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INTRODUCTION 

Let X be a set and γ, a map from the power set exp X into itself. We suppose that γ is 

monotonic, i.e., A	⊂	B	⊂ X implies γA	⊂ γB (which we write γA for γ (A)). We denote Γ(X) 
the collection of all monotonic maps	γ : exp X →	exp X. In [2], a set A ⊂ X is γ-open if and 
only if A	⊂ γA and it is shown in ([2], 1.1) that any union of γ-open set is  γ-open. Obviously 
the empty set is  γ-open and so γ-open set form a generalized topology. 

So, if we agree in saying that a collection  μ of subsets of X is a generalized topology 
(briefly G.T) on X if and only if	∅ ∈ μ and �� ∈ μ  for i	∈ � ≠ ∅, implies G = ⋃ ���  ∈ μ, we 
can say that  γ-open sets constitute a G.T. If o is a topology on X in the usual sense and we 
denote iA  the  o-interior  int A, by cA  the o-closure  cl A, we obtain an important particular  
cases the collection  o of all open sets (γ = i), s.o of all semi open sets  [10] (γ = ci), p.o of all 
pre open sets [11] (γ = ic),  β o of all  β-open sets [1] (γ = cic), αo of all α-open sets [12]       
(γ = ici; the latters constitute  in fact a topology finer than o). 

The purpose of our paper is to formulate some simple properties of generalized topologies 
and to study, based on this concept, suitable generalizations of the concept of generalized 
continuous maps. 

It is easy to show that the method of considering γ-open sets for some	γ ∈ Γ (X) can 
produce all G.T's on X ([2], 2.15). 

Definition 1.1 [4].  Let X be a set. A subset µ of exp X is called a generalized topology on 
X and  (X, �) is called a generalized topological spaces [3] (abbr. GTS) if µ has the following 
properties:   

(i) φ  μ, 

(ii) Any union of elements of μ belongs to �.  

A generalized topology μ is said to be strong [4] (abbr. SGT) if X  μ.The elements of µ 
are called µ-open sets and the complement of µ-open sets are called μ-closed sets. For A  X, 
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we denote by ��(A) the intersection of all μ-closed sets containing A, that is the smallest        

μ-closed set containing A, and by ��(A), the union of all µ-open sets contained in A, that is the 

largest   μ-open set contained in A. 

It is easy to observe that ��and 	��are idempotent and monotonic, where γ : exp X	→ exp X 

is said to be idempotent if and only if A	⊂	B ⊂ X implies 	γγ (A) =	γ (A)  and monotonic if and 
only if A	⊂	B ⊂ X implies γA	⊂ γB. It is also well known that from [7, 8] that if  μ  is a G.T on 
X and A	⊂ X, x		∈	X then x ∈ �� (A) if and only if  x ∈ M	∈ μ ⇒  M	∩ A	≠ ∅  and �� (X – A )    

= X –	��(A). Let B ⊂ exp X and		∅ ∈ B. Then B is called a base [4] for μ if {UB' : B' ⊂ B} =	μ.                                                      

Lemma 1.1 [3]. If μ is a generalized topology on X, then there is a γ : exp X → exp X 
such that μ	is a collection of all γ-open sets. We can suppose that γ satisfies γ∅ = ∅, γA	⊂	A, 
γγA	⊂ A for A	⊂	X. 

In this paper we introduce N-closed subset of a generalized topological space and then 
introduce and study the class of N-continuous,	μ-N-continuous functions between generalized 
topological spaces. A subset A of a generalized  topological space (X, μ) is called N-closed 
(relative to μ) or μ-N-closed if for any cover � of A by μ-open sets, there is a finite sub 
collection � of � such that A	⊂	∪ {���� (V) : V	∈ �}. 

The space (X, μ) is nearly μ-compact if and only if X is μ-N-closed relative to μ.  A 
function �: X → Y  is called  μ-N-continuous if for each x ∈ X  and each  μ-open  set V 
containing  f (x) and having  μ-N-closed complement  there is a  μ-open set � containing x 
such that  f (�)	⊂ V. 

