HOMOMORPHISM, PARTIAL HOMOMORPHISM AND PAIR HOMOMORPHISM IN BE-ALGEBNRAS

GAUTAM KUMAR PANDEY, MD. ILYAS
Department of Mathematics, Gaya College, Gaya
AND
R.L. PRASAD
Department of Mathematics, Magadh University, Bodh Gaya

RECEIVED : 30 December, 2017

Abstract

Here we have discussed some homomorphisms in BE algebras. Concept of partial homomorphism and pair homomorphism in BE-algebras have been developed with suitable examples and properties.

KEYWORDS : BE-algebra, homomorphism, partial homomorphism, pair homomorphism.

Introduction

-

S. Kim and Y. N. Kim [1] introduced the concept of BE - algebra in 2006. Since then several related concepts have been developed and studied.

Definition (1.1): A BE-algebra is a system $\left(X ;{ }^{*}, 1\right)$ consisting of a non-empty set X, a binary operation "*" and a fixed element 1 satisfying the following conditions :-

1. (BE 1) $x * x=1$
2. (BE 2$) x * 1=1$
3. (BE 3) $1 * x=x$
4. (BE 4) $x *(y * z)=y *(x * z)$
for all $x, y, z \in X$.
Definition (1.2): Let $\left(X ;{ }^{*}, 1\right)$ and $(Y ; o, e)$ be BE-algebras and let $f: X \rightarrow Y$ be a mapping. Then f is called a homomorphism if $f\left(x^{*} y\right)=f(x)$ of $f(y)$ for all $x, y \in X$.

Some homomorphisms

The following result have been established in [3, 2017].
Theorem (2.1): Let S be an universe and let X be the set of all fuzzy sets defined on S. Let 1^{*} the 0^{*} be the fuzzy sets defined on S as

$$
1^{*}(x)=1 \quad \text { and } \quad 0^{*}(x)=0 \text { for all } x \in S
$$

Also for $f, g \in X$, we define $f=g$ iff $f(x)=g(x)$ for all $x \in S$.
For $f, g \in X$ a binary operation " o " is defined as

$$
(f \circ g)(x)=\min \{f(x), g(x)\}+1-f(x)
$$

$$
=(f \wedge g)(x)+1-f(x)
$$

Then $\left(X ; o, 1^{*}\right)$ is a BE-algebra with zero element 0^{*}.
Note (2.2) : For $\alpha \in[0,1]$, the constant fuzzy set $\alpha(t)=\alpha$ for all $t \in S$ is identified as α.

Definition (2.3) : Let x be a fixed element of S. For $\delta \in X$. Let $\delta(x)=\alpha$. We consider the constant mapping $\alpha: S \rightarrow X$ defined as $\alpha(t)=\alpha$ for all $t \in S$. Let $f_{x}: X \rightarrow X$ be defined as

$$
\begin{equation*}
f_{x}(\delta)=\alpha=\delta(x) \tag{2.1}
\end{equation*}
$$

We prove that
Theorem (2.4): f_{x} is a homomorphiosm on X for every $x \in S$.
Proof: Let $\delta_{1}, \delta_{2} \in X$ and let $\delta_{1}(x)=\alpha, \delta_{2}(x)=\beta$. Then

$$
f_{x}\left(\delta_{1}\right)=\alpha, f_{x}\left(\delta_{2}\right)=\beta
$$

Let $f_{x}\left(\delta_{1} \circ \delta_{2}\right)=\gamma$. Then

$$
\begin{aligned}
\gamma(x) & =\left(\delta_{1} \mathrm{o} \delta_{2}\right)(x) \\
& =\min \left\{\delta_{1}(x), \delta_{2}(x)\right\}+1-\delta_{1}(x) \\
& =\min \{\alpha, \beta\}+1-\alpha \\
& =1 \text { or } \beta+1-\alpha \\
\text { according as } \alpha & \leq \beta \text { or } \beta<\alpha .
\end{aligned}
$$

