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In the present paper, I have been studied and defined 
Kaehlerian Weyl-Conformal and Weyl-Concircular 
recurrent and symmetric spaces of second order. Several 
theorems also have been investigated and proved therein. 
The necessary and sufficient condition for a 	 ��	

� -space to 
be	 ��	

� -space and ��	
		� -space to be ��	

� -space have been 
established. 

 

INTRODUCTION 

Okumura (1962), studied some remarks on space with a certain contact structure. 

Tachibana (1967) and Mathai (1969) studied and defined the Bochner curvature tensor and 
Kaehlerian recurrent spaces respectively. Singh (1971), studied on Kaehlerian spaces with 
recurrent Bochner curvature tensor. Singh (1971-72) studied and defined Kaehlerian recurrent 
and Ricci-recurrent spaces of second order. Rawat and Dobhal (2009), studied on Einstein 
Kaehlerian s-recurrent space. Rawat and Kumar (2009), studied on curvature collineations in a 
Tachibana recurrent space. Further, Rawat and Prasad (2010), studied on holomorphically 
Projectively flat parabolically Kaehlerian spaces. 

An n (= 2m) dimensional Kaehlerian space  �� is an even dimensional Riemannian space, 
which admits a structural tensor field ��

� satisfying the conditions ([3]) 
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� = 0.		                                                       … (1.3) 

where ∇ denotes the operator of covariant differentiation with respect to the metric tensor   ���    

of the Riemannian space. 

The Riemannian curvature tensor, which we denote by ����
�  is given by 
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where    ��	 =
ix




  and  {��} denotes real local coordinates. 

The Ricci-tensor and scalar curvature are respectively given by  

     ��� = 	����	
�    and   	� = 	����

��  
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It is well known that these tensors satisfies the following identities 

        ����,�	
� = ���,� − ���,�	,      ... (1.5) 

                                              �,� = 2��,�	
�         … (1.6) 

                                         ��
���� = 	−�����

�	  ... (1.7) 

and                                        ��
�	��	

�
= 	��

�	��	
�
  .    ... (1.8) 

The Holomorphically projective curvature tensor ( Sinha 1973), Tachibana H-Concircular 
curvature tensor, Weyl-Conformal curvature tensor and Weyl-Concircular curvature ( Sinha 
1971) are respectively given by 

      	����
� = ����

� + 	
1

( 2)n 
	(���		��

� − 	���	��
� +	���	��

� − 	���	��
� + 	2�����

�		) , ...(1.9) 

              	����
� = ����

� + 	
1

( 2)n 
	(���		��

� − 	���	��
� + 	���	��

� −	���	��
� + 	2�����

�		),   ... (1.10) 

����
� = ����

� +
1

( 2)n 
	(���	��

� − �����
� + ���	��

� − ���	��
�) −

( 1) ( 2)

R

n n 
(�����

� − ���	��
�)      

      ... (1.11) 

and                     	����
� = ����

� + 	
( 1)

R

n n 
	(���		��

� − 	���	��
�)   ...(1.12) 

where             ��� = 	��	
�	��� . 

KAEHLERIAN RECURRENT SPACES OF SECOND ORDER 

Definition (2.1): A Kaehler space �� is said to be a Kaehlerian recurrent space of 

second order, if the following condition is satisfied (Singh 1971). 

        ∇�	∇�	����
� = 	 ���	����

� 	,               ... (2.1) 

where ��� is non-zero and in general, non-symmetric covariant tensor of order 2.  It will be 
denoted briefly by ��	

�  −	�����.  

The space is said to be Ricci-recurrent space of second order, if it satisfies the condition 
                            ∇�	∇�	��� = 	 ���	���,   ...(2.2) 

Multiplying the above equation by  ��� ,  we get 

      ∇�	∇�	� = 	 ���	� ...(2.3) 

Remark (1.1) : From (2.2), it follows that every Kaehlerian recurrent space of second 
order is Kaehlerian Ricci-recurrent space of second order, but converse is not necessarily true. 

Definition (2.2) : A Kaehler space satisfying the condition 

        ∇�	∇�	����
� = 	 ���	����

� 	, ... (2.4) 

for some non- zero tensor  ���, will be called Kaehlerian Projective recurrent space of second 
order, or briefly ��	

�  −	�����	.      

Definition (2.3) :  A Kaehler space satisfying the condition 
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                                        ∇�	∇�	����
� = 	���	����

� 	, ...(2.5) 

for some non-zero tensor  ���, will be called Kaehlerian Tachibana H-Concircular recurrent 
space of second order, or briefly 	 ��	

� 	− 	�����	.       

Definition (2.4) : A Kaehler space satisfying the condition 

                                        ∇�	∇�	����
� = 	 ���	����

� 	,  ...(2.6) 

for some non- zero tensor  ��� , will be called Kaehlerian Weyl-Conformal recurrent space of 
second order, or briefly  ��	

� 	− 	�����	.   