Functions of course continuous functions stand among the most important and most 
researched points in every part of mathematics .One purpose of this paper is to emphasize the 
fact that if the co domain of μ-N-continuous function f is generalized re topologized in an 
obvious way then f is simply a μ-continuous function. This puts the notion of μ-N-continuity 
in a more natural setting, and the distinction made between the class of μ-continuous 
mappings and μ-N-continuous mappings must be interpreted very strictly.                                                             

In addition to the introductory section 1, in section 2, we provide some preliminaries of 
generalized topology and basic properties of μ-semi regularization topologies.                               
Section 3, deals with co	μ N-closed generalized topologies. In section 4, we consider the 
transfer of separation properties between a generalized topological space (X,	μ) and its co μ-N-
closed topology n (μ). Section 5 deals with products and graph function. The end or the 
omission of a proof will be denoted by  ∎. 

�-SEMI-REGULAR TOPOLOGIES 

In a generalized topological space (X,	μ), a set A is called μ-regular open if A = 	����(A) 

and	μ-regular closed if A = ��	��	(A). Let �. ��(X) denote the collection of all μ-regular open 

sets in (X,	μ). Since the intersection of two μ-regular open sets is μ-regular open,                                                 
the family of μ-regular open sets forms a base for a smaller generalized topology	μ� on X, 
called the μ-semi regularization of μ. The space (X, μ) is said to be  μ-semi regular if μ� = μ. 
Any regular space is μ-semi regular, but the converse is false. 

In one sense this paper is a continuation of my recent study of [6]. 

Notation: We denote μ-αA to denote ����(A), often suppressing the μ  when there is no 

confusion possible. 
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We now give some basic results for   μ-semi regularization topologies that we shall 
require. It is clear that any property which is preserved by enlargement of generalized 
topology. 

Lemma 2.1: If A and B are disjoint μ-open sets in generalized topology (X,	μ) then μ-αA  
and   μ-αB are disjoint μ-open sets in (X,	μ) containing  A and B respectively∎. 

Lemma 2.2: μ-semi regularization topologies are preserved by generalized topological 
products.∎  

The process of μ-semi regularizing a generalized topological space is an idempotent 
operation. The proof of this depends on the observation that the family of all   μ�-regularly 
open subsets of (X, μ�) coincides with the collection of all   μ-regularly open subsets of (X,	μ). 

Lemma 2.3: For any generalized topological space (X,	μ)  we have,(μ�)s =	μ�∎. 

Definition 2.1: A generalized topological space X is   μ-Hausdorff if for any two distinct 
points in X has disjoint  μ-open sets. 

Lemma 2.4 : The generalized topological space X is  μ-Hausdorff if and only if  (X,	μ�) is                                                 
μ�-Hausdorff  ∎.                                                                                                                                                

A proof of Lemma 2.4 comes immediately from Lemma 2.1 and the general comment 
about properties preserved by enlargements of generalized topologies. 

Definition 2.2: The space X is said to be almost �-regular if for each μ-regular closed 
subset A of X and each point x 	∈	X – A = B there are disjoint μ-open sets U and V such that 
A	⊂	U and B	⊂	V.   

There are almost �-regular spaces which are not μ-regular and that almost	μ-regularity 
and  μ-semi regularity are independent notions.                                                                                                                     

The following theorem provides the fundamental relationship between the above 
concepts. 

Theorem 2.4: The generalized topological space (X,	μ) is almost μ-regular if and only if                  
(X, μ�) is  μ�-regular. 

 Proof: Let (X, μ) be almost μ-regular and let C be a μ�-closed subset of X and  x	∈ X – C.  

Now  C = ∩ {�� : � ∈ �} where �� is  μ-regularly closed set for each � ∈ �.  

Then there exist some j	∈ � such that x	∈ X – ��. So there are disjoint μ�-open sets U and V 
such that C	⊂ �� ⊂ U and x ∈ V.  By Lemma 2.1 there are disjoint μ�-open sets U' and V' such 
that C	⊂ U ⊂ U' and x ∈ U ⊂ U'. Hence (X,	μ�) is ��-regular.   

Conversely, let C be a  μ-regularly closed set and x ∈ X – C. Since (X,	μ�) is μ-regular, 
there are disjoint  μ�-open sets  U and V such that C	⊂ U and x ∈ V. Since  μ� ⊂ μ, we have 
(X,	μ) is almost  μ-regular.	∎ 

Lemma 2.5 : If (X,	μ�) is μ�-��	(resp. μ�-��) then (X,	μ) is μ-��(resp. �-��), but the 
converse is false.  

