BE-ALGEBRAS WITH ZERO ELEMENT

RASHMI RANI

College of Engineering and Computing, Al Ghurair University, Academic City, Dubai, UAE
RECEIVED : 7 October, 2017
The concept of BE-Algebra has been introduced by H.S. Kim and Y.H. Kim in 2006. Since then different other concepts have been developed by several authors. In general, a BE-Algebra may not contain a zero element. But a BE algebra with zero element has some different significance. Here we study such BE-Algebras.

KEYWORDS : BE-Algebra, commutative BE-Algebra, Clopen set.

Introduction

Definition (1.1): Let $(X ; *, 1)$ be a system of type $(2,0)$ consisting of a non-empty set X, a binary operation * and a fixed element 1 . The system $(X ; *, 1)$ is called BE-Algebra if the following conditions are satisfied:
(BE 1) $\quad x * x=1$
(BE 2) $\quad x * 1=1$
(BE 3) $\quad 1 * x=x$
(BE 4) $\quad x *(y * z)=y *(x * z)$
for all $x, y, z \in X$.
Example (1.2) : Let $X=\{0,1\}$ and let the binary operation '*' be defined as the Cayley table
Table (1)

$*$	0	1
0	1	1
1	0	1

Then $(X ; *, 1)$ is a BE-Algebra.
Note (1.3) : Here 1 can be replaced by any a.
Example (1.4): Let $Y=X^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{i}=0\right.$ or 1$\}$

Let $0 \equiv(000)$,	$1 \equiv(0,0,1)$	$2 \equiv(0,1,0)$	$3 \equiv(0,1,1)$
$4 \equiv(1,0,0)$	$5 \equiv(1,0,1)$	$6 \equiv(1,1,0)$	$7 \equiv(1,1,1)$

We extend binary operation '. ' in Y from table (1). Then Cayley table for $Y=\{0,1,2,3$, $4,5,6,7\}$ is given by

Table (2)

.	0	1	2	3	4	5	6	7
0	7	7	7	7	7	7	7	7
1	6	7	6	7	6	7	6	7
2	5	5	7	7	5	5	7	7
3	4	5	6	7	4	5	6	7
4	3	3	3	3	7	7	7	7
5	2	3	2	3	7	7	6	7
6	1	1	3	3	5	5	7	7
7	0	1	2	3	4	5	6	7

Definition (1.5) : Let $(X ; *, 1)$ be a BE-Algebra. If X contains an element $0 \in X$ such that $0 * x=1$ for all $x \in X$, then X is called a BE-Algebra with zero element 0 .
Definition (1.6) : In a BE-algebra $(X, *, 1)$, a binary operation " + " is defined as

$$
x+y=(x * y) * y
$$

A BE-Algebra $\left(X,{ }^{*}, 1\right)$ is said to be commutative iff $x+y=y+x$ for all $x, y \in X$
Definition(1.7) : Let $\left(X ;{ }^{*}, 1\right)$ be a BE-Algebra with zero element 0 such that 0 commutes with each $x \in X$, i.e, $(0 * x) * x=(x * 0) * 0$, then the complement of x, denoted as x^{c}, is defined as $x^{c}=x^{*} 0$. Example 1 and example 2 satisfies conditions of above definitions.

Lemma (1.8): We have $\left(x^{c}\right)^{c}=x$ for every $x \in X$.
Proof: Let $x^{c}=y$, then

$$
y^{c}=y * 0=(x * 0) * 0=(0 * x) * x=1 * x=x
$$

Hence the result.
Definition (1.9) : A BE-Algebra $\left(X,{ }^{*}, 1\right)$ is said to be
(a) Self-distributive, if for any $x, y, z \in X$

$$
x *(y * z)=(x * y) *(x * z)
$$

(b) Transitive, if for any $x, y, z \in X$

$$
(y * z) \leq(x * y) *(x * z), \text { i.e. },(y * z) *((x * y) *(x * z))=1
$$

Definition (1.10) : A non-empty subset A of a BE-algebra X is called an essence of X if $X * A=A$.

Main results

Theorem (2.1) : A non-empty collection T of subsets of a given set X is a BE-Algebra with zero element $0=\Phi$ and unit element X in which 0 commutes with every $A \in T$ iff T is closed with respect to complement and union.

Proof : Let T be a BE-Algebra with binary operation '*', zero element $0 \equiv \Phi$ and unit element $1 \equiv X$.

If $T=\{\Phi, X\}$ then the condition is satisfied as $\Phi^{c}=X, X^{c}=\Phi$ and $\Phi \cup X=X \in T$.

Let $\Phi \neq A \neq X$ be an element of T. From the given condition Φ commutes with A, so $A^{c}=A * \Phi \in T$. So T is closed with respect to complement.

