COMPARATIVE STUDY OF C¹⁴ DATING OF GROUND WATER SAMPLES OF DIFFERENT REGIONS BY AMS

RAJEEV RANJAN SINHA, ASHOK KUMAR

Department of Physics, S. K. M. University, Dumka

AND

SWAPAN BERA

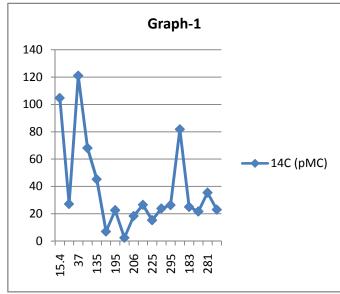
Department of Physics, Jharkhand Rai University, Ranchi (Bihar), India

RECEIVED : 31 December, 2015

Carbon¹⁴ measurement on DIC (dissolved inorganic carbon) are used to provide information on the relative ages of the ground water pumped from various locations of different regions across the world. In this study a comparative study of C¹⁴ dating of ground water samples of different regions have been made to draw some important inferences.

KEY WORDS : Accelerator Mass Spectrometry, C¹⁴.

INTRODUCTION

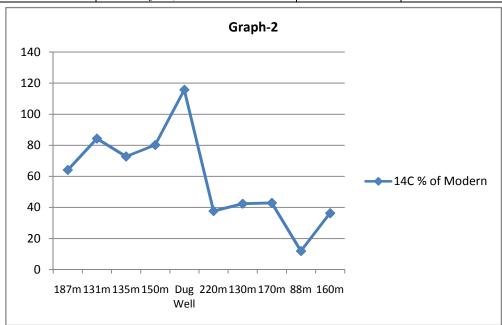

 Δ C¹⁴ is a naturally occurring radioisotope of carbon having a half life of approximately 5570 years. It is a radionuclide which is very useful in its extensive applications in dating of objects and as a tracer element. To determine the age of any archaeological evidence, surface, ground water or quartz samples of different rocks etc., it is needed to convert the age from A.D. to B. C. scale. For this, 1950 was used as a reference year and ninety five percent activity of NBS Oxalic acid was used as a modern standard. C¹⁴ data are expressed as percent modern carbon (pMC) by comparing C¹⁴ activities to the specific activity of National Bureau of Standards Oxalic acid of 12.88 disintegrations per minute per gram of Carbon in the year 1950 equals 100% modern carbon (pMC). (Izbicki, *et. al.*, 1998). C¹⁴ activities are used to determine the age of ground water since recharge on timescales from a range of present to more than 45000 years B.P. C¹⁴ is not the part of the water molecule, however in the dissolved constituents C¹⁴ activities are observed through chemical reactions.

Comparative study of C^{14} of ground water of different regions

By the isotopic methods of ground water dating it has been possible to estimate the mean ages of ground water pumped from wells. Hoque and Burgess (2012) estimated the ages of deep ground water (\geq 150mbgl) in South East Bangladesh. ¹⁴C activity has the range from 2.53 to 18.8pMC with highest activity at 185mbgl depth at the eastern margin of the basin along the piedmont and lowest activity at 203mbgl found close to the coast.

Sample ID	Latitude	Longitude	Well intake depth (m)	¹⁴ C (pMC)
DT11S ^a	23.5970	90.7973	15.4	104.71±0.65
DT11M ^a	23.5970	90.7973	87.8	27.23±0.28
CU07L ^b	23.4191	91.1360	37.0	120.98±0.76
KHOP4 ^a	23.3405	90.9226	25.0	68.15±0.5
DS08D	23.6059	91.0527	135	45.33±0.37
JB10D	23.6209	90.8604	150	7.07±0.14
LC06D	23.1740	91.0064	195	22.67±0.25
CL02D	22.7676	90.8599	203	2.53±0.09
FG01D	23.1263	90.7565	206	18.41±0.25
NN09D	23.8900	90.9692	222	26.61±0.26
DB04D	22.9837	91.3371	225	15.37±0.20
BJ03D	22.9934	91.0911	244	23.9±0.27
DT11D	23.5965	90.7962	295	26.41±0.26
CG05D	23.2293	91.3067	185	81.8±0.61
KHOP5 ^a	23.3403	90.9226	183	25.06±0.26
KH98D	23.4360	90.8389	205	21.76±0.25
KHOP1 ^a	23.3402	90.9227	281	35.53±0.31
KHOP2 ^a	23.3404	90.9221	336	23.11±0.26

