CONSTRUCTION OF GROUP DIVISIBLE DESIGNS FROM GENERALIZED ROW ORTHOGONAL CONSTANT COLUMN MATRICES

SHYAM SAURABH
UGC Senior Research Fellow, Ranchi University, Ranchi-834001

AND
MITHILESH KUMAR SINGH
Professor, Ranchi University, Ranchi-834001
RECEIVED : 29 October, 2017
Some series of Group Divisible (GD) designs have been constructed from Generalized Orthogonal Constant Column Matrices (GROCM). Some GD designs listed in Clatworthy's Table have been constructed from these series.

KEYWORDS : Balanced Incomplete Block Design, GD design, Circulant Matrix, GROCM.

Introduction

W
recall following definitions:

1.1. BALANCED INCOMPLETE BLOCK DESIGN (BIBD):

Let $V=\{1,2,3, \ldots, v\}$ be a non-empty set and $\beta=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{b}\right\}$ be a multiset of subsets of V. The elements of V are called treatments and the elements of β are called blocks. A BIBD is an arrangement of v treatments into b blocks such that each block contains k treatments, each treatment belongs to r blocks and each pair of treatments belongs to λ blocks. v, b, r, k, λ are called parameters of the BIBD. These parameters are not all independent but are related by the following relations:
(i) $v r=b k$
(ii) $r(k-1)=\lambda(v-1)$.

A BIBD for which $v=b$ (hence $r=k$) is called a Symmetric BIBD (SBIBD).

1.2. Circulant Matrix:

Ann $\times n$ matrix $C=\left[c_{i j}\right]_{0 \leq i, j \leq n-1}$ where $c_{i j}=c_{j-i(\operatorname{modn})}$ is a circulant matrix of order n.

$$
C=\left(\begin{array}{ccccc}
c_{0} & c_{1} & c_{2} & \ldots & c_{n-1} \\
c_{n-1} & c_{0} & c_{1} & \ldots & c_{n-2} \\
c_{n-2} & c_{n-1} & c_{0} & \ldots & c_{n-3} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
c_{1} & c_{2} & c_{3} & \ldots & c_{0}
\end{array}\right)=\operatorname{circ}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)
$$

1.3. \boldsymbol{m}-Class Association Scheme (AS):

Let X be a non-empty set of order v. A set $\Omega=\left\{R_{0}, R_{1}, \ldots, R_{m}\right\}$ of non-empty relations on X is an m-class AS if following properties are satisfied
(i) $\left.R_{0}=\{(x, x)\}: x \in X\right\}$
(ii) Ω is a partition of $X \times X$ i.e.

$$
\bigcup_{i=0}^{m} R_{i}=X \times X, R_{i} \cap R_{j}=\phi \text { if } I \neq j .
$$

(iii) $R_{i}^{T}=R_{i}$ where $R_{i}^{T}=\left\{(x, y):(y, x) \in R_{i}\right\}, i=0,1, \ldots, m$.
(iv) $\operatorname{Let}(x, y) \in R_{i}$. For $i, j, k \in 0,1, \ldots, m$

$$
p_{j k}^{i}=p_{k j}^{i}=\left|\left\{z:(x, z) \in R_{j} \bigcap(z, y) \in R_{k}\right\}\right|
$$

which is independent of $(x, y) \in R_{i}$.
If $(x, y) \in R_{i}$ then x and y are called i-th associates. For a given treatment $\alpha \in X$, the number of treatments which are i-th associates of α is $n_{i}(i=0,1,2, \ldots, m)$, where the number n_{i} is independent of the treatment α chosen. The non-negative integers $v, n_{i}, p_{j k}^{i}(i, k, j=0,1$, $\ldots, m)$ are called the parameters of the m-Class AS. Every treatment is zero-th associate of itself. These parameters are not all independent but are connected by the following relations
(i) $\quad \sum_{i=1}^{m} n_{i}=v-1$
(ii) $\quad \sum_{k=1}^{m} p_{j k}^{i}=\left\{\begin{array}{c}n_{j}-1 \text { if } i=j \\ n_{j} \text { if } i \neq j\end{array}\right.$
(iii) $n_{i} p_{j k}^{i}=n_{j} p_{i k}^{j}$

For details see Godsil and Song [7].

