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This paper deals with heat and mass transfer in the 
unsteady Couette flow of Oldroyd liquid between two 
horizontal parallel porous plates with heat sources and 
Darcy’s dissipation. Galerkin technique has been applied 
to solve the constitutive equations of momentum, heat and 
mass transfer. Nature of the non-Newtonian flow, heat and 
mass transfer has been studied through graphs and tables. 
It is observed that the porosity of the plate, source 
parameter and dissipation terms affect the flow and heat 
transfer patterns appreciably as like the varied species 
concentration.  

 

KEYWORDS : Heat and mass transfer, Oldroyd liquid, 
heat sources, Darcy’s dissipation and chemical reaction. 

 

INTRODUCTION 

The study of Couette flow problems has attracted the attention of many researchers in 

recent years. 

 The problem of Couette flow of an incompressible viscous liquid between two plates has 
already been studied by Pai [1]. The same flow through a porous channel has been 
investigated by Nanda [2], while Katagiri [3] and Muhuri [4] have analysed the same problem 
independently, taking into consideration the imposition of magnetic field on the field of flow. 
Rath et al [5] have discussed the heat transfer problem in case of unsteady Couette flow 
between two parallel walls maintained at different temperatures. Mishra [6], Dutta [7] and 
Kaloni [8] have analysed the plane Couette flow of an Oldroyd liquid with different physical 
conditions. Mishra [9] has also analysed the generalized plane Couette flow of an Oldroyd 
fluid with either suction or injection at the stationary wall. Further Bhatnagar [10] has 
discussed the plane Couette flow of Rivlin-Fricksen higher order fluid with uniform suction at 
the stationary plate. The plane Couette flow of Walters’ B  liquid with equal rate of injection 
at one wall and suction at the other moving wall has been studied by Soundalgekar [11]. 
Moreover Mishra and Mohapatra [12] have investigated the problem of flow formation in 
Couette motion between two walls in case of Riener-Rivlin fluid imposing magnetic field. The 
commencement of unsteady Couette flow in case of second order liquid has been analysed by 
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Padhy [13]. Dash and Biswal [14] have investigated the problem of commencement of 
Couette flow in Oldroyd liquid through a porous channel in the presence of heat sources. 

 Biswal and Mahalik [15] have analysed the unsteady free convection flow and heat 
transfer of a viscoelastic fluid past on impulsively started porous flat plate with heat 
sources/sinks. Same researchers have investigated heat transfer in the free convection flow of 
a visco elastic fluid inside a porous vertical channel with constant suction and heat sources 
[16]. Biswal [17] alone has studied heat and mass transfer effects of oscillatory hydromagnetic 
free convective flow of a viscoelastic fluid past an infinite vertical porous flat plate in the 
presence of Hall current. Further, Biswal [18] has analysed the unsteady free convection flow 
and heat transfer of a viscoelstic fluid past an impulsively started porous wall. Muduli, Jena 
and Biswal [19] have analysed the effect of mass transfer on magnetohydrodynamic free 
convective flow of water at 4°C through a porous medium with Darcy’s dissipation. 

 From technological view point, the study of both Newtonian and Non-Newtonian 
Couette flow problems in the presence of porous media is very important. Consequently, the 
literature is replete with copious instances of such investigations on Couette flows, through 
porous channel. 

 In the present problem, our aim is to study the commencement of Couette flow in 
Oldroyd liquid between two horizontal parallel porous plate, with heat sources, under the 
following physical situation i.e. 

 When the lower wall suddenly starts moving with time varying velocity A ,nt  where n is 

positive. The present investigation in the further generalization of previous cases of Padhy 
[13] and Biswal [14]. 

FORMULATION OF THE PROBLEM 

Let X  -axis be chosen along the lower wall and y -axis be normal to it. The upper 

plane be specified by the equation y = L, where the symbol L will be defined later. It is also 

supposed that the walls extend to infinity in both sides of the X  -axis and the walls are 

porous. The suction and injection velocity V  at the walls is considered to be a constant. Now, 

the velocity components u  and v  at any point ( X  , Y  ) in the flow field compatible with 
the equation of continuity can be given by 

     ( , )U U y t   … (2.1) 

Following the stress-strain rate relation, the stress components are given by 

     

2

02x x u
P K

y

   
   

 … (2.2) 

     0 0
x y u u

P K V
y y t

       
            

  … (2.3) 

     0y yP     … (2.4) 

where K0 = 0 (1  2) 

Since the motion in both the cases is due to the shearing action of the fluid layers, 
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     0
P

y





 … (2.5) 

Thus the equations of motion and energy including viscous dissipation and heat sources 
are given below following the visco-elastic fluid model of Oldroyd’s B liquid [15]. 

