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In this paper we shown that the experimentally observed 
increase of Young’s modulus in single layer graphene with 
low density of point defects leads to a noticeable 
enhancement of the thermal conductivity in a wide 
temperature range. 
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INTRODUCTION 
Recently, the effect of mechanical stiffness augmentation in grapheme by controlled 

creation of a low density of point vacancy defects through Ar+ irradiation has been 
experimentally revealed [1]. It has been found that Young’s modulus (E2D) of the graphene 
membrane increases with increasing irradiation dose and reaches a maximum of 550 Nm-1 at 
0.2% defect content. For a higher defect content a decreasing E2D has been observed. This 
effect was attributed to the suppression of the out-of-plane fluctuations by defects.  

The atomic simulation shows that this effect is mainly originated from a specific bonds 
distribution in the surrounded monovacancy defects [2]. Moreover, it has been shown that 
such unusual mechanical response is the feature of the presence of specifically 
monovacancies, whereas other types of point defects such as divacancy, 555-777 and Stone-
Wales defects lead to the ordinary degradation of the grapheme mechanical stiffness [2]  

Notice that this unusual behavior will affect other important properties of defected 
grapheme. In this paper, we consider a possible impact of mono vacancy defects at a tiny 
concentration on the phonon thermal conductivity of grapheme. Physically, a growing number 
of point defects will enhance the phonon scattering thus leading to the reduction in the thermal 
conductivity. In our case, however the increase of Young’s modulus will result in the 
increased sound velocities, which reduces anharmonic phonon-phonon scattering processes 
and, thereafter, enhances the thermal conductivity. These opposite effects will compete in a 
wide temperature range. The aim of our paper is to analyze the influence of point defects on 
the thermal conductivity of graphene within a phenomenological single-mode relaxation time 
approach with all important scattering mechanisms taken into account. Notice that this simple 
consideration is sufficient to capture the effect. The detailed discussion of various theoretical 
approaches to calculation of the phonon thermal conductivity in graphene and graphene 
nanoribbons can be found in [3-5]. 

METHODS  

The Methods let us start with the well-known definition of sound velocities for 

longitudinal (LA) and transverse (TA) phonon branches in the isotropic case [6].  
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where σ is the Poisson’s constant,  is the material density and Young’s modulus is assumed 
to be a function of the defect density ndef. The inset in fig. 1 shows the fit to the measured E2D 
as a function of defect concentration given in [1]. 

Here we use Callaway’s theory where three-phonon normal processes are taken into 
consideration explicitly [7]. Notice that the important role of normal phonon scattering 
processes in graphite-like materials and graphene has been noted in [8-10]. Thus, we consider 
four main scattering mechanisms relevant for suspended graphene, sample border (rough 
boundary), point defects, three-phonon normal and umklapp processes. Within the relaxation 
time approximation the total mean free path can be written as 

   1 1 1 1 1
, 0 , , ,( ) ( ) ( ) ( ),tot pd N Ul q l l q l q l q    
        … (2) 

where l0, lpd, lN, and lU, come from sample border, point defects, three-phonon normal and 
umklapp scattering, respectively, for a given phonon banch  = (LA, TA, ZA) with the wave 
vector q. The mean free path due to normal processes is written as [8,10]. 
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and for  umklapp phonon scattering processes we employ a parameterized expression in  the 
form 

   1 3 2
, ,( ) ( ) exp ( / 3 ),U Ul q B T q T
       … (4)

  

Where BN,  and BU,  are parameters and  is the Debye temperature. It should be 

mentioned that in our case B(N, U)  =

 

B (N, U),/, and the numerical values of the parameters  

B N,  and B U,  are taken from [8]. B N,  = 2.12  10–25 sK–3, B U,  = 3.18  10–25 sK–3 for  = (LA, 

TA) and B N,    = 1.48  10–22 sK–3, B U,  = 2.23  10–22 sK–3 for  = (ZA). 

The boundary scattering is expressed as 
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With d being the effective length determined from the geometry of the graphene sample 
[8]. The mean free path due to phonon-point defect scattering is taken to be 
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where S0 is the cross-section area per one atom of the lattice,   (ndef/2)  10–15 cm–2 is the 
mass fluctuation phonon scattering parameter in notice that 1% of vacancies corresponds to 
ndef = 2  1013 cm–2 [10]. 