1.4. Association Matrices-

These matrices were introduced by Bose and Mesner [2].
The i-th association matrix $B_{i}=\left[b_{\alpha \beta}^{i}\right]_{\substack{0 \leq i \leq m \\ \alpha, \beta \in X}}$ of an m-class AS is a symmetric matrix of order v where

$$
b_{\alpha \beta}^{i}=\left\{\begin{array}{c}
1 \text { if } \alpha \text { and } \beta \text { are mutually ith associates } \\
0 \text { Otherwise }
\end{array}\right.
$$

1.4.1. Properties of Association Matrices:

(i) $B_{0}=I_{v}$
(ii) $\sum_{i=0}^{m} B_{i}=J_{v}$
(iii) $B_{i} B_{j}=B_{j} B_{i}=\sum_{k=0}^{m} p_{i j}^{k}(i, j=0,1,2, \ldots, m)$

1.5. Partially Balanced Incomplete Block (PBIB) Design:

Let X be a non-empty set with cardinality v. The elements of X are called treatments. A PBIB design based on an m-class association scheme is a family of b subsets (blocks) of X, each of size k such that each treatment occurs in r blocks, any two treatments occur together in $\lambda_{\mathrm{i}}(i=0,1, \ldots, m)$ blocks if they are mutually i th associates. v, b, r, k, λ_{i} are called parameters of a PBIB design.[5]

The following relations connect these parameters of PBIB design and also of the parent association scheme:
(i) $\quad v r=b k$
(ii) $\sum_{i=0}^{m} n_{i} \lambda_{i}=r k$, where $\lambda_{0}=r$.

1.6. Group divisible (GD) AS :

A GD AS is an arrangement of $v=m n$ treatments in a rectangular array of m rows and n columns such that any two treatments belonging to the same row are first associates and remaining pairs of treatments are second associates.

The parameters of GD AS are as follows:

$$
\begin{aligned}
& v=m n, n_{1}=n-1, n_{2}=n(m-1) \\
& P_{1}=\left[\begin{array}{cc}
n-2 & 0 \\
0 & n(m-1)
\end{array}\right], P_{2}=\left[\begin{array}{cc}
0 & n-1 \\
n-1 & n(m-2
\end{array}\right]
\end{aligned}
$$

1.7. Group divisible design (GDD):

A GDD is a 2-class PBIB design based on a GD AS of $v=m n$ treatments arranged with b blocks such that each block contains k distinct treatments, each treatment occurs in exactly r blocks and any two treatments which are first associates occur together in λ_{1} blocks, whereas any two treatments which are second associates occur together in λ_{2} blocks. $v, b, r, k, \lambda_{1}, \lambda_{2}$ are called the parameters of the GDD.

Let N be the incidence matrix of a GD design with parameters $v=m n, b, r, k, \lambda_{1}, \lambda_{2}$. Then the eigenvalues $\left(\theta_{i}\right)$ and the corresponding multiplicities
$\left(\alpha_{i}\right)$ of the matrix $N N^{T}$ are given by

$$
\theta_{0}=r k, \theta_{1}=r-\lambda_{1}, \quad \theta_{2}=r k-v \lambda_{2}, \alpha_{0}=1, \alpha_{1}=m(n-1), \alpha_{2}=m-1
$$

GD designs have been classified into following three categories based on the eigenvalues of $N N^{T}$
(i) Singular, if $r=\lambda_{1}$
(ii) Semiregular, if $r>\lambda_{1}$ and $r k=v \lambda_{2}$
(iii) Regular, if $r>\lambda_{1}$ and $r k>\nu \lambda_{2}$.

GD designs havebeen studied by Bose and Connor [1], Dey [4], Dey and Nigam [6], John and Turner [8], Rao [9], Seberry [10] and so on. GDDs are suitable for factorial experiment [5].

For convenience, I_{n} denotes the identity matrix of order $n, J_{t \times u}$ denotes the $t \times u$ matrix all of whose entries are $0, K_{t \times u}=J_{t \times u}-I_{t \times u} . e_{t \times 1}$ denotes the $t \times 1$ matrix with all its entries 1 and Γ_{i} is a square matrix of order p whose ith column has all entries 1 and remaining columns have entries in 0 . A \otimes Bdenotes Kronecker product of matrices A and $B . \alpha^{i}=$ circ. $(0,0,0, \ldots 1, \ldots, 0)$ is a circulant matrix of order n with 1 at $(i+1)$-th position such that $\alpha^{n}=I_{n}$.

Grocm and its reduction to incidence matrix of a gdd

2.1 Definition of GROCM

Singh and Prasad [11] defined Generalized Orthogonal Combinatorial matrix (GOCM). Here we define GROCM.