Table-1

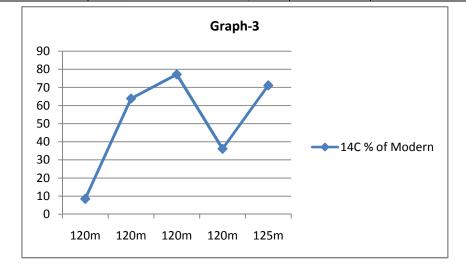


In Radio Carbon, Vol. 13, No. 2, 1971, P-442-449, D.P. Agrawal et.al. have deserved the samples collected by the members of their Geophysics Group who studied ground water resources of Gujarat, Rajasthan and Uttar Pradesh in India.

Gujarat series & Rajasthan series reports were submitted by V.N. Nizampurkar and U.P. series reports were submitted by P.S. Dandkhane. The report of ground water samples of Gujrat were as follows:

Lab. No.	Location	Depth	¹⁴ C % of Modern
TF-841	Kalol, DistMehsana	187m	64.15±0.98
TF-842	Mansa, DistMehsana	131m	84.31±0.90
TF-843	Pilvai, DistMehsana	135m	72.76±0.95
TF-845	Dama, DistBanaskantha	150m	80.21±0.94
TF-846	Deesa, DistBanaskantha	Dug Well	115.73±1.25
TF-1095	Bhairwa, DistJaisalmer	220m	37.64±0.72
TF-1096	Bhairwa, DistJaisalmer	130m	42.39±0.79
TF-1097	Bhairwa, DistJaisalmer	170m	42.88±0.60
TF-1121	Ajasar, DistJaisalmer	88m	11.91±0.33
TF-1120	Ajasar, DistJaisalmer	160m	36.27±0.87

Table-2



Similarly reports of Uttar Pradesh series are as follows:

Table-3

Lab. No.	Location	Depth	¹⁴ C % of Modern
TF-1038	Kakragaor, DistMeerut (29°N Lat. 77°12' E Log.)	120m	8.54±0.33
TF-1039	Shukartal, DistMuzaffar Nagar (29°24'N Lat. 78°5' E Log.)	120m	63.86±1.04

Lab. No.	Location	Depth	¹⁴ C % of Modern
TF-1040	Dashawali, DistAligarh (28°48'N Lat. 78°5' E Log.)	120m	77.19±0.90
TF-1042	Bhongaon, DistMainpuri (27º12'N Lat. 79º5' E Log.)	120m	36.14±0.58
TF-1043	Khanda, DistBulandshahar (28°24'N Lat. 77°54' E Log.)	125m	71.14±1.20

Combining C^{14} age dates with isotopic characterization and interpretation of chemical composition provides important information on timing, rate and sources of recharge (Maduabuchi, *et. al.* 2006).

Similarly, Carbon-14 dating of ground water in the Palouse Basin of Coulumbia river basalts of Eastern Washington and Northern Idaho are derived have shown the accumulation of the oldest ground water in the topographically highest areas of the basin adjacent to the basin divide. Douglas, Alyssa A. Osiensky, James L. and Kellen, C. Kant *et. al.* (2005) have in his paper discussed about C^{14} dating of ground water in Palouse Basin. From their finding here only datas of the samples collected in 2001 is given here for the comparative study (upper portion of the aquifer system).