Definition (2.5) :   A Kaehler space satisfying the condition 

                                        ∇�	∇�	����
� = 	 ���	����

� 	,  ...(2.7) 

for some non- zero tensor  ��� , will be called Kaehlerian Weyl-Concircular recurrent space 
of second order, or briefly  ��	

� − 	�����	.   

Now, If we put 

                                 ��� = 	��� −
R

n
		���     ... (2.8) 

and      ��� = 		 ��
���� = ��� −

R

n
	���   ...(2.9) 

then from (1.9), (1.10), (2.8) and (2.9), we get 
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� = ����
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1
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		(���		��

� − 	���	��
� +	���	��

� −	���	��
� + 	2�����

�		), ...(2.10) 

and with the help of (1.11), (1.12), (2.8) and (2.9), we get 

                     	����
� = ����

� +
1

( 2)n 
		(���		��

� −	���	��
� +	���	��

� − 	���	��
�)	, ...(2.11) 

Now, we have the following: 

Theorem (2.1): If a Kaehler space satisfies any two of the following properties. 
     (i) the space is Kaehlerian Ricci recurrent space of second order, 

(ii) the space is a Kaehlerian Projective recurrent space of second order,  

(iii) the space is Kaehlerian Tachibana H-Concircular recurrent space of second order ,      
         then it  must also satisfy the third. 

Proof: Differentiating (2.10) covariantly with respect to ��	, we have 

∇�	����
� = ∇�����

� +
1

( 2)n 
(∇����	��

� − ∇������
� + ∇������

� − ∇������
� + 2∇�	�����

�		)   

      ... (2.12)  

Again , differentiating (2.12) covariantly with respect to  ��	, we get 

∇�∇�	����
� = ∇�∇�����

� + 	
1

( 2)n 
	(∇�∇�	���		��

� − 		∇�∇�	���	��
� + ∇�∇�	���	��

� 

         

                   −∇�∇�	���	��
� 		+ 2∇�∇�		�����

�)  ... (2.13) 

Transvecting (2.10) with ��� and subtracting from (2.13), we get 
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∇�∇�	����
� − ���	����

� = ∇�∇�����
� − ���	����

� +
1

( 2)n 
[(∇�∇���� − ������	)��

� 

                    −�∇�∇���� − ������	���
� 		+ (∇�∇�	��� − ���	���)��

�     

          −�∇�∇�	��� − ���	������
�+2(∇�∇�		��� − ������)��

�] ... (2.14) 

The statement of the above theorem follows in view of equations (2.2), (2.3), (2.4), (2.5), 
(2.8), (2.9), and (2.14). 

Theorem (2.2): If a Kaehler space satisfies any two of the following properties. 
     (i) the space is Kaehlerian Ricci recurrent space of second order, 

  (ii) the space is a Kaehlerian Weyl-conformal recurrent space of second order,  

(iii) the space is Kaehlerian Weyl-Concircular recurrent space of second order       
             then it  must also satisfy the third. 

Proof : Kaehlerian Ricci recurrent space of second order, Kaehlerian Weyl-conformal 
recurrent space of second order and Kaehlerian Weyl-Concircular recurrent space of second 
order are respectively characterized by the equations (2.2), (2.6) and (2.7). 

Differentiating (2.11) covariantly with respect to ��	, we have   

 ∇�	����
� = ∇�����

� +
1

( 2)n 
(∇�

	

���	��
� − ∇�	���	��

� + ∇�	���	��
� − ∇�	���	��

�)	,  ... (2.15) 

Again, differentiating (2.15) covariantly with respect to  ��	, we get  

  ∇�∇�	����
� = ∇�∇�����

� +
1

( 2)n 
	(∇�	∇�			���	��

� − ∇�	∇�	���	��
� + ∇�∇�	���	��

�	   

                                                                                  −∇�∇�	���	��
�) ...(2.16)  

Transvecting (2.11) with ��� and subtracting from (2.16), we get 

∇�	∇�	����
� − �������

� = ∇�∇�����
� − �������

� +
1

( 2)n 
[(∇�	∇���� − ���	���	)��

� 

                                                     −�∇�	∇���� − ���	���	�	��
� + �∇�	∇�	��

� − ���		��
�	���� 

                                                                                       −	�∇�	∇�	��
� − ���		��

�	����]	,   ...(2.17)  

The statement of the above theorem follows in view of equations (2.2), (2.3), (2.7),  (2.8), 
(2.9), and (2.17). 