Let $N=\left[N_{i j}\right], i, j \in\{1,2, \ldots, m\}$ where $N_{i j}$ are $\{0,1\}$ matrices oforder $n \times s_{j}$. Let $R_{i}=\left(N_{i 1}, N_{i 2}, \ldots, N_{i m}\right)$ be the i th row of blocks. We define inner product of two rows of blocks R_{i} and R_{j} as $R_{i} \circ R_{j}=R_{i} R_{j}^{T}=\sum_{k=1}^{m} N_{i k} N_{j k}^{T}$.
N is called a Generalized Row Orthogonal Matrices (GROM) if there exists fixed positive integer r and fixed non-negative integers $\lambda_{1}, \lambda_{2}, \lambda_{3}$ such that

$$
R_{i} \circ R_{j}=R_{i} R_{j}^{T}=\sum_{k=1}^{m} N_{i k} N_{j k}^{T}=\left\{\begin{array}{l}
r I_{n}+\lambda_{1} K_{n} \text { if } i=j \\
\lambda_{2} I_{n}+\lambda_{3} K_{n} \text { if } i \neq j .
\end{array}\right.
$$

A $\{0,1\}$-matrix N is called a constant column matrix if sum of entries in each column of N is constant. A GROM with constant column sum k will be called GROCM.
$v=m n, b=m\left(s_{1}+s_{2}+\cdots+s_{m}\right), r, k, \lambda_{1}, \lambda_{2}, \lambda_{3}, m, n$ are called the parameters of the GROCM. $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are called concurrences of the GROCM.

Theorem 2.2: A GROCM N with concurrences $\lambda_{1}, \lambda_{2}, \lambda_{3}$ is an incidence matrix of a GD design if either $\lambda_{1}=\lambda_{3}$ or $\lambda_{2}=\lambda_{3}$.

Proof: $\quad N N^{T}=\left(\begin{array}{ccc}r I_{n}+\lambda_{1} K_{n} & \cdots & \lambda_{2} I_{n}+\lambda_{3} K_{n} \\ \vdots & \ddots & \vdots \\ \lambda_{2} I_{n}+\lambda_{3} K_{n} & \cdots & r I_{n}+\lambda_{1} K_{n}\end{array}\right)$

$$
=r\left(I_{m} \otimes I_{n}\right)+\lambda_{1}\left(I_{m} \otimes K_{n}\right)+\lambda_{2}\left(K_{m} \otimes I_{n}\right)+\lambda_{1}\left(K_{m} \otimes K_{n}\right)
$$

Let $\lambda_{2}=\lambda_{3}$. Let

$$
B_{0}=I_{m} \otimes I_{n}, B_{1}=I_{m} \otimes K_{n}, B_{2}=K_{m} \otimes I_{n}+K_{m} \otimes K_{n}=K_{m} \otimes J_{n}
$$

Then

$$
\begin{aligned}
& B_{0}^{2}=I_{m n}, B_{1}^{2}=(n-1) B_{0}+(n-2) B_{1}, \\
& B_{1}^{2}=n(m-1)\left(B_{0}+B_{1}\right)+n(m-2) B_{2}, B_{1} B_{2}=B_{2} B_{1}=(n-1) B_{2}
\end{aligned}
$$

Thus B_{0}, B_{1}, B_{2} are association matrices of a GD AS. Hence N is the incidence matrix of a

Let $\lambda_{1}=\lambda_{3}$. We denote λ_{2} by λ_{1} and $\lambda_{1}\left(=\lambda_{3}\right)$ by λ_{2}.
Then $B_{0}=I_{m} \otimes I_{n}, B_{1}=K_{m} \otimes I_{n}, B_{2}=I_{m} \otimes K_{n}+K_{m} \otimes K_{n}=J_{m} \otimes K_{n}$

$$
\begin{aligned}
& B_{1}^{2}=(m-1) B_{0}+(m-2) B_{1}, B_{2}^{2}=m(n-1)\left(B_{0}+B_{1}\right)+m(n-2) B_{2} \\
& B_{1} B_{2}=B_{2} B_{1}=(m-1) B_{2}
\end{aligned}
$$

Thus B_{0}, B_{1}, B_{2} are association matrices of a GD AS. Hence N is the incidence matrix of a GDD based on the GD AS represented bytranspose of the array

$$
\begin{array}{cccc}
1 & 2 & \ldots & n \\
n+1 & n+2 & \ldots & 2 n \\
\vdots & \vdots & \vdots & \vdots \\
-1) n+1 & (m-1) n+2 & \ldots & m n
\end{array}
$$

Block kronecker product of two block matrices

Let $M=\left[M_{i j}\right]_{\substack{i=1,2, \ldots, \ldots, j=1,2, \ldots, m}}$ and $N=\left[N_{p q}\right]_{\substack{p=1,2, \ldots, r \\ q=1,2, \ldots, s}}$ are two block matrices where $M_{i j}$ and $N_{p q}$ are square matrices of same order.