Proof : The positive statement follows from the inclusion μ� ⊂ μ. Next let (X,	μ) be an 
infinite set with cofinite G.T. Then (X,	�) is �-��, but (X,	��) is the indiscrete generalized 
topology and so is not even μ�-�� ∎. 

Lemma 2.6 : (X,	μ) is μ-Hausdorff if and only if (X,	μ�) is μ�-Hausdorff . ∎ 
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ON  CO-�-N.CLOSED GENERALIZED TOPOLOGY AND  �-N.CONTINUITY 

In this section we study the co-μ-N-closed generalized topology n (μ) of the strong 

generalized topology (X,	μ).   

Definition 3.1: A subset A of a generalized topological space (X,	μ) is called μ-N. closed 
(relative to μ) if for any cover  �	of A  by  μ-open sets there is a finite sub collection  �   of   
such that  A	⊂	∪{	���� (V) : V	∈ � }. The space (X,	μ) is nearly μ-compact if and only if X is 

μ-N closed relative to μ.  

For background materials of μ-continuous function [6] may be perused. 

Definition 3.2: A function f : X  → Y is called  �-N continuous if for each x ∈ X and each                     
μ-open set V containing f (x) and  having   μ-N. closed complement there is an  μ-open set U 
containing  x such that  f (U) ⊂ V. 

We note that a set A is a   μ-N closed set if A possesses property   μ-N closed. A has μ-N 
closed complement if  X – A possesses property  μ-N closed. 

Let (X,	μ) be a generalized topological space, and consider n' (μ) = {U	∈ μ : X-U is μ-N 
closed relative to μ}. Since the union of two μ-N closed set is μ-N closed, we have n' (μ) is a 
base for a generalized topology n (μ) on X, called the   co-μ-N closed generalized topology  of  
� on X.  Note that   n (�)	⊂ μ. 

The following theorem provides the basic relationship between the generalized topology  
n (μ) and the concept of   μ-N continuity. The proof is immediate from the definition. 

Theorem 3.1: The function  f :  (X, μ�) →  (Y, μ�) is μ-N continuous if and only if                                  
f : (X,	μ�)	→   (Y, n (μ�) is   �-continuous.	∎	 

Thus  μ-N continuity property is  μ-continuous in the sense of [6]. Hence all general 
remarks for   μ-continuous properties can be applied to   μ-N continuous functions. 

Definition 3.3 :  A GTS (X,	μ) is said to be   

(i) μ-compact [15] if every μ-open cover of X has a finite subcover.  

(ii) μ�-Hausdorff if for any two distinct points x and y in X, there exists disjoint μ�-open 
sets U and V such that 	x	∈ U, y	∈ V.                                                                                                                                                                                                                                                          

Definition 3.4 : For a generalized topological space (X, �),the co	μ-compact generalized 
topology of μ on X is denoted by c (μ) and is defined by c (μ) = {∅} ∪ {U	∈ �	: X – U is                     
μ-compact}. The function  f : X	→	Y is  �-c-continuous if whenever U ⊂ Y is an  μ-open set 
with  μ-compact complement,   f –1 (U) is  μ-open in X. 

Lemma 3.2 : If (X, c (μ) is μ-Hausdorff relative to c (μ), then (X, μ) is  μ-compact.  

Proof : Let x and y be any two distinct points of X. There are co	μ-compact generalized 
topology c (μ), μ-open sets U and V such that  x	∈ U, y ∈ V and U ∩ V =	∅. Hence                    
X = U ∪ (X – U) = (X – V) ∪	(X – V), so that X is the union of two  μ-compact sub spaces and 
hence X is  �-compact.	∎ 

Note that a base c (μ�) is the collection {U ∈ μ� : X – U is  μ�-compact}, and that this is a 
sub collection of n' (μ). This follows from a sub set A of (X,	�) is   μ – N closed relative to  μ   
if and only if  A is  μ-compact in (X,	μ�). Thus for any generalized topological space (X, μ), we 
have  c (μ�)	⊂ n (μ). Thus c (μ�) ⊂ n (μ)	⊂ μ. 
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Lemma 3.3 : Let X be a �-Hausdorff space with strong generalized topology	μ.Then         
n (μ) = c (μ�).        

