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In this paper we calculate the compliance coefficients and 
Stillinger-Weber interatomic potential parameters of 
wurtzite InN by AB-Initio methods. The structural 
parameters of InN were calculated within the local density 
approximation of Ceperley-Alder and the generalized 
gradient approximation of Perdew-Wang exchange-
correlation functionals. It was found that the shallow 4d 
electrons were required as part of the valence shell to 
obtain accurate results due to the large difference in 
electronegativity between In and N. The calculated 
compliance parameters were in good agreement with 
theoretical values and the scattered experimental values. 
The AB-Initio results were then fitted to Stilinger-Weber 
potential forms. 
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INTRODUCTION 

Wide band gap materials are of special interest for high temperature, high speed 

transistors, and optoelectronics. Nitrides, in particular, have a high breakdown field and high 
electron mobilities. Indium nitride has been predicted to have the lowest effective mass among 
the nitride semiconductors resulting in a high mobility and therefore perhaps has the greatest 
potential [1-2]. While the growth of InN began over 30 years ago, high quality, single 
crystalline films have not been achieved, and therefore many of the electrical and physical 
properties have not been determined with certainty [3]. For example, before 2001 the band gap 
was thought to be 1.89 eV, now the literature reports experimental values that vary from 0.7 to 
2.3 eV for the same wurtzite crystal structure [4-8]. If the mechanical properties of the crystal 
could be calculated accurately, then large scale dynamic simulation methods such as 
molecular dynamics method could be used to simulate growth and help predict the growth 
conditions required to obtain high quality material. This ab-initio method is used for the 
compliance coefficients of InN and Stillinger-Weber inter-atomic potential parameters. 

AB-INITIO METHODS 

This computational method is used for structural and elastic properties of InN were 

performed with the projector augmented wave method within the density functional theory by 
VASP code [9-10]. Initial trials with only the sp3 valence electrons proved inaccurate. The 
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shallow 4d electrons were required as part of the valence shell to obtain accurate results due 
the large difference in electro-negativities between In and N (Phillipsionicity = 0.58). Three 
structural parameters (lattice constants a and c, and internal parameter u) of wurtzite InN were 
first calculated by allowing distortions in the shape, volume, and internal coordinates of a 
four-atom cell with wurtzite symmetry (P6/mmm) consisting of two indium and two nitrogen 
atoms. A wurtzite structure was maintained throughout the distortions. The computations were 
performed at an energy cutoff of 500 eV with 12128 Monkhorst-Pack grids. The atomic 
positions were relaxed until the forces on the atoms were less than 0.01 eV/A. The structural 
parameters of InN calculated within the local density approximation (LDA) of Ceperley-Alder 
and the generalized gradient approximation (GGA) of Perdew-Wang exchange-correlation 
functionals are listed in Table I along with the experimental values and the results of other 
calculations. All of the calculated parameters agree well with the experimental data and other 
theoretical results. 

Five different distortions from the theoretically relaxed lattice parameters were considered 
to calculate the five wurtzite elastic constants C11, C12, C13, C33, and C44. The strain variable () 
used in the calculation of each elastic constant ranged from -0.02 to 0.02 in steps of 0.002 and 
otherwise from -0.12 to +0.12 in steps of 0.002 and otherwise from – 0.12 to + 0.12 in steps of 
0.01. The calculations involved a full relaxation of the internal degrees of freedom at the same 
energy cutoff and k-points grid as that given above, but the maximum force criterion was 
reduced to 0.005 eV/Å. The compliance coefficients were fitted to the total energy curves for 
each distortion, as described in Ashcroft and Mermin [11]. 

Table I. Wurtzite InN lattice parameters. 
 

 a (Å) c (Å) Internal 
parameter u 

Bulk modulus  

BM  (GPa) 

This work LDA 

GGA 

3.5060 

3.5758 

5.6670 

5.7976 

0.3768 

0.3762 

145 

 

Wright et al.a 3.501 5.669 0.3784 139 

Kim et al.b 3.53 5.54 0.388  

Experiment 3.544c 5.718c  126d,139e 

The strain tensor is defined as a rank 2 symmetric tensor in terms of the primitive vector 
displacement (ei) (in reduced notation),  
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Assuming no contribution from heat, the energy is then given by,  
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where V is the volume of the undistorted lattice, P(V) is the pressure exerted on or by the 
undistorted lattice at a volume V, and ΔV is the change in volume due to the chosen distortion. 
The energy of distortion is an even function of distortion since we consider distortions of 
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sufficiently small amplitude (namely, in the elastic region). This symmetry simplified the 
above equation by allowing symmetric pressures (tensile and compressional). 

The elastic constant combination C11+C12 was determined by freezing the lattice 
parameter c at the theoretical value and distorting a a′ = a (1 + ). To calculate C11 – C12, 
we used a volume-conserving distortion with an orthorhombic strain. The elastic constant C33 
was calculated by keeping the lattice parameter a at the theoretical value and letting 
cc′=c(1+). The elastic constant combination C11 + C12+ 2C33 – 4C13 was calculated by 
using a volume-conserving distortion with a changed c/a ratio, a  a′ = a (1 + ) and c  c′ = 
c/(1+ )2 	≈	       c (1 – 2). C44  was found by using a volume-conserving monoclinic distortion, 
for which the energy was an even function of the distortion to all orders. Finally, the bulk 
modulus was calculated from the computed elastic constants via the expression 
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The value of the bulk modulus obtained from the calculated elastic constants (147 GPa) 
agrees very well (within 1.3%) with the direct result from the Birch fit to the energy versus 
volume data [12]. The results of total energy calculations for each distortion are shown in Fig. 
1. The region containing densely packed data points in the range δϵ (– 0.02, 0.02) is the region 
used to calculate the elastic constants. The total energies from the five different types of 
distortions for	δϵ	(– 0.02, 0.02) were fitted to fifth-order polynomials (without a linear term). 
The results of the distortions and their corresponding compliance coefficients are given in 
Table II.  

