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The current injection technique in insulator is useful to 
explain the electrical transport properties of insulator. The 
trapping states are usually present in the forbidden gap of 
the insulator. These states affect the complete current-
voltage characteristic of the insulator.  

Applying the regional approximation method and three 
dimensionless variables, the theoretical current-voltage 
characteristics have been derived for two sets of 
distributed traps under different starting positions of the 
thermal-equilibrium Fermi level in the forbidden gap and 
carrier density dependent mobility regime. The cube power 
law for the dependence of current on voltage is obtained 
for the pure space-charge-limited current-voltage regime.  
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INTRODUCTION 

The current injection in insulator is well known from several decades [1-9]. The 

presence of distributed traps in the forbidden gap of the insulator changes the form and 
magnitude of the current flow by trapping the current carriers. The carrier mobility affects the 
injection of current in insulators. The effects of distributed traps and carrier mobility on the 
complete current-voltage characteristics have been given with the help of regional 
approximation method [3, 5-9] and there dimensionless variables.  

THEORETICAL FORMULATION  

Let us consider an insulator with the lower trap distribution larger or equal to one of the 

upper trap distribution under carrier density dependent mobility regime [7]. The two sets of 
trapping states are distributed around the two energy levels E1 and E2. The present paper is 
given for the behaviour of steady state space-charge-limited single injection current flow in 
low mobility insulators along with the conditions where the thermodynamical Fermi level F0 
lies below both the trap energy levels E1 and E2. The total concentrations of two sets of 
electron trapping states distributed in energy around levels E1 and E2 are N1 and N2, 
respectively.  
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The Gaussian distribution of traps around a single energy Et would be appropriate to 
characterize the broadening of trapping levels [4, 5]. The direct current-voltage relations is 
obtained with the help of trap distribution function expressed as5 
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where Tt is the characteristic temperature. The problem is simplified by the following 
assumptions as 

(i) The diffusion currents are neglected, and  

(ii) The injecting electrode is taken as the infinite reservoir of the electrons available 
for carrier injection.  

(iii) The carrier mobility is field independent, and  

(iv) The statistics of trap occupancy are all assumed valid.  

The general equations of the problem are given by  

     J = e µ n (x) E (x) … (2) 
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where x denotes the distance from the cathode, � is static dielectric constant, � is the free 
carrier mobility, E(x) is the position dependent electric field strength, n is free carrier 
concentration and nt is trapped charge concentration at position x, no is concentration of 
thermal free carriers, nt, o is the thermal-equilibrium value of nt and h is the proportionality 
constant.  

The regional approximation method [5-7] is used to derive the J-V characteristics. The 
insulator is divided into different regions with the help of this method [5, 7]. The number of 
regions to be taken into account will depend on the initial position of the Fermi level with 
respect to the trap levels and the conduction band as well as on the number of trapping centers 
present in the solid [5].  The equations are expressed in terms of three dimensionless variables 
[5, 7] as  
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where u, v and w are the three dimensionless variables, respectively.   

THE REGIONAL APPROXIMATION SCHEME FOR THE ENERGY LEVEL 

     E2 > E1 > F0 
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 In the regional approximation method, the insulator between the electrodes may be 
divided into three regions : 

 (1) Perfect insulator region where the injected free charge ni (x) = n (x) – no ≈ 	n (x) 
dominates. It extends from the injecting contact (x = 0) up to a plane xTF where the total excess 
trapped charge equals to the free carrier concentration.  

(2) Trapped charge region : In this region, the excess trapped charge dominates both 
the injected free carrier and the free carriers in thermal-equilibrium.  

(3) Ohmic region : In this region, the thermal-equilibrium carriers no are dominant.  

 Region I : Perfect insulator region :	O ≤ �	 ≤ ���  

�� 	 ≥ �(�) ≥ 		 ��	�� ln
��

��

 

     ni (x) = n (x) – no ≈ �(�) 	 ≥ 	 ��(�) 	 ≥ ��  

     n (xTF) = nt  (xTF) = N2 + N1 ≈ 	�2 

The equations (3), (5) and (6) give the dimensionless Poisson’s equation for the region I 
as 

�

�
	
��

��
= �(�) 

��� = 	
ℎ	����

�

�	�
	��																																																		 … (8)	 

���

��
= 2�� 

The integration of above equations and the equations (5)-(7) give the three dimensionless 

variables as  
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Region II : Trapped – charge region II ‘a’ : (��� ≤ � ≤ 		 ��) 

��(�) 	 ≥ �(�) ≥ 		 �� 

		
�

�
	
��

��
= ��(�)																																																															… (11)	 