Equation of motion 

    
2 3 3

0
0 02 2 3

u u u u u
V K V u

t y Ky y t y

           
                       
 … (2.6) 

Equation of energy 
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       
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          
 … (2.7) 

Equation of continuity 

     
2
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    
   

   
 

 (2.7a) 

where      nLK C C       , 

 K   is the reaction rate constant and n is the order of the reaction followed from Aris 
[20]. 

FORMATION OF THE EQUATIONS 

The relevant boundary conditions to which equation (2.6) is subjected to are  

     0t  : 0  , 0c   for all y
 

     
0t  : / nu At   for all 0y 

  
… (3.1) 

     L   ,  for y L 
 

We introduce here the following non-dimensional parameters: 
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 , the elastic parameter, 
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   1 P
r

v C
P

K





, the Prandtl number 

   
2 2n

P L

A T
E

C



, the Eckert number, 

   ,L
L

L

  
  


being the temperature of the upper plate 

   1
2

4S v
S

V


 , the source parameter 

   
2

*
2

K u
K

v


 , the non-dimensional permeability factor of the porous medium,  

   K1 = 
2

K

V


, non-dimensional chemical reaction parameter, 

where T is some reference time. Here the maximum value of  = 0.8 or  < 0.7 when decreased 
rapidly 

 0
1v





, the Kinematic viscosity 

 1L v T , the distance between the two walls of the channel 

and K0 = 0 (1 – 2) is the volume co-efficient of elasticity of the fluid. With the help of the 
above non-dimensional parameters, the equations (2.6) and (2.7) are now reduced to their 
dimensionless forms as follows: 

   
2 3 3
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… (3.3) 

and   
2

12

1

c

C C C
R K C

t y S y

  
  

    

 … (3.3a) 

The modified boundary conditions are 

0t  : 0u   for all y  

     0t  : nu t for all 0y    … (3.4) 

     u = 0 : for  y = 1 
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and 

     0t  :   0      c = 0     for all y  

     0t  : 0
y





  0,

c

y





 

for all 0y 
 … (3.5)

 

     0      c = 0   for all y = 1 

SOLUTION OF THE EQUATIONS 

Now equation (3.1) is a third order differential equation, which requires three boundary 

conditions for its solution. But the present problem provides only two boundary conditions. To 
overcome this difficulty, we follow small parameter perturbation technique given by Beard 
and Walters [21] to obtain the approximate solution of equation (3.2) and hence expand u in 
powers of Rc for Rc << 1. Thus we write 

     
0

i
c i

i

u R u




   … (4.1) 

where i = 0, 1, 2, ………….. etc. 

Substituting (4.1) in (3.2) and equating the co-efficient of 0
cR  and 1

cR , while neglecting 

those of 2
cR , 3

cR ….. etc, we obtain, zeroth order equation : 

     
3
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02 *

1
0

u u u
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t y y K

  
   

  
 … (4.2) 

and first order equation 

   
2 32

0 01 1 1
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1
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u uu u u
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t y y y y t K

    
      

         

(4.3) 

The boundary conditions (3.4) are further modified as 

     t = 0 :  u0 = 0, u1 = 0  for all y 

     t > 0 :   u0 = tn, u1 = 0   for all y = 0 …(4.4) 

     u0 = 0, u1 = 0,             for all y = 1 

In order to solve equations (4.2), (4.3) and (3.2) by Galerkin technique subjected to the 
boundary conditions (4.4) and (3.4), we choose the following approximate infinite expressions 
for u0, u1 and   

   u0  tn (1 – y) + a1ty (1 – y) + a2t
2y2 (1 – y)2 + a3t

3y3 (1 – y)3 … (4.5) 

   u1  b1ty (1 – y) + b2t
2y2 (1 – y)2 + b3t

3y3 (1 – y)3    (4.6) 

     c1t (1 – y2) + c2t
2y (1 – y2)2 + c3t

3y3 (1 – y2)3  … (4.7) 

where aj, bj and cj (i = 1, 2, 3…) are arbitrary constants to be determined later. 