Proof : As noted above, it is enough to show that n (μ) ⊂ c (��). Since X is  μ-Hausdorff, 
we have (X,	μ�)  is  μ�-Hausdorff. Thus every compact μ� subset of X is  μ�-closed, and hence 
μ-closed. Therefore   n' (μ)	⊂ c (μ�), so that  n (μ) = c(μ�).	∎ 

Note that Lemma 2.1 requires only that every μ�-compact set is μ�-closed, that is that  
(X,	μ�) be a  μ-KC-space, which is condition weaker than 	μ-Hausdorff. 

Corollary 3.4:  If (X,	μ) is μ-Hausdorff, then c (μ) ⊂ c (μ�) ⊂ n (μ) . 

The following example shows that the �-Hausdorffness is necessary for Lemma 3.3 and 
corollary 3.4 . 

Example 3.1: Let Y be an infinite set and   be a co finite generalized topology on Y. Then                 
c (μ) = n (μ) = μ, while c (μ�) = μ� which is the indiscrete generalized topology on Y. 

Corollary 3.5: If Y is  μ-Hausdorff, then  f : X	→	(Y,	μ) is μ-N continuous if and only if                             
f : X → (Y,	μ�) is	 μ�-c-continuous. 

Remark : If (X, n (μ)) is μ-Hausdorff, so is (X, μ). Thus by Lemma 3.3, n (μ) = c (μ�) = c 
(μ) since (X,	μ) is μ-semi regular. Thus c (μ) is μ-Hausdorff, so by Lemma 3.2, (X, μ) is                        
	μ-compact  and hence  c (μ) = μ. Hence n (μ) = μ, and so by Theorem 3 .1, f : X →	(y,	μ) is    
μ-N continuous  if and only if  f : X →	(Y,	μ) is  μ-continuous. 

Theorem 3.6 : The space (X, n (μ)) is μ-Hausdorff relative to n (μ) if and only if (X,	μ) is 
nearly   μ-compact Hausdorff.  

Proof : If n (μ) is μ-Hausdorff, then	μ	is μ-Hausdorff and so μ� is μ-Hausdorff. By 
Lemma 3.3, n (μ) = c (μ�), so that Lemma 3.2 implies  μ� is μ-compact, and hence (X, μ) is 
nearly μ-compact. Conversely, if (X,	μ) is nearly �-compact and  μ-Hausdorff, then (X,	μ�) is  
μ�-compact  and μ�-Hausdorff, so that  μ�= c (μ�). Lemma 3.3 implies that n (μ) = c (μ�), so 
that n (μ) is μ-Hausdorff.	∎ 

Proposition 3.7 : If the space (X,	μ) is 

(1) μ-semi regular then n (μ) = c (μ);  

(2) Nearly  μ-compact, then  c (μ�) = μ� ⊂ n (μ); 

(3) Nearly  μ-compact Hausdorff, then  μ� = n (μ);  

(4) μ-compact, then  n (μ) =	μ.    

Proof : (1) Since μ =	μ�, we have  n' (μ) = {U		∈ μ : Y – U  is μ�-compact}  is also a base 
for  c (μ). 

(2) Since  μ� is  μ-compact, μ�	= c (μ�) ⊂ n (μ). 

 (3) The proof of Theorem 3.6 shows that  μ� = c (μ�)  ⊂ n (μ). 

 (4) We have the general inclusion c (μ)	⊂ n (μ)	⊂ μ, and  c (μ)  = μ since μ� is μ-
compact.	∎ 

The following example shows that the μ-semi regularity in Proposition 3.7 (1) is crucial.       
Let (X,	μ) be the half disc topology described as in L.A. Steen and J.A. Seebach “Counter 
examples in Topology”, and μ� be the usual Euclidean topology on Y. Then  μ� =	μ�  , and 
since μ  is  μ-Hausdorff by Lemma 3.3, we have n (μ) = c (μ�) = c (μ�). To see that c (μ) is a 
proper subset of n (μ), consider the subset [0, 1] × {0} = B of X. Then B is μ-closed and         
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μ-compact in	μ� so that X – B ∈ c (μ�) = n (μ). But B is not μ-compact, since it is a discrete 
subspace of (X,	μ), and hence  X – B ∉ c (μ). 

