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The general equations of motion of viscous flow through a 
rigid porous medium and modification of Lorentz force are 
used to solve the unsteady flow of an incompressible 
conducting fluid through cylindrical porous ducts with 
elliptic sections. The exact solution of the fluid equation for 
constant pressure distribution has been found. Some 
observations about the vorticity of the flow have been 
made. 

INTRODUCTION 

The subject of homogenous flow through porous media has many technical and 

engineering applications in fields such as Petroleum industry and surface water hydrology. 
Muskat [9], Dickey and Brydon [4] have discussed the flow through porous media in 
connection with filteration. Ahmadi and Manvi [1] have derived the general equation of 
motion for the flow of a viscous fluid through a porous medium on the principle suggested by 
Eringen. Gulab Ram and Mishra [5] studied MHD flow of conducting fluid through porous 
medium. Varshney [16] studied unsteady MHD flow through a porous medium in a circular 
pipe. Gupta [6] studied the unsteady flow through porous media in a channel of circular cross-
section. Narshima Murthy [10] have dicussed the influence of magnetic field on the veliocity 
of a conducting fluid in a porous media. Kumar et al. [8] have given a theoretical analysis of 
an unsteady laminar flow of various incompressible and electricity conducting fluid through a 
porous medium in a channel in the presence of radial magnetic field and time-dependent 
pressure gradient. 

In this paper, we have discussed the influence of an applied magnetic field on the 
unsteady flow of an incompressible conducting fluid through cylindrical porous ducts with 
elliptic section while constant pressure is applied. In this case we have derived closed from 
solution of the governing equation, and the effect of uniform applied magnetic field is 
indicated. Some observation have been made about the velocity and vorticity of the flow. 

FORMULATION OF THE PROBLEM  

Let us consider the motion of an incompressible, viscous, electrically conducting fluid, 

permeated by an applied magnetic filed in an isotropic porous media. The equations governing 
the motion are [following Ahmadi and Manvi [1]], 
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where , , , ,v p k j   and B  are the density, velocity vector, pressure, fluid viscosity, 

permeability, current density vector and magnetic induction. 

Let us consider the flow in a cylindrical porous tube with elliptic cross-section. The three 
impervious surface are given by 

       = constant – elliptic cylinder 
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       = constant – hyperbolic cylinder 
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     Z = Constant – planes normal to the cylindrical axes. 

Let   denotes the coordinate parallel to the flow direction,   the coordinate 

perpendicular to the flow and z the coordinate perpendicular to both   and   coordinates. 

The applied magnetic field 0B  is uniform and is transverse to the flow (in the direction of 

  axis). Let us consider the uniform unsteady motion of an incompressible fluid through the 

cylindrical porous tube with elliptic cross-section. Let 0  represents the suction velocity at 

the axis of the tube, then from equation of continuity 0.
v
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 This with the condition that at     

z = 0, 0v u  leads to the result that 0v u  everywhere. From the symmetry of the problem 

all physical variables will be functions of z only. Also, let the pressure p be constant. For 
simplicity we assume that Rm, the magnetic Reynold’s number is small, thereby rendering 

Maxwell’s equations redundant. 

Now, the equation of motion thus reduces to 

     

22
0

2
0

Bv u v
v

t kz

   
    

      
 … (4) 

Let    
2
0 and  

B
A B

k

  
   

    
 … (5) 

then the equation (4) becomes 
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The boundary conditions of the problem are : 
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Applying Laplace transform on each term of equation (4), we get 
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by equation (7) this reduces to 
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Also, on applying Laplace transform on conditions given by (7), we get 
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The solution of equation (8) will be 
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by applying conditions (9) we get 

     

0
1

/( )

cosh

v B p
C

B p

A


 


 … (11) 

and      2 0C   

Hence solution (10) becomes 
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Using Laplace inversion theorem, the velocity distribution v  is given by 
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From equation (12), we can very easily deduce the vorticity of the flow as, 
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numerical calculations have been carried out for liquid. 