The equation of concentration is solved by small parameter regular perturbation technique 
taking  
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     C = C0 + 0e
iwtC1 …(4.7a) 

Solution of zeroth order equation 

Substituting eqn. (4.5), in eqn. (4.2) the defect function Du0 is obtained as  

   1
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1
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2
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       + 3a3 [t
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*3 2 3 3 3

1

2 (1 )(5 5 1) (1 ) ]
2

Kt y y y y t y y      ,   … (4.8) 

 The defect function Du0 is then minimized by Galerkin technique of orthogonalisation 
leading to the following three double integrals. 

     
1 1

00 0
(1 ) 0j j jDu t y y dt dy     … (4.9) 

where j = 1, 2, 3 

It is note worthy here that t  [0, 1], since t is not large 

After performing the integrations of equation (4.9) we arrive at the following three 
algebraic equations involving the parametric constants aj = 1, 2, 3 (a1, a2, a3) as  

 
* * *
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   … (4.11) 

 
* * *

1 2 3
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K K Ka a a
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*
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 
   
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  … (4.12) 

Eqns. (4.10), (4.11) and (4.12) can be written as  

     A1a1 + A2a2 + A3a3 = d1 

     B1a1 + B2a2 + B3a3 = d2 … (4.13) 

     C1a1 + C2a2 + C3a3 = d3 
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The three linear equations in (4.13) are solved by Cramer’s rule to give a1, a2, a3 as a1 as 

Equns. (4.11), (4.12) and (4.13) are solved by Cramer’s rule to determine a1, a2, and a3 as 

a1 = 
     
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a3 = 
     
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where A1 (B2C3  B3C2) + A2 (B3C1  B1C3) + A3 (B1C2  C1B2) 

Now the values of a1, a2 and a3 are put in equation (4.5) to get u0 

Solution of first order equation 

 The defect function Du1 is obtained from equation (4.3) with the help of (4.6) and (4.5) 
as 

    Du1 =  2a1 + 4a2t [(1 – y)2 – 4y (1 – y) + 2y2 – 3Rt (1 – 2y)] 

     + 6a3t
2 [(1 – y)3 (3y + Rt) – 9y (1 – y)2 (y + Rt)  
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K
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     +
*

1

2
K  t2y2 (1 – y)2] … (4.17) 

which is minimized by Galerkin technique of orthogonalization resulting the following three 
double integrals started as 

     
1 1

10 0
(1 ) 0j j jDu t y y dt dy    … (4.18) 

where j = 1, 2, 3. 

Performing the above integrations, we obtain the following three algebraic equations 
involving the constants b1, b2 and b3 as 

* * *
31 2
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180 90 14 560 4200 3150 6 45 280
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* * *
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  (4.21) 

These equations (4.19 – 4.21) can be put in the following form 

     1 1 2 2 3 3 1A b A b A b d       

     1 1 2 2 3 3 2B b B b B b d       (4.19) 

     1 1 2 2 3 3 3C b C b C b d       
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where 1A = 
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K  

  1C  = 
*

1

41

1260 3150
K , 2C = 

*

1

47

20,790 16632
K , 3C = 

*

1

163

168168 84084
K  

  1d   = 31 2 3
,

6 45 280

aa a
  2d   =   31

20 ,
45 350

aa
a   3d   = 31 2 3

,
280 3150 1540

aa a
   

 The three equations in (4.19) – (4.21) are solved by Cramer’s rule to give b1, b2, b3  

b1 = 
     

1 2 3

2 2 3

3 2 3 1 2 3 3 2 2 3 3 3 2 3 2 3 2 3

d A A

d B B

d C C d B C B C A B d C d A C d B d

A A

   
   
 
                        


 …(4.23) 

b2 = 
     

1 1 3

1 2 3

1 3 3 1 3 2 3 3 1 1 3 1 3 3 1 3 1 2

A d A

B d B

C d C A C d B d d C B B C A B d C d

A A

   
   
 
                        

 
 …(4.24) 

b3 = 
     

1 1 1

1 2 2

1 2 3 1 2 3 2 3 2 1 2 1 3 1 1 2 1 2

A A d

B B d

C C d A B d C d A C d B d d B C C B

A A

   
   
 
                        