Proposition 3.7 enables us to obtain conditions on the co domain of a function under 
which  μ-N-continuity can be related to existing variations of  μ-continuity. 

Corollary 3.8 : Let   f : X → (y,	μ)be a function.  

(1) If Y is μ-semi regular. Then f is  μ-N continuous  if and only if f is μ-c continuous .    

(2) If Y is nearly μ-compact, then f is  μ-N continuous implies f is  almost μ-continuous.                

(3) If Y is nearly μ-compact Hausdorff, then f is  μ-N continuous if and only if f is almost                     
μ-continuous.         

(4) Y is μ-compact, then	μ-continuity, μ-c-continuous and μ-N continuous are 
equivalent.	∎ 

Example 3.1. Shows that if  X = Y an infinite set, with S the indiscrete SGT and μ the co 
finite topology, then the identity mapping i : (X, S) →	(Y,	μ) is almost μ-continuous but it is not             
μ-continuous, but it is not  μ-N-continuous.  

We expect to be able to prove  that for any generalized topological space (X,	μ) the co-μ-
N closed topology n (μ) is nearly  μ-compact. 

Lemma 3.9: If  μ� ⊂ � ⊂ μ, then ��=	μ�.  

Proof : We show that  μ-ro (X, �) =	μ-ro (X,	μ). If F is a μ-closed  subset of (X, �), then F 
is μ-closed in (X,	μ) and	μ-int F	∈ μ-ro (X,	μ)	⊂ 	 μ�. Since μ-int F = μ�-int (μ-int F) = μ�-int F 
and μ�-int F	⊂ �-int F	⊂ 	μ-int F, it follows that �-int F = μ-int F. Thus μ-ro (X, �) ⊂ μ-ro     
(X, �). 

Conversely, G 	∈ μ-ro (X, μ) implies that G ⊂ �-cl G ⊂ μ�-cl G = μ-cl G. Hence,             
G = μ�-int G ⊂ �-int (�-cl G)	⊂ μ-int (μ-cI G) = G, so that G = �-int (�-cl G) and G ∈ μ-ro 
(X,	�), thus �-ro (X, μ) ⊂ μ-ro (X,	�).	∎ 

Corollary 3.10 : If (X, μ) is nearly  μ-compact  then (X, n (μ)) is nearly  μ-compact.  

Proof : By proposition 3.7 (2) we have that μ� ⊂	n (μ)	⊂ μ. By lemma 3.9, (n (μ))s = μ�  
and  so is μ-compact. Thus n (μ)  is nearly   �-compact.	∎ 

Lemma 3.11 : If (X,	μ) is not nearly μ-compact, then (n (μ))s is strongly generalized  
indiscrete. 

Proof : Suppose (n (μ))s is not indiscrete. So there is a U ∈ �-ro (X, n (μ)) such that     
∅ ≠ U ≠ X. Then U ∈ n (μ) and n (μ) cl U  ≠ X. Let V be a basic n (μ) open set such that         
∅ ≠	V ⊂	U. So V	∈ μ, X-V is μ�-compact, and there is a basic n (μ) closed sub set F of X such 
that V ⊂ F ≠ X. By definition F is μ�-compact. Since X = V	∪	(X – V) ⊂ F	∪	(X – V), X  is                            
μ�-compact., which contradicts (X,	μ) is not nearly  μ-compact.∎ 

Corollary 3.12: If (X,	μ) is not nearly  μ-compact, then (X, n (μ) ) is nearly μ-compact.∎         
Corollary 3.10 and 3.12 give the following : 

Theorem 3.13 : For any generalized topological space (X,	μ), the space (X, n (μ)) is 
nearly μ-compact.	∎                                                                                                                                                

