  x,  x  A 

 x  x = x,  x  A 
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 x  y = y  x,  x, y  A 

 (x  y)~ =  x~  y~,  x, y  A 

 x  (y  z) = (x  y)  z,  x, y, z  A 

 x  (y  z) = (x  y) (x  z),  x, y, z  A  

 x  y = x  (x~  y),  x, y  A 

is called a Pre A* - algebra. 

1.2 Example : 

3 = {0, 1, 2} with operations  ,  (–)~ defined below is a Pre A*-algebra. 

 

1.3  Note  : 

The elements 0, 1, 2  in the above example satisfy the following laws: 

(a) 2~ = 2          (b) 1  x = x for all x   3         (c) 0  x = x,  x   3 

(d) 2  x =  2  x = 2,    x   3. 

1.4 Example : 2 = {0,1} with operations , , (–)~ defined below is a Pre A*-algebra.  

 

1.5  Note : (2, , , (–)~) is a Boolean algebra. So every Boolean algebra is a Pre A*-
algebra 

1.6 Note : If (mn) is an axiom in Pre A*-algebra, then (mn) is its dual. 

PRE A*-ALGEBRAS AND RINGS 

2.1 Basic Theorems in Pre A*-algebra : 

Theorem 1 : De-Morgan laws :  

Let  (A, , (–)~, 1,) be a Pre A*-algebra. Then, 

(i) (a  b) ~ = a~  b~ 

(ii) (a  b) ~ = a~  b~ 

2.2 Lemma 1 :  Uniqueness of identity in a Pre A*-algebra : 
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Let  (A, , (–)~, 1) be a Pre A*-algebra and a  B (A) be an identity for , then a is an 
identity for , a is unique if it exists, denoted by 1 and a  by 0 where B (A) = {x/x  x  = 1} 
i.e.,  (a) 1  x = x,  x  A           (b)   0  x = x,  x  A. 

2.3 Lemma 2 :  Let A be a Pre A*-algebra with 1 and 0 and let x, y  A. 

 (i) If x  y = 0, then x = y = 0 

(ii) If x  y = 1, then x  x = 1 

2.4 Theorem 2 : Let A, be a Pre A*-algebra with 1 and x, y  A. 

If x  y = 0, x  y = 1, then y = x 

2.5 Theorem 3 : Let (A, , (–), 1) be a Pre A*-algebra.   

Then we have the following (i) Involution law : (a) =  a,   a  A 

 (ii) 0  =  1,  1 =  0 

2.6  Pre A*-algebra as a ring : Theorem 4:  If (A, , (-), 1) is a Pre A* - algebra, then 
(A, +, ., 1) is a ring where +, . are defined as follows. 

 (i) a + b = (a  b)  (b  a), where 

  a  b = (a  b) 

 (ii) a . b = a  b 

2.7  p-ring : p is an integer. A ring (R, +, ., 0) is called a p-ring if  

(i) xp = x,  x  R,  

(ii) px = 0,  x  R 

2.8 Example : If p = 3  then (R, +, ., 0) is called 3-ring. 

PRE A*-ALGEBRAS AND BOOLEAN RINGS, 3-RINGS  

3.1 Boolean ring : A ring (R, +, .) is said to be a Boolean ring if it satisfies the 

idempotent law i.e., x2 = x,   x  R 

3.2 Pre A*-algebra as a Boolean ring : Theorem 5 : If (A, , (–), 1) is a Pre A*-
algebra, then (A, +, ., 1) is a Boolean ring where +, . are defined as follows: 

 (i) a + b  = (a  b)  (b  a), where  

  a  b =  (a   b) 

 (ii) a . b  =  (a   b) 

3.3 Theorem 6 :  If (A, +, ., 1) is a Boolean ring, then (A, , (–), 1) is a Pre A*-algebra, 
where 

(i) a = 1 – a 

(ii) a  b  = [1 – (1 – a)] [1 – (1 – b)]  

3.4 Pre A*-algebra as 3-ring :Theorem 7 : If (A, , (–), 1) is a Pre A*-algebra then    
(A, +, ., 1) is a 3-ring where +, . are defined as follows. 

(i) a + b = (a  b)   (b  a), where  



12 Acta Ciencia Indica, Vol. XLI M, No. 1 (2015) 

 

  a  b = (a  b) 

(ii) a . b = a  b 

3.5 Theorem 8 : If (A, +, ., 1) is a 3-ring, then (A, , (–), 1) is a Pre A*-algebra, where  

(i)  a  =  1 – a 

(ii) a  b = – [1 – (1 – a)] [1 – (1 – b)]  

CONCLUSION 

This paper is a study on algebraic structure of Pre A*-algebra and proves basic theorems 

on Pre A*-algebra. This paper defines p-ring, Boolean ring and 3-ring. Establish Pre A*-
algebra as a Boolean ring and Boolean ring as a Pre A*-algebra. It includes to prove Pre A*-
algebra as a 3-ring and 3-ring as a Pre A*-algebra. 
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