 
 …(4.25) 

where  =      1 2 3 3 2 2 3 1 1 3 3 1 2 1 2A B C B C A B C B C A B C C B                    

Now the values of b1, b2 and b3 are put in (4.6) to get u1 

Consequently, the expression for velocity (u = u0 + Rcu1) becomes 

   u = tn (1 – y) + a1ty (1 – y) + a2t
2y2 (1 – y)2 + a3t

3y3 (1 – y)3  

     + Rcb1ty (1 – y) + Rcb2t
2y2 (1 – y2) + Rcb3t

3 y3 (1 – y)3  … (4.26) 

Solution of equation of energy: 

The defect function D is obtained from equation (3.3) with the help of equation (4.7) and 
(4.26) as 

    D = e1 [(1  y2)  2Rty + 
2
rP

 t  R2st (1  y2)] 

     + c2 [2ty (1  y2)2 + Rt2 (1  6y2 + 5y4) + 
4
rP

t3 (3y  5y3) 
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      
1

4
R2St2y (1  y2)] + c3 [3t2y2 (1  y2)3 + 2Rt3 (y  6y2 + 9y5  4y7) 

      
32

r

t

P
 (1  18y2 + 45y4  28y6)  

1

4
R2St3y2 (1  y2)3] 

     + ERcnt2n  1  En2n EtnRcnt (1 + n) (1  2y) + 2Ern + 1 

     [RcRa1  a2Rc (2 + n) (y  3y2 + 2y3) + (a1 + Rcb1) (1  2y)] 

     + Etn + 2 [4(a2 + Rcb2) (y  3y2 + 2y3)  3a3Rc (3 + n) 

     (y2  4y3 + 5y4  2y5)  2RRca2 (1  6y + 6y2)] 
 

   Etn + 3 [6(a3 + Rcb3) (y
2  4y3 + 5y4  2y5)  6RRca3 (y  6y2 + 10y3  5y4)] 

   + Eta1
3 Rc (1  2y)2 + Et2 [6Rca1a2 (y  5y2 + 8y3  4y4) 

    2RRc a1 + 3
 (1  2y)  (a3 + 2Rca1b1) (1  2y)2] 

       Et3 [2RRca1a2 (1  10y + 24y2  16y3) + 12Rca1a3 (y
2  6y3 + 13y4  12y5 + 4y6) 

 

  + 8Rca2
3 (y3  6y3 + 13y4 + 12y5 + 4y6) + (Rca1b2 + Rca2b1 + a1a2) 

  (y  5y2 + 8y3  4y4)] + Et4 [(6RRc a1a3 + 4RRca2
2) (y  9y2 + 26y3  30y4 + 13y2) 

  +30Rca2a3 (y
3  7y4 + 19y5  25y6 + 16y7  4y8) 

   4a2 (a2 + 2Rcb2) (Y  3y2 + 2y3)2  6 (Rca1b3 + Rca3b1 + a1a3) 

  (y3 + 6y2 + 13y4 + 12y5 + 4y6)] 
 

  + Et5 [6RRca2a3 (3y2  28y3 + 95y4  150y5 + 112y6  32y7) 

  +27Rca3
2

 (y
4  8y5 + 26y5  44y7 + 41y8  20y9 + 4y10) 

   12 (Rca3b2 + Rca2b3 + a2a3) y
3  7y4 + 19y5  25y6 + 16y7  4y8)] 

  Et6 [18RRca3
2 (y3  10y4 + 37y5  77y6 + 82y7  48y8 + 10y9) 

   9 (a3
2 + 2Rca3b3 (y

4  8y5 + 26y6  44y7 + 41y8  20y9  4y10)] 

  
*

E

K


 [t2n (1  y)2 + a1

2 t2 y2 (1  y)2 + 2a1 t
n + 1 y (1  y)2 

  + a1
2 t4y4 (1  y)4 + a3

2 t6y6 (1  y)6 + 2a2a3t
5y5 (1  y)5 

  + Rc
2b1

2t2y2 (1  y)2 + Rc
2b2

2t4y4 (1  y)4 + Rc
2b3

2t6y6 (1  y)6 

  + 2Rc
2 b1b2t

3y3 (1  y)3 + 2Rc
2b2b3t

5y5 (1  y)5 

  + 2Rc
2 b1b3t

4y4 (1  y)4 + 2a2 t
n + 2 y2 (1  y)3 

  + 2a1a2t
3y3 ( y)3 + 2a3 t

n + 3 y3 (1  y)4 

  + 2a1a3t
4y4 (1  y)4 + 2Rca2b1t

3y3 (1  y)3 

  + 2Rca3b1 t
4y4 (1  y)4 + 2Rc a2b2t

4y4 (1  y)4 

  + 2Rc a3b2t
5y5 (1  y)5 + 2Rc a2b3 t

5y5 (1  y)5 

  + 2Rcaa3b3t
6y6 (1  y)6 + 2Rcb1t

n + 1 (1  y)2 

 