Table 1. k* = 0.1,  t = 0.1 

 z 0.0 0.2 0.4 0.6 0.8 1.0 

M = 0 *v  – 0.1403 – 0.0652 0.0097 0.0848 0.1592 0.2348 

M = 0.5 *v  – 0.1383 – 0.0651 0.0081 0.0812 0.1544 0.2276 

M = 2 *v  – 0.1095 – 0.0593 -0.0089 0.0413 0.0916 0.1418 

M = 5 *v  – 0.0212 – 0.0151 -0.0089 – 0.0027 0.0034 0.0095 

Table 2. k* = 0.2,  t = 0.1 

 z 0.0 0.2 0.4 0.6 0.8 1.0 

M = 0 *v  – 0.1790 – 0.0553 0.0683 0.1920 0.3157 0.4394 

M = 0.5 *v  – 0.1773 – 0.0566 0.0639 0.1846 0.3053 0.4259 

M = 2 *v  – 0.1483 – 0.0654 0.0175 0.1004 0.1833 0.2662 

M = 5 *v  – 0.0324 – 0.0222 – 0.0121 0.0019 0.0082 0.0183 

Table 3. k* = 0.1,  t = 2 

 z 0.0 0.2 0.4 0.6 0.8 1.0 

M = 0 *v  – 0.2435 × 10–8 – 0.2434 × 10–8 – 0.2432 × 10–8 – 0.2431 × 10–8 – 0.2430 × 10–8 – 0.2428 × 10–8 

M = 0.5 *v  – 0.1479  × 10–8 – 0.1478 × 10–8 – 0.1477 × 10–8 – 0.1479 × 10–8 – 0.1475 × 10–8 – 0.1474 × 10–8 

M = 2 *v  – 0.8272 × 10–12 – 0.8267 × 10–12 – 0.8262 × 10–12 – 0.8257 × 10–12 – 0.8252 × 10–12 – 0.8247 × 10–12 

M = 5 *v  – 0.4770 × 10–30 – 0.4767 × 10–30 – 0.4765 × 10–30 – 0.4762 × 10–30 – 0.4759 × 10–30 – 0.4756 × 10–30 

Table 4. k* = 0.2,  t = 2 

 z 0.0 0.2 0.4 0.6 0.8 1.0 

M = 0 *v  – 0.4833 × 10–4 – 0.4830 × 10–4 – 0.4827 × 10–4 – 0.4824 × 10–4 – 0.4820 × 10–4 – 0.4818 × 10–4 

M = 0.5 *v  – 0.2967 × 10–4 – 0.2965 × 10–4 0.2963 × 10–4 – 0.2961×10–4 – 0.2959 × 10–4 – 0.2957 × 10–4 

M = 2 *v  – 0.1786 × 10–7 – 0.1785 × 10–7 0.1783 × 10–7 – 0.1782×10–7 – 0.1781 × 10–7 – 0.1780 × 10–7 

M = 5 *v  – 0.1051 × 10–25 – 0.105 × 10–25 – 0.1049 × 10–25 – 0.1048 × 10–25 – 0.1048 × 10–25 – 0.1047 × 10–25 
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Table – 5. k* = 0.1,  t = 0.1 