If ℒ (X) is the lattice of topologies on a set X, we can regard  the process of obtaining       
n (μ) from  μ  as an operator n : ℒ (X)	→ 	ℒ (X). The co compactness operator c is considered 
in [8] and the co Lindelof operator  ℓ in [9]. For any generalized topology  μ  we have,            
c (μ)	⊂ n (μ)	⊂ μ, so that in particular for c (μ) we obtain c (c (μ))	⊂ nc (μ) ⊂	c (μ). Then by 
proposition (1) of [9], c (c (μ)) = c (μ), so that n (c (μ)) = c (μ). We use the results of 
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proposition 3.7, for repeated applications of the operators n and c. For example, if  (X,	μ)  is  
μ-semi regular then n (μ) = c (μ), so that c (c (μ)) = c (n (μ)) = n (c (μ)) = n (n (μ)) = n (μ). If  
(X, μ)  is  μ-Hausdorff, then n (μ) = c (μ�), by Lemma 3.3, so that  n (μ) is   �-compact and      
c (n (μ)) = n (μ). Proposition 3.7(4) shows that n (n (μ)) = n (μ) so that c (n (μ)) = n (n (μ))     
= n (μ) for  any μ-Hausdorff topology. 

Example 3.2: Note that the operator does not respect inclusion in ℒ (X). For example, if X 
is the set of all real numbers and  μ�, μ�,  μ�,  μ�   are the  cofinite, usual,  Sorgenfrey and 
discrete strong generalized topologies on X, then  μ� 	⊂ μ� ⊂ μ�⊂ μ�. But n (μ�) = n (μ�) is 
the  cofinite  generalized topology  μ�, while n (μ�) = c (μ�) properly contains n (μ�) = c (μ�)  
which properly contains  μ�. 

Lemma 3.14 : In the class of μ-Hausdorff strong generalized topologies on a set X,                               
the co-μ-compactness operator reverses inclusion, that is if μ� ⊂ μ� then  c (μ�) ⊂ c (μ�). 

Proof: If C is c (μ�) closed, then C is μ�- compact, and hence co	μ�-compact since  
μ� ⊂ μ�. Now μ�-Hausdorff implies C is μ�-closed so that C is  c (μ�) closed, and hence         
c (μ�) ⊂	c (μ�).	∎ 

Corollary 3.15 :  The operator n  reverses inclusion in the class of all μ-Hausdorff  semi 
regular generalized topologies on a set X.  

Proof :  Let  μ� ⊂ μ�. By proposition 3.7(1), n (μ�) = c (μ�) and n (μ�) = c (μ�). Thus  by 
Lemma 3.14, n (μ�)  ⊂ n (μ�).	∎ 

We note that the  μ-Hausdorff condition is crucial for the previous results. This is shown 
by the generalized topologies  μ� and μ�   of example 3.2. .  

Definition 3.5: A topological space (X, μ) is  called  an μ-��-space if every two distinct 
points with distinct closures have disjoint  neighbourhoods. 

SEPARATION PROPERTIES 

In this section we consider the transfer of  μ-separation properties between a generalized 

topological space (X, μ) and its co-μ-N closed generalized topology n (μ). Since n (μ)	⊂ μ any  
property  preserved by enlargement  of generalized topologies   will be transferred from n (μ) 
to μ; and μ-��,	μ-�� and μ-Hausdorff,  μ-Urysohn,  and completely μ-Hausdorff are examples 
of such  μ-separation properties. If (X, μ) is an infinite set  with the discrete topology in S G T  
then n (μ) is the  co finite generalized topology on X. Thus the property μ-��,	μ-Hausdorff,                       
μ-Urysohn, functional μ-Hausdorff, μ-regular, completely μ-regular and μ-normal are not 
transferred from (X,	μ) to n (μ). 

Proposition 4.1: If X is μ-��, then (X, n (μ)) is μ-��.  

Proof: This follows from the fact that any singleton {x} of X is �-closed and                                                          
(nearly) μ-compact in (X,	μ), and hence is  μ-closed in n (μ).	∎ 

Proposition 4.2: If X is μ-��then (X, n (μ)) is μ-��.  

Proof : Since (X, μ) is  μ-��, for any x	∈ X  the set μ-cl {x} is μ-closed  and  μ-compact, 
so it is n (μ) closed. Hence n (μ) cl {x}	⊂ μ-cl {x}. On the other hand, since n (μ)	⊂ μ, we 
have  μ-cl {x}	⊂ n (μ) cl {x}, so that n (�) cl {x} = �-cl {x}. The result follows from this 
equality. ∎ 

We have not been able to answer the following questions about the transfer of                  
μ-separation  properties.  
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(1) If (X,	μ) is μ-��,  (X, n (μ)) is  μ-��. 