The trapped charge region is divided into four parts [3, 5-7] as  

 Trapped charge region II ‘a’ :	��� ≤ �	 ≤ 		 �� 
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	 ≥ �(�) ≥ ��		 

             nt (x) = N2 + N1 ≈ 	N2 
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 The values of three dimensionless variables at the imaginary transition plane ��� are 

given by  
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The Poisson’s equation (11) is modified with the help of dimensionless variables (12) as 
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The integration of equation (13) gives  
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 Trapped charge region II ‘b’ : 
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The values of three dimensionless variables at the imaginary transition plane x1  are 
obtained from the equations (5) – (7), (9) and (10) as 
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 The Poisson’s equation for region II ‘b’ is derived from equation (11) and (16) as  
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 The integration of equation (16) gives   
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Trapped charge region II ‘c’ :     �� ≤ � ≤ 	�� 
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     �� − 	���	ln	�	 ≥ �(�) ≥ 	�� 

             nt (x) = N1 

The value of three dimensionless variables at the imaginary transition plane x2 are 
obtained from the equations (5)-(7), (9) and (10) as 
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The Poisson’s equation for the region II ‘c’ is given by the equation (11) as 
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  The integration of equation (20) gives :  
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  Trapped charge region II ‘d’:  		�� ≤ � ≤ 		 �Ω  
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The value of three dimensionless variables at the imaginary transition plane x3 are 
obtained from the equations (5) – (7), (9) and (10) as  
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 The Poisson’s equation for the region II ‘d’ is given by equation (11) as  
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Region III :- For  ohmic region �Ω    ≤ �	 ≤ �   

     F0 + 0.7 kT ≥ �(�) 	 ≥ �	 

     nt (x) = 0       and    no ≈ �(�). 

 The value of three dimensionless variables at the imaginary transition plane xΩ are 
derived as  

U (xΩ) = constant = 1 
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 The Poisson’s equation for the ohmic region is obtained as  
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 The current J and voltage V are evaluated in terms of three dimensionless variables from 
the equations (5) – (7) as   
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where ua, wa, va are the values of u, w and v at x = L i.e.  at the collecting electrode or anode.  
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COMPLETE CURRENT–VOLTAGE CHARACTERISTICS OF THE PROBLEM  

 The complete current – voltage characteristics is evaluated with the help of the above 
equations as described below :  

True Ohm’s Regime : 

 It occurs in the insulator at very low injection level of current. This current – voltage 
regime is found to be under thermal – equilibrium condition. The equations (5) – (7) and (31) 
give 
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which is the pure Ohm’s law for the planar current flow in insulator under carrier density 
dependent mobility regime.   

Ohmic Regime : 

 At low currents, the dimensionless J-V relation is obtained by putting v = va and w = wa 
in the equations (24) – (30) as  
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where the current flow is contributed by mainly the regions II ‘d’ and III. Substituting the 
values of dimensionless variables at the transition plane x3 the above dimensionless 
characteristic becomes   
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which is equivalent to Ohm’s law with a small correction.  

 The critical current � = JΩ at which the ohmic region leaves the insulator i.e. �� = L then  
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 For Region II ‘d’, the dimensionless current-voltage characteristic is obtained from the 
equations (24)-(27) as  
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The approximation of equation (35) alongwith dimensionless variables (5)-(7) gives the 
current-voltage characteristic of ohmic regime as  
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 For critical current J = ���  and x3 = L, this transition regime is terminated from the 

insulator. The equations (24) yield  
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The expressions of ���	and ��� are different from the expressions for J� and V� because the 

ohmic region is absent in the first trap - filled – limit regime 

For Region II ‘c’: 

The dimensionless characteristic is derived from the equations (20)-(23) as  
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The values  ���	���	��� are the critical current and critical voltage at x2 = L as 
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which are the constant quantities derived from the equations (5)-(7) and (20).   

For Regions II ‘b’ : 

The dimensionless characteristic is derived from the equations (16)-(18) as  
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The equations (5)-(7) and (41) yield the current-voltage characteristic as   
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 The perfect insulator region I and region II ‘a’ are present in the insulator for � > ��� . 

The critical current ���		and critical voltage ���	are obtained at x1 = L. The equations (11) – 

(15) yield   
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 For Region II ‘a’: The dimensionless characteristic is derived from the equations (13)-
(15) as 
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The perfect insulator region is present in insulator for J > JTF. 

At xTF = L  J = JTF and V = VTF which are evaluated from the equations (12) as 
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 The equations (9) and (10) are applied to obtain the current-voltage characteristic of the 
insulator operating under perfect trap - free regime as  
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which is the cube power law for the dependence of current on voltage (J ∝ V3). 

DISCUSSION AND CONCLUSIONS  

In the current injection problem of insulator with distributed traps [5-7], the complete 

current-voltage characteristic of the solid is represented by J ∝ Vn where the exponent value n 
varies from 1 to 20. The influence of traps is observed mainly in the third and fourth trap-
filled-limit regimes. This kind of trap distribution decides the locations and numbers of 
different transition current – voltage regimes present in the complete current-voltage 
characteristics.  
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