Within Callaway’s formalism, the diagonal components of the thermal conductivity 
tensor (T) can be presented by the sum of the Debye term,  
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and the normal drift term 
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where Cph,  () = exp (ħ (q)/kBT)/(exp (ħ (q)/kBT) – 1)2 and kB is the Boltzmann constant. 
Summation is performed over phonon polarization branches with the dispersion relations      
 (q) = q for  = LA, TA. For an out-f-plane (flexural) acoustic mode we use the dispersion 
law ZA (q) = q2/m (m is an effective parameter taken here equal to 320 s/cm, ltot,  (q, T) is the 
phonon mean free path given by eqs. (2)-(6) from [11]. The explicit form of N () is taken 
from [8] as N () = S0 (q)/22

 for  = LA, TA branches and NZA () = S0m/4. 

 
Fig. 1. (Colour online) Thermal conductivity s. temperature in a 2.9 m wide ribbon at ndef = 1.5  1013 cm–2 in 

the case of actual (solid line) and constant (dashed line) sound velocities. The insert shows a fit to the 
experimentally observed Young’s modulus as a function of defect concentration. 

RESULTS AND DISCUSSION 

Fig. 1 shows the calculated k (T) based on eqs. (7) and (8) at the fixed concentration of 

vacancies ndef = 1.5  1013 cm–2 for two cases: (a) the sound velocities do not depend on ndef 
and have fixed values taken from [12]. LA = 21.3  105 cm/s, TA = 13.6  105 cm/s (which 
corresponds to Young’s modulus E2D360 Nm-1), and (b) the sound velocities are calculated 
by eq. (1). For chosen ndef one has E2D  540 Nm–1, so that LA = 27.2  105 cm/s and            
TA = 17.2  105 cm/s. As seen in fig. 1, in the case of (b) markedly enhanced thermal 
conductivity takes place in a wide temperature range. The reason is quite clear because larger 
values of LA and TA lead to an increase of lN,  (q) and lU,  (q). At higher concentrations of 
vacancies, the difference between the two cases (a) and (b) disappears, which agrees with the 
experimentally observed behavior of Young’s modulus in fig. 1.  

Fig. 2 shows the thermal conductivity as a function of ndef at T = 300 K. As is seen, the 
enhancement of k takes place in the range of 2.8  1012 cm–2  ndef   5.3  1013 cm–2 only. The 
explanation is as follows: at high temperatures the normal and umklapp scattering mechanisms 
are of the greatest importance and, in this case, k strongly depends on  [12]. In turn,  is a 
function of E2D in accordance with eq. (1) and, therefore, it depends on ndef  in this region. 
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Accordingly, we have obtained the increased k at small concentrations of vacancies up to the 
value close to 51013 cm-2 with the maximum gain at ndef 7  1012 cm–2 which corresponds to 
the maximum of Young’s modulus.   

CONCLUSION  

We have found a marked increase in the thermal conductivity of grapheme, which is a 

direct consequence of the experimentally observed effect of ultrahigh stiffness at low densities 
of vacancy defects. Our study shows that, in a limited range of defect concentrations, the 
thermal transport demonstrates a rather unique behavior. Namely, the growing number of 
defects provokes the enhancement of the thermal  conductivity in a wide temperature range. 
Physically, this follows from the fact that after about 100 K the three-phonon scattering 
processes become dominant. They depend on the sound velocities which grow with Young’s 
modulus in some restricted region of ndef. This provides the enhancement of the thermal 
conductivity. Below T  100 K the main sources of the phonon scattering are sample border 
and point defects so that a strong increase in graphene stiffness has no effect on the thermal 
conductivity. Notice that our finding can be of importance in the development of graphene 
based thermoelectric devices.    

 
Fig. 2. (Colour online) Thermal conductivity s. the concentration of vacancies in a 2.9 m wide ribbon for 

actual (solid line) and constant (dashed line) sound velocities. The insert shows the calculated thermal 
conductivity vs. temperature with the experimentally observed values of Young’s modulus for ndef = 0 (circles), 

2  1012 cm-2 (squares), 8  1012 cm–2 (triangles), 3  1013 cm–2 (stars). 
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