(2) Are any of the properties of μ-��, μ-��, (complete) �-regularity, 	�-normality  
transferred from (X, n (μ)) to (X,	μ). 

  We note in passing that (X, n (μ)) can be μ-compact  while (X,	μ) is not even μ-locally 
compact. For example, if (X,	μ) is the Sorgenfrey line, then it is μ-semi regular so that             
n (�) = c (�) is μ-compact while μ is not μ-locally compact. Proposition 3.7(4) shows that if 
(X,	μ) is μ-compact so is (X, n (μ)), since  n (μ) =	μ.                                                                                                                    

μ-connectedness behaves like  μ-compactness. If (X, μ) is μ-connected, so is the smaller 
GT n (μ). If (X,	μ) is infinite discrete it is not μ-connected (in fact it is  μ-totally disconnected), 
while (X, n (μ)) is a co �	finite space and so is  μ-connected. 

PRODUCTS  

In this section we consider a collection {(��, μ�)�	∈�} of non empty generalized 

topological spaces. Let X denote the product ∏ {��: � ∈ Λ} and  � denote the Tychonoff  
product  topology {∏��:	� ∈ Λ} on X. We are interested in the relationship between the   co-
�N closed operator n and generalized topological products. 

Lemma 5.1 : The product B of sets ��  is  �-N closed in (X,	�) if and only if each ��  is  
�-N closed in (��,	��).  

Proof :  By Theorem 3.1 of  [13], B is  �-N closed in (X, �) if and only if  B is  �-compact 
in (X,	μ�). Since μ� =∏(μ�)� B is  μ�-compact in (X,	μ�) if and only if  �� is μ-compact in 
(��,(μ�)�) for each � ∈ Λ, that is if and only if  �� is μ-N closed in  (��,	��).	∎       

We now introduce a stronger version of μ-N continuity. 

Definition 5.1: A function f : (X, S) →	(Y,	μ) is strongly �-N continuous if                           
f : (X, n (S))	→ (Y, n (μ)) is  μ-continuous. 

It is clear from Theorem 3.1 that strong μ-N continuity implies μ-N continuity. On the 
other hand, strong μ-N continuity is not implicationally related to μ-continuity. For let (X, S) 
be the set R of real numbers with the discrete topology and (Y,	μ) be R with the usual topology. 
Then n (S) is the co finite generalized topology on R, while n (μ) = c (μ), by Proposition 
3.7(1).  

Note that n (μ) is strictly larger than n (S). Hence if f is the identity mapping from X to Y,                 
f : (X, S) →	(Y,	μ) is μ-continuous but not strongly μ-N continuous , while  f –1 : (Y,	� ) → (X, S) 
is strongly μ-N continuous but not  μ-continuous. Notice that f is μ-N continuous but not 
strongly  μ-N continuous. 

Proposition 5.2: If f : (X, S) →	(Y, μ) is μ-N continuous  and g : (Y, μ) → (Z, �) is  strongly                 
�-N continuous  then g ∘ f : (X, S)  → (Z,  �) is  �-N continuous. ∎ 

Proposition 5.3: If (X, �) is nearly μ-compact then the projection mapping  Py : Xx Y →Y 
is strongly �-N continuous, where (Y, μ) is any generalized topological space.  

Proof : Let V be any n (μ) basic open set, so that Y-V is a  μ-closed  N closed set in (Y, μ) 
. Then PY

-1 (V) is μ-open in (X × Y, S × µ) since the projection ��  is µ-continuous. 
Furthermore, (X × Y) – PY

-1 (V) = X × (Y – V) is µ-N closed by Lemma 5.1.	∎ 

Corollary 5.4 : If {Yα : � ∈ Λ} are nearly µ-compact spaces, then the projections             
Pα : Y  →Yα are  strongly µ-N continuous.	∎	                                                                                                      
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Theorem 5.5 :  Let (X, S) be nearly  µ-compact, and f : X → Y be a function. If the graph 
function  g : X →  X × Y is  µ-N continuous, then f is µ-N continuous. 