Table 2.1

o	S	A	B	C	D	E	F	0
S	S	A	B	C	D	E	F	0
A	S	S	S	D	D	D	S	D
B	S	F	S	D	D	E	F	E
C	S	F	S	S	S	F	F	F
D	S	A	B	B	S	F	F	A
E	S	B	B	B	S	S	S	B
F	S	B	B	C	D	D	S	C
0	S							

This means that

$$
\begin{equation*}
f_{x}\left(\delta_{1} \mathrm{o} \delta_{2}\right)=1^{*} \text { or } \beta+1-\alpha \tag{2.2}
\end{equation*}
$$

Again, $\quad f_{x}\left(\delta_{1}\right)$ of $f_{x}\left(\delta_{2}\right)=\alpha \circ \beta=1^{*}$ or $\beta+1-\alpha$.
according as $\alpha \leq \beta$ or $\beta<\alpha$.
From (2.2) and (2.3) it follows that

$$
f_{x}\left(\delta_{1} \circ \delta_{2}\right)=f_{x}\left(\delta_{1}\right) o f_{x}\left(\delta_{2}\right)
$$

Hence f_{x} is a homomorphism .
Example (2.5) : Let $S=\{a, b, c, d, e\}$ and $X=\{\phi, A, B, C, D, E, F, S\}$
where $A=\{a, b\}, B=\{a, b, c\}, C=\{c\}, D=\{c, d, e\}, E=\{d, e\}, F=\{a, b, d, e\} ; S \equiv 1$, $\phi \equiv 0$.

For $L, M \in X$, we define a binary operation " o " as

$$
L o M=L^{c} U M
$$

Then Cayley table for this operation ' o ' be given by
Then $(X ; o, S)$ is a BE-algebra with zero element 0 [5].
For $a \in S$, let $g_{a}: X \rightarrow X$ be a mapping defined as $g_{a}(L)=$ smallest element of X containing L and a.

Then, $\quad g_{a}(A)=A, g_{a}(B)=B, g_{a}(C)=B, g_{a}(D)=S$,

$$
g_{a}(E)=F, g_{a}(F)=F, g_{a}(S)=S, g_{a}(0)=A .
$$

Now we see that

$$
\begin{aligned}
& g_{a}(A \circ B)=g_{a}(S)=S, g_{a}(A) \circ g_{a}(B)=A \circ B=S ; \\
& g_{a}(A \circ D)=g_{a}(D)=S, g_{a}(A) \text { o } g_{a}(D)=A \circ S=S ; \\
& g_{a}(C \circ E)=g_{a}(F)=F, g_{a}(C) \circ g_{a}(E)=B \circ F=F ; \\
& g_{a}(D \circ 0)=g_{a}(A)=A, g_{a}(D) \circ g_{a}(0)=S \circ A=A ; \\
& g_{a}(E \circ 0)=g_{a}(B)=B, g_{a}(E) \text { o } g_{a}(0)=F \circ A=B .
\end{aligned}
$$

For other elements it can be proved that

$$
g_{a}(L o M)=g_{a}(L) o g_{a}(M) \text { for } L, M \in X
$$

So g_{a} is a homomorphism.

Partial homomorphism

Definition (3.1) : Let $\left(X ;{ }^{*}, 1\right)$ be a BE-algebra and let $f: X \rightarrow X$. If there exists a subalgebra M of X such that

$$
f(x * y)=f(x) * f(y)
$$

for all $x, y \in M$ but $f(x * y) \neq f(x) * f(y)$ for some $x, y \in X$, then we say that f is a partial homomorphism on X with respect to subalgebra M.

Example (3.2) : Let (X, T) be a topological space where T contains only clopen (closed and open) subsets. For $A, B \in T$ we define a binary operation ' o ' on T as

$$
\begin{equation*}
A \circ B=A^{c} \cup B . \tag{3.1}
\end{equation*}
$$

Then $(T ; o, 1)$ is a BE-algebra with zero element $0 \equiv \phi$ and $1 \equiv X[5]$.
For a fixed $a \in X$, let S be the collection of those elements of T which contain a. Now $L, M \in S \Rightarrow L o M=L^{c} \cup M \in S$, since $L^{c} \cup M$ contains a. So S is a BE-subalgebra of T.