Acta Ciencia Indica, Vol. XLI P, No. 1 (2015) 43 

  + 2Rca1b1t
2y2 (1  y)2 + 2Rca1b2t

3y3 (1  y)3 

  + 2Rca1b3t
4y4 (1  y)4], (4.27) 

which is minimized by Galerkin technique of orthogonalization, resulting the following three 
double integrals as 

     

1 1
1 1 2 1

0 0

(1 ) 0jD t y y dt dy     … (4.28) 

where j = 1, 2, 3. 

The above integrations are then carried out and solved by Cramer’s rule to give the 
constants c1, c2 and c3 as 

c1 = 
     

1 2 3

2 2 3

3 2 3 1 2 3 3 2 2 3 3 3 2 3 2 3 2 3

d A A

d B B

d C C d B C B C A B d C d A C d B d

   
   
 
                        

  
 …(4.29) 

c2 = 
     

1 1 3

1 2 3

1 3 3 1 3 2 3 3 1 1 3 1 3 3 1 3 1 2

A d A

B d B

C d C A C d B d d C B B C A B d C d

   
   
 
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  
 …(4.30) 

c3 = 
     

1 1 1

1 2 2

1 2 3 1 2 3 2 3 2 1 2 1 3 1 1 2 1 2

A A d

B B d

C C d A B d C d A C d B d d B C C B

   
   
 
                        

  
 …(4.31) 

where       1 2 3 3 2 2 3 1 1 3 3 1 2 2 1 2A B C B C A B C B C A B C C C B                         

  
2

1
4 4 2

15 6 9 45r

R R S
A

P
      

  
2

2
4 4 1

12 105 9 35r

R R S
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P
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3
32 11 32 32

1155 100 1575 17325r

R R S
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P
      
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R R S
B

P
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2
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R S
B

P
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2

3
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R R S
B

P
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Fig. 1 : Effect of R, Rc and K* on velocity field. 

Thus the values of c1, c2 and c3, the expression for temperature  becomes 

      = c1t (1 – y2) + c2t
2y (1 – y2)2 + c3t

3y2 (1 – y2)3 … (4.32) 

The non-dimensional skin friction is given by 

     
2 2

2xy c
u u u

R R
y ydty

    
    

   
 … (4.33) 

The skin friction at the lower and upper plate are calculated from equation (4.33) taking   
y = 0 and y = 1 respectively 

    0  =  xy |y =0 

     =  tn + t (a1 + Rcb1)  Rc {– 2Rta1 + 2Ra2t
2 – ntn – 1 + a1} …(4.34) 

and    1  =  xy |y =0 …(4.35) 

     =  tn – (a1 + Rcb1) – Rc {– 2Ra2t
2 – ntn – 1 – a1} 

Further, the rate of heat transfer at the lower plate is given by 
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Fig. 2 : Effect of t, R and Rc on velocity field. 

     2
0 2

0y

NU c t
y




   


  … (4.36) 

and that at the upper plate is 

     1 1
1

2
y

NU c t
y 


  


  … (4.37) 

Solution of concentration equation (3.3a) 

Solving equn. (3.3a), we get 

    C0 = e RScy, … (4.38) 

and    C1 = 
 2 2

1
2

1 4
2 c c cS R R S iw S K

a ye e

         … (4.39) 
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Fig. 3 : Effect of t and n on velocity field. 

where   a2 =  2 2
1

1
4

2
c c cS R R S iw S K   

  
 … (4.40) 

It is observed that the final equation for concentration contains imaginary terms alongwith 
real parts. In order to separate the real and imaginary parts, we can express C as 

   C = C0 + 0 [(Cr Cos wt  Ci Sin wt) + I (Cr Sin wt + Ci Cos wt)] … (4.41) 

Taking only the real part, we have  

   C = C0+ 0 (Cr Cos wt  Ci Sin wt) … (4.42) 

When  wt = /2, we obtain C = C0  0 Ci, … (4.43) 

RESULTS AND DISCUSSIONS OF CASE (I) 

In this case, the effects of various parameters on the flow behaviour of viscoelastic fluid 

flowing through a medium have been studied with the help of graphs and tables. The study is 
carried out for two positive values of n, i.e., 

(i) n = 1, constant acceleration 

(ii)  n = 
1

2
, variable acceleration 
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Fig. 4 : Effect of t and Rc on temperature field. 