 z 0.0 0.2 0.4 0.6 0.8 1.0 

M = 0 *  0.0000 – 0.1707 – 0.3414 – 0.5121 – 0.6828 – 0.8535 

M = 0.5 *  0.0000 – 0.1665 – 0.3330 – 0.4994 – 0.6659 – 0.8324 

M = 2 *  0.0000 – 0.1144 – 0.2288 – 0.3433 – 0.4577 – 0.5721 

M = 5 *  0.0000 – 0.0140 – 0.0280 – 0.0420 – 0.0560 – 0.0701 

Table 6. k* = 0.2,  t = 0.1 

 z 0.0 0.2 0.4 0.6 0.8 1.0 

M = 0 *  0.0000 – 0.2814 – 0.5628 – 0.8443 – 1.1257 – 1.4071 

M = 0.5 *  0.0000 – 0.2745 – 0.5489 – 0.8225 – 1.0979 – 1.3724 

M = 2 *  0.0000 – 0.1886 – 0.3773 – 0.5659 – 0.7546 – 0.9432 

M = 5 *  0.0000 – 0.0231 – 0.0462 – 0.0693 – 0.0924 – 0.1155 

Table 7. k* = 0.1,  t = 0.2 

 z 0.0 0.2 0.4 0.6 0.8 1.0 

M = 0 *  0.0000 – 0.3505 × 10–11 – 0.7010 × 10–11 – 1.0516 × 10–11 – 1.4021 × 10–11 – 1.7526 × 10–11 

M = 0.5 *  0.0000 – 0.2126 × 10–11 – 0.4251 × 10–11 – 0.6378 × 10–11 – 0.8504 – 1.0603 × 10–11 

M = 2 *  0.0000 – 0.1156 × 10–14 – 0.2352 × 10–14 – 0.3527 × 10–14 – 0.4703 × 10–14 – 0.5879 × 10–14 

M = 5 *  0.0000 – 0.6761 × 10–33 – 1.3521 × 10–33 – 2.0282 × 10–33 – 2.7043 × 10–33 – 3.3804 × 10–33 

Table 8. k* = 0.2,  t = 0.2 

 z 0.0 0.2 0.4 0.6 0.8 1.0 

M = 0 *  0.0000 – 0.7721 × 10–7 – 1.5442×10–7 – 2.3163 × 10–7 – 3.0884 × 10–7 – 3.8605 × 10–7 

M = 0.5 *  0.0000 – 0.4683 × 10–7 – 0.9366×10–7 – 1.4049 × 10–7 – 1.8732 × 10–7 – 2.3415 × 10–7 

M = 2 *  0.0000 – 0.2590 × 10–10 – 0.5180×10–10 – 0.7770 × 10–10 – 1.0360 × 10–10 – 1.295 × 10–10 

M = 5 *  0.0000 – 0.1489 × 10–28 – 0.2978×10–28 – 0.4467 × 10–28 – 0.5957 × 10–28 – 0.7446 × 10–28 

DISCUSSION  

From table 1 to 4 we see that:  

1. As we move away from the axis of the tube the velocity decreases. Somewhere 
near the axis the velocity of flow becomes zero and then it again increases 
continuously. The region of zero velocity exist slightly away from the axis. As 
the value of M increases the rate of increases of velocity is almost constant. It is 
noticeable that at the moment when velocity is zero, vorticity does not vanish. 

2. As the value of magnetic parameter M increases the velocity of flow decreases 
throughout.  



100 Acta Ciencia Indica, Vol. XLI P, No. 2 (2015) 

 

3. For small values of t, with increases in magnetic parameter M, the velocity 
decreases slowly.  

4. The effect of the permeability parameter k* is to increase the velocity of the 
fluid.  

5. For large values oft, the velocity of fluid decrease sharply.  

From table 5 to 8 we conclude that:  

1. Vorticity is zero at the axis of the cylindrical tube (with elliptic section) i.e. the 
flow is irritation at the axis of the tube and as we move away from the axis of the 
tube vorticity comes into picture and increases with the increases in distance 
from the axis of the tube. 

2. For fixed t and k* with increase in magnetic parameter M, the vorticity decreases 
slowly. 

3. For fixed t and M, the vorticity increases with increases in k*, the permeability 
parameter. 

4. For fixed k*, with increase in time t, the vorticity decreases sharply. 

5. As the value of t and k* increase, value of vorticity although increased but its 
rate of increase decrease continuously. But for increased k* and t the role of 
vorticity does not remain predominant and the flow remain almost irrotational. 
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