Let $f_{a}: T \rightarrow T$ be a mapping defined as

$$
f_{a}(L)=L \text { or } L^{c} \text { according } a \in L \text { or } a \notin L .
$$

Let $L, M \in S$, we have

$$
f_{a}(L o M)=f_{a}\left(L^{c} \cup M\right)=L^{c} \cup M,
$$

since $a \in M$. Also in this case

$$
f_{a}(L)=L, f_{a}(M)=M \text { and } f_{a}(L) o f_{a}(M)=L o M=L^{c} \cup M
$$

Thus $f_{a}(L \circ M)=f_{a}(L) o f_{a}(M)$ is satisfied for all $L, M \in S$.
Again, $a \notin L$ and $a \in M \Rightarrow f_{a}(L o M)=f_{a}\left(L^{c} \cup M\right)=L^{c} \cup M$, since $a \in L^{c} \cup M$.
In this case,$\quad f_{a}(L)=L^{c}$ and $f_{a}(M)=M$ which gives $f_{a}(L)$ of $f_{a}(M)$

$$
=L^{c} o M=L \cup M .
$$

So $f_{a}(L o M) \neq f_{a}(L)$ o $f_{a}(M)$ for some $L, M \in T$.
This means that f_{a} is a partial homomorphism in T with respect to subalgebra S.

Pair homomorphism

Definition (4.1) : Let $\left(X ;{ }^{*}, 1\right)$ and $(Y ; o, e)$ be BE-algebras.
Let $\quad f: X \rightarrow Y$ and $g: X \rightarrow Y$ be mappings. The pair (f, g) is said to be pair homomorphiosm if

$$
\begin{equation*}
f(x * y)=g(x) \circ g(y) \tag{4.1}
\end{equation*}
$$

for all $x, y \in X$.
Example (4.2): In the above definition, let $f(x)=e$ for all $x \in X$ and $g(t)=a \in Y$ for all $t \in X$, then the pair (f, g) is pair homomorphism. For,

$$
f\left(x^{*} y\right)=e=g(x) \operatorname{og}(y)
$$

for all $x, y \in X$.
Note (4.3) : Pair (f, g) is pair homomorphism

$$
\nRightarrow \text { Pair }(g, f) \text { is pair homomorphism. }
$$

In the above example $g(x * y)=a \neq e=f(x)$ of (y).
Note (4.4): If $g(1)=e$ then f coincides with g and f is a hompomorphism. For $x \in X$ we have

$$
\begin{aligned}
f(x) & =f(1 * x)=g(1) \operatorname{og}(x) \\
& =\operatorname{eog}(x) \\
& =g(x) .
\end{aligned}
$$

Note (4.5) : From the above example it also follows that in pair $(f, g) g$ may not be unique for a mapping f.

Example (4.6) : Let $\left(X ;{ }^{*}, 1\right)$ be a BE-algebra with zero element 0 and let $Y=X \times X$.
Then $(Y ; \odot,(1,1))$ is a BE-algebra $[4,2014]$ with zero element $(0,0)$ where \odot is defined as

$$
\left(x_{1}, x_{2}\right) \odot\left(y_{1}, y_{2}\right)=\left(x_{1} * y_{1}, x_{2} * y_{2}\right)
$$