The effects of R, Rc and K* on velocity field are exhibited by the curves of Fig. 1. In the 
absence of magnetic field, it is observed that the velocity decreases with Rc attaining negative 
values between y = 0.6 and y = 1.0 (curves I and II). The velocity of the fluid decreases rapidly 
with Rc (curves III and IV), the velocity increases having all positive values. This behaviour is 
ascertained from the curves IV and V. The effect of Reynolds number (R) on the velocity 
profiles are shown in the curves V and VI, which reveal that the velocity decreases as R 
increases keeping the permeability of the porous medium constant. 

Fig. 2 exhibits the influence of t, R and Rc on the velocity field. It is remarked from the 
curves I, II and III that the increase in the elasticity of the fluid decreases the fluid velocity. 
For Newtonian fluid (Rc = 0), the velocity decreases sharply to zero from lower plate to upper 
plate, while for non-Newtonian fluid it tends to be reversed at the middle of the channel. The 
rise in the value of t as well as Reynolds number R, cause a flow reversal in the channel. 
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Fig. 5 : Effect of R on temperature field. 

Fig. 3 explains the effects of t and n on the velocity field. When ‘t’ increases, velocity 
also increases near the lower plate but tends to decelerate towards the middle of the channel 
and becomes zero at the upper plate. However a reverse effect is noticed for the rise of n. 

The effects of t and Rc on temperature field are shown in Fig. 4 while the effect of R on 
temperature is shown in Fig. 5. It is concluded that the rise in the elastic property of the fluid 
reduces the temperature of the fluid. For Newtonian fluid, the temperature is positive while for 
non-Newtonian fluid it has a negative value, which increase with the increase of Rc. Further, 
the temperature falls, with the rise in t. When Reynolds number increases, the temperature 
near the lower wall falls suddenly attaining negative values but gains slowly towards upper 
plate. Fig. 6 depicts the influence of R and Pr on the temperature field. The temperature which 
is negative at the lower plate increases with decrease in Pr. Further, the rise in R increases the 
temperature at a high rate near the lower plate. 

The effect of source parameter S on temperature field is illustrated in Fig. 7, where the 
negative values of S are meant for sink strength and positive values of S for source strength. 
As the sink strength rises from – 0.10 to – 0.50, the temperature of the fluid rises sharply 
(curves I and II). But, the temperature decreases with the further increase of sink strength 
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which is marked from curves II and III. In the absence of source or sink, the temperature of 
the fluid is low having negative values. This clearly indicates that cooling effect is produced 
while the visco-elastic fluid exhibits Couette flow under the influence of an external uniform 
transverse magnetic field. In the presence of an internal heat generating source in the fluid, the 
temperature rises attaining positive values, when the source strength is low (S = 0.1). Further 
increase in S decreases the temperature (Curve VI). However, a deviation is marked in case of 
S = 1.0. 

 

Fig. 6 : Effect of R and Pr on temperature field. 

Fig. 8 explains the influence of Prandtl number and Eckert number on the temperature 
profiles. Curves I and II exhibit the effects of low Prandtl number rise and reveal the fact that 
the temperature rises with the rise of Pr form 0.1 to 0.2 within the boundary conditions 
imposed. Further, it is observed that the temperature falls with the rise of Prandtl number      
(Pr = 5.0). For higher values of Prandtl number, the fall in temperature is somewhat slower 
(Curve IV). The effect of Eckert number on the temperature field shown in the curves IV, V 
and VI unveil the fact that the rise in E produces a sharp fall in temperature. 

Fig. 9 exhibits the behaviour of concentration with the variation of reaction parameter 
(K1) and Schmidt number (Sc). It is seen that the concentration reduces with the rise of Sc as 
well as K1. 
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Fig. 7 : Effect of S on temperature field. 