Theorem (2.3): The necessary and sufficient condition that a ��
� − 	����� to be 

��
� − 	����� is that 

(∇�	∇���� − ���	���	)��
� − �∇�	∇���� − ���	���	���

� 	+ (∇�∇�	��� − ���	���)��
� 

                                       −�∇�∇�	��� − ���	������
� +2(∇�∇�		��� − ������)��

� = 0,  

Proof: The statement of the above theorem follows in view of equations (2.2), (2.3), 
(2.4),  (2.5), (2.14), similarly , we have the following  

Theorem (2.4): The necessary and sufficient condition that a ��
� − 	����� to be 

��
� − 	����� is that    
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(∇�	∇���� − ���	���	)��
� − �∇�	∇���� − ���	���	���

� + �∇�	∇�	��
� − ���		��

�	����  

                                                                      −	�∇�	∇�	��
� − ���		��

�	����] = 0. 

Proof: The statement of the above theorem follows in view of equations (2.2), (2.3), 
(2.6),  (2.7),  and (2.17). 

KAEHLERIAN SYMMETRIC SPACES OF SECOND ORDER  

Definition (3.1) : A Kaehlerian space is said to be Kaehlerian symmetric space of 

second order, if it satisfies 

             ∇�	∇�	����
� = 0,  or  equivalently 	∇�	∇������ = 0,    ...(3.1) 

and it is called Ricci-symmetric space of second order of  

                 ∇�	∇�	��� = 0, ...(3.2)  

Multiplying the above by ���	,  we get  

     ∇�	∇�	� = 0                           ...(3.3) 

Definition (3.2) : A Kaehler space satisfying the condition 

                 ∇�	∇�	����
� = 0,  or , equivalently  ∇�	∇������ = 0,     ...(3.4) 

is  called a Kaehlerian Projective symmetric space of second order.  

Definition (3.3) : A Kaehler space satisfying the condition 

                 ∇�	∇�	����
� = 0,  or  equivalently 	∇�	∇������ = 0,    ...(3.5) 

is called a Kaehlerian Tachibana H-Concircular  symmetric space of second order.  

Definition (3.4) : A Kaehler space satisfying the condition 

                 ∇�	∇�	����
� = 0,  or , equivalently 	∇�	∇������ = 0,     ...(3.6) 

is called a Kaehlerian Weyl-Conformal symmetric space of second order. 

Definition (3.5) : A Kaehler space satisfying the condition 

                 ∇�	∇�	����
� = 0,	 or   equivalently 	∇�	∇������ = 0, ...(3.7) 

is called a Kaehlerian Weyl-Concircular symmetric space of second order.  

Theorem (3.1): If a Kaehler space satisfies any two of the following properties: 

(i) the space is Kaehlerian Ricci -symmetric space of second order, 

(ii) the space is a Kaehlerian Projective symmetric space of second order,  

(iii)  the space is Kaehlerian Tachibana H-Concircular symmetric space of second order       
             then it  must also satisfy the third. 

Proof:  In a Kaehlerian Ricci -symmetric space of second order, the condition (3.2) is 
satisfied, whereas, Kaehlerian Projective symmetric space of second order and a Kaehlerian 
Tachibana H-Concircular symmetric space of second order respectively are given by the 
conditions (3.4) and (3.5). Therefore the statement of the above theorem follows in the view of 
equations (2.13), (3.2), (3.4) and (3.5).     

Theorem (3.2) : If a Kaehler space satisfies any two of the following properties: 

(i) the space is Kaehlerian Ricci -symmetric space of second order, 

(ii) the space is a Kaehlerian Weyl-conformal symmetric space of second order, 



6 Acta Ciencia Indica, Vol. XLI M, No. 1 (2015) 

 

(iii) the space is Kaehlerian Weyl-Concircular symmetric space of second order       
             then it  must also satisfy the third. 

Proof : In a Kaehlerian Ricci -symmetric space of second order, the condition (3.2) is 
satisfied, whereas,  Kaehlerian Weyl-conformal symmetric space of second order and a 
Kaehlerian Weyl-Concircular symmetric space of second order respectively are given by the 
conditions (3.6) and (3.7).  

Therefore, the statement of the above theorem follows in the view of equations (2.16), 
(3.2), (3.6) and (3.7).    

Theorem (3.3) :   The necessary and sufficient condition that a Kaehlerian Tachibana H-
Concircular symmetric  space of second order to be a Kaehlerian Projective symmetric space 
of second order is that 

     ∇�	∇����	��
� − ∇�	∇������

� + ∇�∇�	�����
� − ∇�∇�	�����

� + 2∇�∇�	�����
� = 0	, 

Theorem (3.4): The necessary and sufficient condition that a Kaehlerian Weyl-
Concircular symmetric space of second order to be a Kaehlerian Weyl symmetric space of 
second order is that 

                       ∇�	∇����	��
� − ∇�	∇������

� + ∇�∇�	�����
� − ∇�∇�	�����

� = 0. 
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