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Third order elastic constants of Potassium Cyanide crystal 
in orientationally disordered crystalline (ODIC) phase have 
been evaluated by a method based on Börn model of ionic 
solids. Potassium Cyanide crystal shows many interesting 
properties which arise from the molecular character of the 
CN ion group. KCN exhibit NaCl-type face centered cubic 
crystal structure above critical temperature 168K. Starting 
from the nearest neighbour distance and hardness 
parameter the second and third order elastic constants of 
KCN have been computed at elevated temperatures (up to 
the nearest melting point). The computed values of higher 
order elastic constants have been used to calculate  other 
constants like first order pressure derivatives of  third order 
elastic constants.  
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INTRODUCTION 

One of the fundamental mechanical and the thermodynamic properties of any substance 

is its elastic constant. Several physical properties and crystal anharmonicities such as thermal 
expansion, specific heat at higher temperature, temperature variation of acoustic velocity and 
attenuation, the first order pressure derivatives (FOPDs) of second order elastic constants 
(SOECs), Gru¨neisen numbers and temperature derivatives of SOECs are directly related to 
SOECs and third order elastic constants (TOECs). In the last few decades, considerable 
interest has been taken in the investigation of anharmonic properties of materials of various 
kinds [1–10]. We have developed formulations [5] for quantifying anharmonic properties such 
as higher order elastic constants of materials which possess face centered cubic (FCC) crystal 
structure starting from primary physical parameters viz. nearest-neighbour distance and 
hardness parameter using long- and short-range potentials. The elastic energy density for a 
deformed crystal can be expanded as a power series of strains using Taylor’s series expansion. 
The coefficients of quadratic, cubic and quartic terms are known as the second, third and 
fourth-order elastic constants (SOECs, TOECs and FOECs) respectively. The model we have 
used has been proved to be highly successful in predicting the elastic properties of alkali 
halides. The special interest in KCN lies in the fact that this exhibits the NaCl like structure. It 
is of interest to test the applicability of our present model to Potassium Cyanide (KCN). 
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KCN is an ionic crystal with a pseudo cubic (NaCl, Fm3m) high temperature phase. It 
undergoes an order-disorder transition from a cubic (Fm3m) structure with the CN– ion 
distributed randomly along [1 1 1] direction to an orthorhombic (Immm) structure with the 
CN– ions along one of the cubic [1 1 0] direction [11, 12]. Since the discovery by Haussuhl 
[13] of the anomalous behaviour of the C44 elastic constant in the orientationally disordered 
(ODIC) crystalline phase of KCN, the elastic properties of this material have been the subject 
of many theoretical and experimental investigations [13-18]. 

The present work is concerned with the formulation to evaluate the TOECs, the FOPDs of 
the TOECs; using long and short-range potentials starting from the nearest-neighbour distance 
and hardness parameter. Section 2 deals with the brief description of the theory. In Section 3, 
the theory is tested for KCN. The results thus obtained are widely discussed in Section 4. 

FORMULATION  

The elastic energy density for a crystal of a cubic symmetry can be expanded up to 

quartic terms as shown below [19]; 

U0 = U2 + U3 + U4 

     = [1/2!] Cijkl αij αkl + [1/3!] Cijklmn αij αkl αmn + [1/4!]  Cijklmnpq αij αkl αmn αpq         … (1)   

where Cijkl, Cijklmn and Cijklmnpq are the SOECs, TOECs and FOECs in tensorial form; ij are 
the Lagrangian strain components; The SOECs, TOECs and FOECs are as given below: 
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CIJ, CIJK and CIJKL are the SOECs, TOECs and FOECs in Brügger’s definition and 
voigt notations [20].    

The free energy density of a crystal at a finite temperature T is 
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where U0 is the internal energy per unit volume of the crystal when all ions are at rest on their 
lattice points, Uvib is the vibrational free energy, Vc is the volume of the primitive cell, N is the 
number of the primitive cells in the crystal and s is the number of ions in the elementary cell. 
Other notations used in this equation have their usual meanings. 

  An elastic constant consists of two parts as follows: 

       0 vib
IJ IJ IJC C C  , 0 vib

IJK IJK IJKC C C    and 0 vib
IJKL IJKL IJKLC C C   … (4)                                                                 

The first part is the strain derivative of the internal energy Uo and is known as static 
elastic constant and the second part is the strain derivative of the vibrational free energy Uvib 
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and is called vibrational elastic constant. The superscript 0 has been introduced to emphasize 
that the static elastic constants correspond to 0 K. 

