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This paper gives a simple model for the emission of a 
particle like a photon. It is assumed that the emitted 

particle has a typical quantum wavelength   that is large 

compared to the typical size R of the atom or nucleus that 
does the emitting. The purpose of the model is to show 
that in that case, the particle will very likely come out with 
zero orbital angular momentum but has some probability of 
nonzero angular momentum. 

 

INTRODUCTION 

First, photon wave functions are messy and not that easy to make sense of electron wave 

function. The photon would be much simpler if it did not have spin and was non relativistic. A 
reasonable wave function for a hypothetical spinless non relativistic photon coming out of the 
center of the emitter with typical wave length   would be 
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where r is the distance from the center. (The various factors   have been added to make the 

function f independent of the photon wave length   despite the corresponding spatial scale 
and the normalization requirement.) 

Table 1. The first few spherical harmonics. 
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The above wave function has no preferred direction in the emission, making it spherically 
symmetric. It depends only on the distance r from the center of the emitter. That means that 
the wave function has zero orbital angular momentum. Recall that zero angular momentum 

corresponds to the spherical harmonic 0
0Y , which is independent of the angular position,   

Table 1. 

There are various reasons to give why you would want the wave function of a particle 
coming out of the origin to have zero angular momentum. For one, since it comes out of a 
featureless point, there should not be a preferred direction. Or in terms of classical physics, if 
it had angular momentum then it would have to have infinite velocity at the origin. The similar 
quantum idea is that the relevant wave functions for a particle moving away from the origin, 
the Hankel functions of the first kind, blow up very strongly at the origin if they have angular 
momentum. But it is really better to describe the emitted particle in terms of the Bessel 
functions of the first kind. These have zero probability of the particle being at the origin if the 
angular momentum is not zero. And a particle should not be created at a point where it has 
zero probability of being. 

Of course, a spherically symmetric quantum wave function also means that the particle is 
moving away from the emitter equally in all directions. Following the stated ideas of quantum 
mechanics, this will be true until the position of the particle is measured. Any macroscopic 
surroundings cannot reasonably remain uncommitted to exactly where the outgoing particle is 
for very long. 

Now consider the same sort of emission, but from a point in the emitter a bit away from 

the center. For simplicity, assume the emission point to be at ˆ,Rk  where R is the typical size 

of the emitter and k̂  is the unit vector along the chosen z-axis. In that case the wave function 
is  
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Using Taylor series expansion, that becomes 
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In the second term, z/r is the spherical harmonic 0
1 ,Y  Table 2. This term has angular 

momentum quantum number l = 1. So there is now uncertainty in momentum. And following 
the stated ideas of quantum mechanics, the probability for l = 1 is given by the square 
magnitude of the coefficient of the (normalized) eigenfunction. 

Table 2: The first few spherical harmonics rewritten. 
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That makes the probability for l = 1 proportional to 2( / ) .R   If you carried out the Taylor 

series to the next order, you would end up with a  2( / )z r  term, which, combined with a 

spherically symmetric contribution, makes up the spherical harmonic 0
2 .Y  It then follows that 

the probability for l = 2 is of order 4( / ) ,R   and so on. Under the assumed condition that the 

emitter size R is much less than the quantum wave length   of the emitted particle, the 
probabilities for non zero angular momentum are small and decrease rapidly even further with 
increasing l. 
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