We consider mappings $P_{1}, Q_{1}: Y \rightarrow Y$
defined as $P_{1}\left(x_{1}, x_{2}\right)=\left(1, x_{2}\right)$ and $Q\left(x_{1}, x_{2}\right)=\left(0, x_{2}\right)$ for all $\left(x_{1}, x_{2}\right) \in Y$. Then

$$
\begin{aligned}
P_{1}\left(\left(x_{1}, x_{2}\right) \odot\left(y_{1}, y_{2}\right)\right) & =P_{1}\left(x_{1} * y_{1}, x_{2} * y_{2}\right) \\
& =\left(1, x_{2} * y_{2}\right) \\
& =\left(0, x_{2}\right) \odot\left(0, y_{2}\right)
\end{aligned}
$$

$$
=Q_{1}\left(x_{1}, x_{2}\right) \odot Q_{1}\left(y_{1}, y_{2}\right)
$$

for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in Y$. $\operatorname{So}\left(P_{1}, Q_{1}\right)$ is a pair homomorphism.
Lemma (4.7) : Let $f, g:\left(X ;{ }^{*}, 1\right) \rightarrow(Y ; o, e)$ be a mapping such that pair (f, g) is a homomorphism. Then

$$
\begin{aligned}
f(1) & =e ; \\
x & \leq y \Rightarrow g(x) \leq g(y)
\end{aligned}
$$

Proof: (a) We have $f(1)=f(1 * 1)=g(1) \circ g(1)=e$.
(b) Also $x \leq y \Rightarrow x * y=1$
$\Rightarrow f\left(x^{*} y\right)=f(1)=e$
$\Rightarrow g(x) o g(y)=e$
$\Rightarrow g(x) \leq g(y)$.
Definition (4.8) : Let (f, g) be a pair homomorphism from a BE- $\operatorname{algebra}\left(X ;{ }^{*}, 1\right)$ into a BE-algebra $(Y ; o, e)$. Then $\operatorname{Ker} f$ is defined as $\operatorname{Ker} f=\{x \in X: f(x)=e\}$.

Theorem (4.9) : Let $(X ; *, 1)$ and $(Y ; o, e)$ be BE-algebra and let $f, g: X \rightarrow Y$. Let (f, g) be a pair homomorphism. Then
(a) $\quad x \in \operatorname{Ker} f$ iff $g(x)=g(1)$;
(b) $\quad \operatorname{Ker} f$ is a BE-sub algebra of $(X ; *, 1)$.

Proof: (a) Let (f, g) be a pair homomorphism and let $x \in \operatorname{Ker} f$.
Then $e=f(x)=f(1 * x)=g(1)$ og $g(x)$. This implies $g(1) \leq g(x)$.
Again from lemma (4.7) (b) it follows that

$$
x \leq 1 \Rightarrow g(x) \leq g(1) . \text { So } g(x)=g(1) .
$$

Conversely, suppose that

$$
g(x)=g(1)
$$

Then

$$
\begin{aligned}
f(x) & =f(1 * x)=g(1) \operatorname{og}(x) \\
& =g(1) \operatorname{og}(1) \\
& =e .
\end{aligned}
$$

So $x \in \operatorname{Ker} f$.
(b) Let $x, y \in \operatorname{Ker} f$. Then from above $g(x)=g(y)=g(1)$. Also $f\left(x^{*} y\right)=g(x) o g(y)$ $=g(1) \operatorname{og}(1)=e$. So $x * y \in \operatorname{Ker} f$. This proves that $\operatorname{Ker} f$ is a BE-algebra.

References

1. Kim, H. S. and Kim, Y. H., On BE-algebras, Sci. Math. Japon, 66, No. 1, pp. 113-116 (2007).
2. Kim, K.H., A Note on BE-algebras, Sci. Math. Japon, 72, No. 2, pp. 127-132 (2010).
3. Pandey, Gautam Kumar, Ilyas, Md. and Prasad, R.L., A class of BE-algebras, Acta Ciencia Indica, Vol. XLIII M, No. 1, pp. 47-53 (2017).
4. Pathak, K., Sabhapandit, P. and Chetia, B.C., Cartesian product of BE/CI-algebras with Essences and Atoms, Acta Ciencia Indica, Vol. XL M, No. 3, pp. 271-279 (2014).
5. Rani, Rashmi, BE-algebras with zero element, Acta Ciencia Indica (to be published).