Proof :  Note that f = PY	∘ g, and appeal to propositions  5.2  and  5.3.	∎                                                   

Lemma 5.6 : If (Yα, µα ) is locally nearly µ-compact and µ-Hausdorff  for each α	∈ Λ, 
then n (∏µα) ⊂ ∏ n (µα).  

Proof : For each  α ∈ Λ, n (µα) = c ((µα)s) by Lemma 3.3  so that ∏ n (µα) = ∏ c ((µα)s). 
The product space (Y, µ) is µ-Hausdorff, so that n (∏µα) = c ((∏ µα)s), again by Lemma 3.3.  
Now each (μ�)s  is locally µ-compact and µ-Hausdorff, so that by  Theorem 7 of [8],                
c (∏ (μ�)s) ⊂ ∏ c ((μ�)s). Hence n (μ�) ⊂ ∏ n (μ�).	∎ 

The following theorem explains the relationship between co �-compact operator c and 
generalized topological products. 

Theorem 5.7: The equality  ∏ c (μ�) = c (∏	μ�) holds if and only if one of the following 
conditions is satisfied    

(1) μ� is  µ-compact, for each α ∈ Λ.    

(2) c (μ�)   is indiscrete, for each α ∈ Λ.  

(3) If for some k ∈ Λ, neither μ� is µ-compact nor c(µk) is indiscrete, then for all              

� ∈ Λ	–	{k}, µα is indiscrete.   

Proof : In view of Theorem 25 of [8(i)], the inclusion ∏ c (μ�) ⊂ c (∏ (μ�)) …….(*) 
holds if and only if one of the above three conditions (1) to (3) is satisfied. Thus we only need 
to show that equality in (*) holds.  

(1) If each μ�  is μ-compact then c (μ�) = �� for each � ∈ Λ, so that ∏ c (μ�) = c (∏	μ�).                         
But ∏	μ� is  µ-compact, so that ∏	μ�  = c (∏ ��).                                                                                      

(2) If each c (μ�) is indiscrete, then the product ∏ c (µα) is indiscrete. Suppose c (∏ μ�) is 
not discrete, so there is a set U ∈	∏ µα, such that ∅ ≠	U ≠	X and F = X – U is µ-compact. Let 
x ∈ F, say x = {< Xα > :	� ∈ Λ}. Then ��{x} = ∏ ��cl {�	�} ⊂ F and is µ-compact.                                           

Hence, for each  � ∈ Λ, ��{x} is μ�-compact. Since each c (μ�) is indiscrete we have                         

μ�  cl {x} = ��, so that F = X and U = ∅, a contradiction.                                                                                                                             

(3) If all  �� are indiscrete, except at most one �� then we have                                                               

    ∏c(μ�) = {Pk
–1 (U) : U ∈ c (μ�)}  

                = {Pk
–1 (U) : U ∈ μ�  and �� – U is  μ�-compact} 

                = {Pk
–1 (U) : U ∈ μ�  and X – Pk

–1 (U) is  µ-compact} 

                = c (∏ μ�). ∎ 

Corollary 5.8 : Let (��, μ�) be µ-semi regular for each α ∈ Λ. Then ∏ n (��) = n (∏��) 
if and only if one of the conditions (1) – (3) in Theorem 5.7 is satisfied.  

Proof : Follows from Proposition 3.7 (1).  ∎                                                                                        

Corollary 5.9: Let (��, ��) be  µ-Hausdorff non singleton spaces, for each α	∈ Λ. Then                           
∏n (μ�) = n (∏ μ�) if and only if (��,	��) is nearly  µ-compact for each α	∈ Λ.    

Proof : Follows from Lemma 3.3. The conditions (1) and (3) do not hold since each         
n (μ�) is µ -	�� by Proposition 4.1.	∎                                                                                                                     

Proposition 5.10 : If each (��, μ�) is nearly µ-compact, then ∏ n (μ�) ⊂ n (∏ ��).                                      
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Proof : For each sub base member Pα
–1 (U) of the product ∏ n (μ�), where U ∈ μ�  and 

α	∈ Λ, �� – U is µ-N closed, so that the set X – Pα
–1 (U) = Pα

–1 (��– U) is µ-closed and µ-N 
closed, see Lemma 5.1. Thus Pα

–1 (U) ∈ n (∏ ��) as required. ∎		                          
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