We define Block Kronecker Product $M \circledast N$ of M and N as

$$
M \circledast N=\left[\begin{array}{cccc}
M_{11}\left[N_{p q}\right] & M_{12}\left[N_{p q}\right] & \ldots & M_{1 m}\left[N_{p q}\right] \\
M_{21}\left[N_{p q}\right] & M_{22}\left[N_{p q}\right] & \ldots & M_{2 m}\left[N_{p q}\right] \\
\vdots & \vdots & \vdots & \vdots \\
M_{(l-1) 1}\left[N_{p q}\right] & M_{(l-1) 2}\left[N_{p q}\right] & \ldots & M_{(l-1) m}\left[N_{p q}\right] \\
M_{l 1}\left[N_{p q}\right] & M_{l 2}\left[N_{p q}\right] & \ldots & M_{l m}\left[N_{p q}\right]
\end{array}\right]
$$

Where $\quad M_{11}\left[N_{p q}\right]=\left[M_{11} N_{p q}\right]=\left[\begin{array}{cccc}M_{11} N_{11} & M_{11} N_{12} & \ldots & M_{11} N_{1 q} \\ M_{11} N_{21} & M_{11} N_{22} & \ldots & M_{11} N_{2 q} \\ \vdots & \vdots & \vdots & \vdots \\ M_{11} N_{(p-1) 1} & M_{11} N_{(p-1) 2} & \ldots & M_{11} N_{(p-1) q} \\ M_{11} N_{p 1} & M_{11} N_{p 2} & \ldots & M_{11} N_{p q}\end{array}\right]$
$M_{11} N_{11}$ denotes usual matrix multiplication of M_{11} and N_{11}.

Construction theorems

Theorem 4.1: There exists a GDD with parameters
$v=p^{2}, b=p(s+\mu p), r=s+\mu p, k=p, \lambda_{1}=s, \lambda_{2}=\mu, m=n=p$, where μ, s, are nonnegative integers and p is a prime.

Proof : Let $N_{1}=\mu$ copies of block matrix $\left[\begin{array}{c}I_{p} \\ I_{p} \\ \vdots \\ I_{p}\end{array}\right]$

$$
N_{2}=s \text { copies of block matrix }\left[\begin{array}{c}
\Gamma_{1} \\
\Gamma_{2} \\
\vdots \\
\Gamma_{\mathrm{p}}
\end{array}\right]
$$

and $\quad N_{3}=\mu$ copies of block matrix $\left[\begin{array}{cccc}I_{p} & I_{p} & \ldots & I_{p} \\ \alpha & \alpha^{2} & \ldots & \alpha^{p-1} \\ \alpha^{2} & \left(\alpha^{2}\right)^{2} & \ldots & \left(\alpha^{p-1}\right)^{2} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha^{p-1} & \left(\alpha^{2}\right)^{p-1} & \ldots & \left(\alpha^{p-1}\right)^{p-1}\end{array}\right]$
where $\alpha=\operatorname{circ} .(0,1,0, \ldots, 0,0)$ is a circulant matrix of order p with 1 at 2 nd position such that $\alpha^{p}=I_{p}$. Then $N=\left[\begin{array}{ll}N_{1} & N_{2}\end{array} N_{3}\right]$ is the incidence matrix of the GDD with the required parameters. [vide theorem 2.2]

Corollary 4.1.1: There exists a semiregular GDD with parameters
$v=p^{2}, b=\mu p^{2}, r=\mu p, k=p, \lambda_{1}=0, \lambda_{2}=\mu, m=p-1, n=p$ where μ is a positive integer.
Proof : On putting $s=0$ in Theorem 4.1 we get a regular GDD with the required parameters. [vide theorem 2.2]

Corollary 4.1.2 : There exists a semiregular GDD with parameters
$v=p^{2}-l p, b=\mu p^{2}, r=\mu p, k=p-1, \lambda_{1}=o, \lambda_{2}=\mu, m=p-l, n=p$ where μ is a positive integer

Proof : On removing l rows of blocks from incidence matrix of the previous design we obtain a semiregular GDD with the required parameters. [vide theorem 2.2]