The calculated C11, C12, C13, C33, and C44 values are in good agreement with the reported 
theoretical values and in fair agreement with the experimental datas. In particular, our values 
for the elastic constants agree quite well with the calculations of Wright [13] . The small 
differences between the two theoretical works can be attributed to differences in the 
implemented pseudo-potentials and k-points sampling, which resulted in small variations in 
the theoretical lattice parameters. To ensure accuracy, this work employed a 500 eV cut-off 
with a {12 × 12 × 8} k-point mesh resulting in a = 3.5060 Å, c = 5.6670 Å, and u = 0.3768. u 
is converging toward the ideal wurtzite parameter of 3/8. The biggest discrepancy between our 
results and the experimental data is for C44. In order to investigate whether this difference is 
due to the use of theoretical lattice parameters, we repeated the calculations for C44 with the 
experimental lattice parameters. We used linear terms in the fitting procedure to minimize the 
energy for these lattice parameters. The value (50 GPa) obtained for C44 using the 
experimental lattice parameters showed no significant difference from the value obtained 
using the theoretical lattice parameters. The results of all reported ab-initio studies vary from 
the experimental values for C33 and, to a lesser degree, for C13. The experimental values 
largely are imprecise, perhaps due to quality variations in the grown material. This is 
especially true for the C33 coefficient. The calculation of C33 involves a uniaxial strain of the 
c-axis while keeping both a axes fixed. C33 and C13 have a  large experimental uncertainty due 
to the biaxial strain present in material grown by heteroepitaxy with mismatched lattice 
constants, which distorts the c axis  to maintain approximate  volume conservation in  Fig. 2. 
Polytropism in strained InN further modifies the strain properties along the c axis due to the 
difference between the wurtzite and zinc blende elastic tensor symmetries [14]. The biaxial 
strain and polytroism may contribute to the observed large variations in experimental values of 
the energy gap. 

The obtained total energy curves were used to fit the InN Stillinger-Weber (SW) 
potentials with a Levenberg-Marquardt algorithm [15-17]. The SW two-body potential is 
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similar to a Lennard-Jones potential see in Eq. (5a). Note that the SW potential form also 
includes a three-body term that simulates directional covalent bonding see in Eq. (5b). To 
determine approximate values for the potential parameters, a small unit cell (N=27 atoms) was 
used. This result does not include periodic boundary conditions and as such only gives an 
initial point to optimize the potential parameters.  

 

Fig. 1 Calculated values of the total energy for the supercell distortions used in calculating  
(a) C11+ C12, (b) C11 – C12, (c) C33, (d) C11 + C12 + 2C33 – 4C13, and (e) C44. 
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RESULTS AND DISCUSSION 

The average potential energy per atom as given by Stillinger-Weber is  
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scales f to –1 eV at the minima and σ scales the bond  radius such that f2 (2
1/6) vanishes 

(� = 1.952	Å). Substitution of the InN vectors �⃗��  results in two-and three-body terms that 

have a seven-dimensional parameter space (A, B, p, q, a, l, and �), i.e. 
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Table II. Wurtzite InN elastic constants. 

Compliance 
coefficient 

(GPa) 

AB-Initio 
result this 

study 

Experiment 
Sheleg et al.a 

Experiment 
Wang et al.b 

DFT        
Kim et al.c 

DFT                 
Wrightd 

C11 229 190+7 223.1 271 223 

C12 115 104+3 114.9 124 115 

C13 98 121+7 92.0 94 92 

C33 240 182+6 221.6 200 224 

C44 49 10+1 48.0 46 48 

BM 146.7 139 140.3 147 141 

The energy was scaled to the known binding energy (–7.97 eV) divided by the 
coordination number, 4, for the wurtzite structure. We set p = 4  and q = 1 to include the ionic 
nature of InN. The cutoff a and bond angle parameter �  were set to 1.8 and 1.2, 
respectively. The remaining parameters in the sum (A, B, and l) were fitted to the AB-Initio 
energy curve given in Fig. 2. The distortion changes c/a while conserving volume. This 
changes the strain parameters e1 and e2 by (1 + x)1/3 –1 and e3 by – (1+x)2/3 – 1 where                
x = (c/a)/(c/a)0 – 1, representing the change in c/a from the equilibrium value (c/a)0. This  
distortion maximizes the three-body contribution to allow for a more accurate determination 
of l. The results were rescaled by � to give the correct bond energy. The resulting three-
dimensional parameter space was fitted to the fifth-order polynomial energy curve in       
Table III. 

Table III. Fitted SW parameters for InN. 

Parameter A B l 

Value 7.9769 0.7560 15.430 
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Fig. 2. Volume-conserving C11 + C12 + 2C33 – 4C13 distortion. (Upper left)  =  0.12 distortion, applies a 
compression on a and tension on c. (Upper right)  = 0.12 distortion, compression on c and tension on a. 

(Bottom) Computed energy as a function of distortion. The inset plots c/a as a function of distortion. 

CONCLUSION 

AB-Initio methods was used to calculate the compliance coefficients of InN through a 

series of five distortions. The total energy curves were scaled and fitted to determinate the SW 
potential parameters. It was determined that the 1/r term in the SW potential is large so that 
the ionic character of InN is significant and thus the 3d10 shell must be included in the AB- 
Initio calculation. The compliance coefficients agree with experiment with the exception of 
the C33 parameter. This parameter is substantially affected by the biaxial strains created during 
growth and by laminar polytropism, and thus has a large experimental uncertainty.  
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