The values of shear stresses for different values of R, Rc and K* are entered in Table 1 
keeping all other parameters fixed. 

Table : 1. Effects of R, Rc and K* on skin friction for n = 1.0, t = 0.05, S = 0.05, Pr = 5.0 
and E = 0.02 

K* Rc 0.0 0.05 0.10 

 R SKF1 SKF2 SKF1 SKF2 SKF1 SKF2 

3.3 5.0 – .482503 × 10–1 – .517497 × 10–1 – 133580 0.648524 × 10–1 – .218910 0.181455 

 10.0 – .459776 × 10–1 – .540224 × 10–1 – .378443 0.682500 × 10–1 – .710909 0.190522 

 15.0 – .437049 × 10–1 – .562951 × 10–1 – .709676 – .147212 × 10–1 – .137565 × 10–1 .268527 × 10–1 

 

0.16 

5.0 – .496650 × 10–1 – .503350 × 10–1 – .227148 × 10–1 0.968847×10–2 0.423549×10–1 0.697119 × 10–1 

10.0 – .478722 × 10–1 – .521278 × 10–1 – .160166 0.160444 ×10–1 – .272459 0.842167 × 10–1 

15.0 – .460794 × 10–1 – .539206 × 10–1 –3.56650 – .667221 – .193478 × 10–1 – 0.193478 × 10–1 
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Fig. 8 : Effect of Pr and E on temperature field. 

It is observed that the increase in Reynolds number (R) causes the value of shear stress at 
the lower plate to be more and more negative for visco-elastic fluid while for viscous fluid the 
negativeness of the shear stress at the lower plate decreases. It is further noticed that in case of 
viscous fluid (Rc = 0), the value of shear stress at the upper plate decreases as R increases. 
Interestingly, the skin friction at the upper plate first increases and then decreases with the 
continuous rise of R for non-Newtonian fluid (Rc > 0). The increase in the elasticity of the 
fluid decreases the value of skin friction at the lower plate and this effect is reversed for the 
upper plate. From the reading of this table, it is also observed that the value of skin friction at 
the lower plate increases for visco-elastic fluid and decreases for viscous fluid, with the rise of 
permeability factor (K*), while this effect is reversed for upper plate. 

The table 2 shows the dependence of rates of heat transfer at both the plates on t, n, R and 
Rc, all other variables remaining fixed. It is noticed that when t increases, rates of heat transfer 
also increases at both the plates for n = 0.5, but decreases for n = 1.0 in case of Newtonian and 
non-Newtonian fluids. The increase in the value of ‘n’ results in the reduction of rates of heat 
transfer at both the plates and for both viscous and visco-elastic fluids. It is observed that the 
value of Nusselts number at lower plate decreases while that at the upper plate increases with 
the rise of Reynolds number (R) in case of Rc > 0. When Rc = 0 the value of Nusselts number 
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falls at both lower and upper plates with the rise of R. Finally, as the elastic property of the 
fluid increases, the rates of heat transfer at both the plates also increases. All the above 

conclusions are drawn in the presence of a porous medium i.e. 
*

1
0

K
 . 

 

Fig. 9 : Effect of K1 and Sc on Concentration 

Table : 2. Effects of t, n, R, Rc on the rates of heat transfer for S = 0.1, K* = 3.3, Pr = 0.1 
and E = 0.01. 

R t n/Rc 0.5 1.0 

   NU0 NU1 NU0 NU1 

0.5 0.05 0.0 -.571016c10-6 .297534x10-4 -.238178x10-4 -.639748x10-4 

  0.05 .101282x10-5 .180371x10-3 -.230699x10-4 -.477565x10-4 

  0.10 -.59665x105 .170988x10-3 -.223221x10-4 -.315381x10-4 

 0.10 0.0 -.228406x105 .595068x10-4 -.952711x10-4 -.127950x10-4 

  0.05 .405128x105 .200741x10-4 -.922797x104 -.955130x10-4 

  .10 .103866x10-4 .341976x10-4 -.892884x10-4 -.630762x10-4 

5.0 0.05 0.0 -.117952x10-5 -.648397x10-4 -.494657x10-4 -.284936x10-4 

  0.5 -.269204x10-2 .753349x10-4 -.124071x10-4 .351382x10-4 

  0.10 -.526613x10-2 .157154x100 -.243195x10-2 .73125x10-4 
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