Well Name	Table-4 Geographical Layer	Age (B.P.)	¹⁴ C (pMC)
Cuentry	Granite	Modern	104.5
UIGRS	Alluvium	Modern	115.8
Loess 6A	Loess	1600	82.6
Stalnaker	Wanapum	14600	17.1
COM2	Wanapum	8700	35
COM3	Wanapum	9100	33.3
COP3 ^a	Grande R.	13000	20.8
COP5	Grande R.	16300	14

COP6	Grande R.	17100	12.6
WS45	Grande R.	14300	17.7
WS46	Grande R.	21100	7.8
Palouse 1	Grande R.	21900	7.1
Palouse 2	Grande R.	26400	4.1

Conclusion

The distribution of ¹⁴C in the ground water in found to be highly variable and reflects complex, vertical migration pathways between the land surface and producing zones at depth. All units seem to be heterogeneous. Varied results at varied heights, depth are due to potential variability of the sources, variation in soil developments and variations in topography.

As all the graphs of table 1, 2, 3 have been plotted between the depth along horizontal axis and the pMC along the vertical axis represented by Graph 1, Graph 2, Graph 3, it has been observed the general trend of decreasing ¹⁴C (pMC) concentrations with depth of well penetration exists throughout the various regions.

References

- 1. Izbicki, J.A. and Martin, Peter, Use of isotopic data to evaluate recharge and geologic controls on the movement of ground water in Las Posas Valley (1997).
- Hoque, Mohammad A., Burgess, William G., ¹⁴C dating of deep ground water in the Bengal Aquifer System, Bangladesh: Implication for aquifer anisotropy, recharge sources and sustainability, *Journal* of Hydrology, 444-445, 209-220 (2012).
- Aggarwal, P.K., Basu, A.R., Poreda, R.J., Kulkarni, K.M., Froehlich, K., Tarafdar, S.A., Ali, M., Ahmed, N., Hossain, A., Rahman, M., Ahmed, S.R., *A Report on Isotope Hydrology of Groundwater in Bangladesh*: Implications for Characterization and Mitigation of Arsenic in Ground water. International Atomic Energy Agency (IAEA), Vienna (2000).
- Mukherjee, A., Fryar, A.E., Rowell, P.D., Regional-scale Stable isotopic Signatures of recharge and deep groundwater in the arsenic affected areas of West Bengal, *Journal of Hydrology*, 334, 151-161 (2007).
- Ventura Country, California, US Geological Survey Water Resources Investigations Report, 97-4035, 12.P.
- Agrawal, D.P., Kusumgar, S. and Lal, D., The measurement of C¹⁴ activity and some age determinations of archaeological samples, *Current Sci.*, Vol. 34, P-394-397.
- 7. Agrawal, D.P., Gupta, S.K., and Kusumger, Sheela, Tata Institute Radiocarbon Date List IX, *Radio Carbon*, Vol. **13**, No. **2**, 1971, P. 442-449 (1971).
- Jull, A.J.T., Some interesting and exotic applications of Carbon-14 dating by Accelerator Mass Spectrometry; 10th International Conference on Clustering Aspects of Nuclear Structure and Dynamics, *Journal of Physics : Conference Series*, 436, 012083 (2013).
- Ababou, R., Random porous media on large 3D grids: Numerics, performance and application to homogenizations. In : Wheeler, M.F., Mathematics & Application: Environmental Studies -Mathematical, Computational and Statistical Analysis, *IMA Volume in Mathematics and its Application*, Springer - Verlag, New York, P.P. 1-25 (1996).
- Douglas, Alyssa A., Osiensky James, L., Keller, C., Kent. 2005, Carbon-14 dating of ground water in Palouse Basin of the Columbia river basalts, *Journal of Hydrology*, 334, 502, 512 (2007).
- Douglas, A.A., Winter, G., Balduin, J., Brackney, K., Mann, H., Isotopic age dating of municipal wate wells in the Lewiston Basin, Idaho. Ground water Quality Technical Report No. 24, Idaho Department of Emvironmental Quality, Lewiston, Idaho (2005).
- Douglas, A.A., Radio Carbon dating as a tool for hydrogeological investigations in natural systems. M.S. Thesis, Hydrology Program, Department of Geological Sciences, University of Idaho, Moscow, Idaho (2004).

 Determination of ¹⁴C by Acceleration Mass Spectrometry: Status update, Swapan Kumar Bera & Dr. Rajeev Ranjan Sinha, *IOSR-JAP*, Vol. 7, Issue 3, P.P. 11-12 May-June (2015).

202