The energy density of the non-deformed crystal is expressed as: 
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where mo
uvR  is the distance between the v-th ion in the o-th cell and the u-th ion in the m-th cell 

and Quv is the interaction potential between the ions. The indices (v, o) and (u, m) are 
sometimes dropped when no confusion occurs. One assumes that Quv is the sum of the long-
range Coulomb and the short-range Börn-Mayer potentials. 
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where e is the electric charge,   sign apply to like and unlike ions respectively, r0 is the 
nearest-neighbour distance, q is hardness parameter and A is 

            

2 2

4
0

0 0

0.29126

2
exp 2 2 exp

z e
q

r
A

r r

q q

 
 
 
 

  
    
   

                            … (7)  

It is assumed that the crystal is deformed homogeneously. When the crystal is deformed 
homogeneously, the distance between (v, o) and (u, m) ion in the deformed and non-deformed 

states, mo
uvR  and mo

uvr , are related to the Lagrangian strains eab as follows: 

                    2 2( ) ( ) 2 2mo mo mo mo mo
uv uv uvi uvj ab uvR r Y Y e Z                                   … (8)  

where mo
uviY  is the i-th Cartesian component of the vector mo

uvr . The definition of the quantity 

mo
uvZ  is also expressed in Eq. (8). The internal energy U0 given by Eq. (5) can be expanded in 

terms of mo
uvZ , which will yield cubic terms as given below: 
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Using Eqs. (3), (4) and comparison of Eqs. (1), (9), one may obtain the static elastic 
constants. For a central force model, there are only three independent TOECs at absolute zero 
temperature. As in the case of the internal energy U0, the vibrational free energy is also 
expanded in terms of strains, the cubic terms are as below:          
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On comparison Eqs. (1) and (10); the vibrational elastic constants can be determined. 
Vibrational contributions to TOECs are shown as a combination of n’s and ηn

’s which are 
evaluated by taking crystal’s symmetry into account and the expressions for n and ηn are 
presented below. By adding the vibrational elastic constants to the static elastic constants, one 
may get TOECs at any temperature for monovalent FCC crystals.  

Expression for the TOECs for fcc Crystalsnh 
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Expression for ηn’s for fcc Crystals 
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EVALUATION 

The theory for the calculation of different anharmonic properties of the substances 

possessing FCC crystal structures is given in the preceding section 2. The TOECs for KCN is 
evaluated from 200K to an elevated temperature (near melting point). Throughout this 
temperature range KCN exhibits FCC crystal structure. Selecting a few data obtained in this 
study, the values of TOECs in 1011dyne/cm2 at room temperature are given in Tables 2. The 
FOPDs of TOECs have been evaluated utilizing data of TOECs and SOECs and the results are 
shown in Tables 3. The whole evaluation is based on the assumption that the FCC crystal 
structure of the material does not change when temperature varies up to their melting point. 
The values [6] of the nearest-neighbour distance (r0) and hardness parameter (q) are given in 
Table 1.   

Table 1: The nearest neighbour distance (r0) and hardness parameter (q) in 10–8 cm and 
SOECs in 1011 dyne/cm2 at room temperature. 

MP(K) r0 q C11 C12 C44 

907.5 2.2892 0.267 13.769 3.279 3.566 

Table 2: The TOECs in 1011 dyne/cm2 at room temperature. 

C111 C112 C123 C144 C166 C456 

–146.16 –36.479 7.103 6.361 –14.096 5.698 

Table 3: The FOPDs of TOECs at room temperature. 

dC111 dC112 dC123 dC144 dC166 dC456 

6.985 16.192 2.007 0.822 2.143 2.124 

RESULTS AND DISCUSSIONS 

The FOPDs of the TOECs are presented in Table 3. The temperature variation of 

anharmonic properties TOECs and FOPDs of TOECs for KCN are represented graphically in 
Fig 1–4. There are six third order elastic constants. Among the calculated third-order elastic 
constants of this material, C111’s are the largest in their absolute values and an order of 
magnitude larger than the SOEC. Magnitude of other Cijk’s are markably smaller than those of 
C111. 

 For KCN, the values of C111, C112 and C166 are negative in nature, while C123, C144 and 
C456 are positive in nature. The values of C111, C123, C144 and C166 increase, the values of C112 

decrease as temperature increases, C456 remaining constant. The temperature variations of 
TOECs are given in Fig. 1, 2.  



6 Acta Ciencia Indica, Vol. XLI P, No. 1 (2015) 

 

 

Fig. 1. Temperature variation of TOEC for KCN 

 

Fig. 2. Temperature variation of TOEC for KCN 

The values of dC111/dp, dC112/dp, dC123/dp, dC144/dp, dC166/dp increase as temperature 
increases, and the values of dC456/dp decrease as temperature increases. The FOPDs of the 
TOECs of Potassium Cyanide are presented in Table 3.  

 The higher order elastic constants are strongly related to other anharmonic properties; 
such as thermal expansion, thermo elastic constants and thermal conductivity. The knowledge 
of TOECs along with other physical properties may provide further critical data for testing the 
machines for non-destructive-testing. These elastic constants are used to compute ultrasonic 
parameters such as ultrasonic velocities, thermal relaxation time etc. The variation of elastic 
constants with respect to pressure can reveal many important features of the short range forces 
at high pressure. The ultrasonic studies can provide interesting information on the specificities 
of ion-solvent interaction related to the structure of the solute and the reciprocal effects which 
arises in the solvent. The data obtained in present investigation will be helpful to those 
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workers who are engaged in studying the temperature variation of anharmonic properties of 
solids at higher temperatures. 

 

Fig. 3. Temperature variation of FOPDs for KCN 

 

Fig. 4. Temperature variation of FOPDs for KCN 
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