Theorem 4.2 : There exists a semiregular GDD with parameters

$$
v=b=p^{3}, r=k=p^{2}, \lambda_{1}=0, \lambda_{2}=p, m=p^{2}, n=p .
$$

Proof : $N=N_{1} \circledast N_{2}$ is an incidence matrix of a semiregular GDD with the required parameters where

$$
N_{1}=N_{2}=\left[\begin{array}{ccccc}
I & I & I & \cdots & I \\
I & \alpha & \alpha^{2} & \ldots & \alpha^{p-1} \\
I & \alpha^{2} & \left(\alpha^{2}\right)^{2} & \ldots & \left(\alpha^{p-1}\right)^{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
I & \alpha^{p-1} & \left(\alpha^{2}\right)^{p-1} & \ldots & \left(\alpha^{p-1}\right)^{p-1}
\end{array}\right]
$$

[vide Theorem 2.2]
Corollary 4.2.1 : There exists a semiregular GDD with parameters

$$
v=p^{3}-l p, b=p^{3}, r=p^{2}, k=p^{2}-l, \lambda_{1}=0, \lambda_{2}=p, m=p^{2}-l, n=p .
$$

Proof : On removingl rows of blocks from N, we obtain a semiregular GDD with the required parameters.

Theorem 4.3 : The existence of a SBIBD with parameters $v=b=4 n-1, r=k=2 n-1$, $\lambda=n$ implies the existence of a GDD with parameters

$$
v=2(4 n-1), b=4 n, r=2 n, k=4 n-1, \lambda_{1}=0, \lambda_{2}=n, m=4 n-1, n=2
$$

Proof : Let N_{1} be the incidence matrix of a $(4 n-1,2 n-1, n)$-design. Then
$N=\left(\begin{array}{cc}N_{1} & e_{(4 n-1) \times 1} \\ J-N_{1} & 0_{(4 n-1) \times 1}\end{array}\right)$ is an incidence matrix of a GDD with the required parameters. [Vide theorem 2.2]

Table of designs

Table of Some GD designs in the range $2 \leq r, k \leq 10$ constructed from present theorems which are listed in Clatworthy's Table. [3]

Table I

List of GD designs in Clatwarthy's Table	Source
$R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 8, R 9, R 10, R 11, R 12, R 13, R 14, R 15, R 16$,	Theorem 4.1
$R 17, R 59, R 60, R 61, R 62, R 63, R 64, R 65, R 66, R 67, R 68, R 155, R 156, R 157, R 158$,	
$R 184, R 185$	Cor.4.1.1
$S R 1, S R 2, S R 3, S R 4, S R 5, S R 23, S R 24, S R 25, S R 60, S R 6 I, S R 87$	Cor.4.1.2
SR6, SR7, SR8, SR11, $S R 77$	Theorem 4.2
$S R 102$	Cor.4.2.1
$S R 25, S R 43, S R 56, S R 73, S R 85, S R 94$	Theorem 4.3
$S R 80$	

Acknowledgement

The first author is thankful to UGC for its financial assistance.

References

1. Bose, R.C. and Connor, W.S., Combinatorial properties of group divisible incomplete block designs, Ann. Math. Statist., 23, 367-383(1952).
2. Bose, R.C. and Mesner, D.M., On linear associative algebras corresponding to association schemes of partially balanced designs, Ann. Math. Statist., 23, 21-38(1959).
3. Clatworthy,W.H., Tables of two-associate Partially Balanced Designs, National Bureau of Standards, Applied Maths. Series, No. 63, Washington D.C. (1973).
4. Dey, A., Construction of regular group divisible designs, Biometrika, 64, 647-649 (1977).
5. Dey, A., Theory of Block Designs, Wiley Eastern, New York (1986).
6. Dey, A. and Nigam, A.K., Construction of group divisible designs, J. Indian Soc. Agric. Statist., 37(2), 163-166 (1985).
7. Godsil, C.D. and Song, Y., Association schemes, in CRC Handbook of Combinatorial Designs, (eds. Colbourn \& Dinitz), Chapman \& Hall (2007).
8. John, J.A. and Turner, G., Some new group divisible designs, J. Statist. Plan. Inference, 1, 103-107 (1977).
9. Rao, M.B., Group divisible family of PBIB designs, J. Indian Statist. Assoc., 4, 14-28 (1966).
10. Seberry, J., Regular group divisible design and Bhaskar Rao designs with block size 3, J. Statist. Plann. and Inference, 10, 69-82 (1984).
11. Singh, M.K. and Prasad, Dinesh, Some new balanced block intersection designs from Williamson matrices, Acta Ciencia Indica, 3, 371-376 (2014).