Since T is a BE-Algebra, $A^{*} A=X=>$ either $A^{*} A=A^{c} \cup A$ or $A{ }^{*} A=A \cup A^{c}$. This means that for $A, B \in T$, The binary operation ' $*$ ' is defined either as

$$
\begin{equation*}
A^{*} B=A^{c} \cup B \text { or } A * B=A \cup B^{c}, \tag{1}
\end{equation*}
$$

But the condition $A * X=X$ is satisfied only for $A * B=A^{c} \cup B$.
Also, in this case $X^{*} A=X^{c} \cup A=A$ is satisfied.
So our binary operation * is given as $A * B=A^{c} \cup B$.
Also condition (BE4) is satisfied for binary operation '*' given by $\left(\mathrm{A}_{1}\right)$.
Let $A, B \in T$, then $A^{c}, B \in T$ which gives, $A^{c} * B=A \cup B \in T$. This proves that T is closed with respect to union.

Conversely, suppose that T is closed with respect to complement and union.
For $\mathrm{A}, B \in T$, we define

$$
\begin{equation*}
A^{*} B=A^{c} \cup B \tag{2}
\end{equation*}
$$

Then '*' is a binary operation in T .
Also, for $A \in T$, we have
(BE 1) $A^{*} A=A^{c} \cup A=X \equiv 1$;
(BE 2) $A^{*} X=A^{c} \cup X=X \equiv 1$;
(BE 3) $X^{*} A=\Phi \cup A=A$;
(BE 4) Let $A, B, C \in T$, then

$$
\begin{aligned}
A *(B * C) & =A^{*}\left(B^{c} \cup C\right) \\
& =A^{c} \cup\left(B^{c} \cup C\right) \\
& =\left(A^{c} \cup B^{c}\right) \cup C \\
& =\left(B^{c} \cup A^{c}\right) \cup C \\
& =B^{c} \cup\left(A^{c} \cup C\right) \\
& =B^{c} \cup\left(A^{*} C\right) \\
& =B^{*}\left(A^{*} C\right)
\end{aligned}
$$

Since $\Phi * A=X \cup A=X$, Φ is a zero element of X.
This proves that $(T ; *, 1 \equiv X)$ is a BE-Algebra with zero element $\Phi \equiv 0 \in T$.
Also $(\Phi * A) * A=1 * A=A$ and $(A * \Phi) * \Phi=A^{c} * \Phi=A$
So Φ commutes with each $A \in T$.
Corollary (2.2): T is closed with respect to intersection.
Corollary (2.3) : If T is finite then T defines a Topology on X. The elements of T are clopen sets.

Corollary (2.4) : If X is a topological space and T be the collection of clopoen subsets of X, then T is a BE-Algebra with respect to binary operation defined by $\left(A_{2}\right)$.

Example (2.5) : Let $X=\{a, b, c, d, e\}$ and let $T=\{\Phi, A, B, C, D, E, F, X\}$, where $A=\{a, b\}, B=\{a, b, c\}, C=\{c\}, D=\{c, d, e\}, E=\{d, e\}, F=\{a, b, d, e\}$. Then the Cayley table for binary operation '*' defined by $\left(A_{2}\right)$ is given as

Table (3)

$*$	1	A	B	C	D	E	F	0
1	1	A	B	C	D	E	F	0
A	1	1	1	D	D	D	1	D
B	1	F	1	D	D	E	F	E
C	1	F	1	1	1	F	F	F
D	1	A	B	B	1	F	F	A
E	1	B	B	B	1	1	1	B
F	1	B	B	C	D	D	1	C
0	1	1	1	1	1	1	1	1

where $0 \equiv \Phi$ and $1 \equiv X$. Here $(T ; *, 1)$ is a BE-Algebra with zero element 0 . Also T is a topological space in which each element is clopen set.

Example (2.6) : Let $X=\{a, b, c\}$ and let $T=P(X)$. Let $0 \equiv \Phi, A=\{a\}, B=\{b\}, C=\{c\}$, $D=\{b, c\}, E=\{a, c\}, F=\{a, b\}, 1 \equiv X$. Then binary operation '*' defined by (A) is given by the Cayley table

Table (4)

$*$	1	A	B	C	D	E	F	0
1	1	A	B	C	D	E	F	0
A	1	1	D	E	D	1	1	D
B	1	E	1	E	1	E	1	E
C	1	F	F	1	1	1	F	F
D	1	A	F	E	1	E	F	A
E	1	F	B	D	D	1	F	B
F	1	E	D	C	D	E	1	C
0	1	1	1	1	1	1	1	1

Then $(T ; *, 1)$ is a BE-Algebra with zero element 0.
Also essences of X are $\{1, D\},\{1, E\},\{1, F\}$ and $\{1, A, E, F\}$.
Theorem (2.7) : The BE-Algebra ($T ;{ }^{*}, X$) considered in theorem (2.1) is
(i) commutative
(ii) self-distributive
(iii) transitive.

Proof: (i) For $A, B \in T$ we have

$$
\begin{aligned}
\left(A^{*} B\right) * B=\left(A^{c} \cup B\right) * B & =\left(A \cap B^{c}\right) \cup B \\
& =(A \cup B) \cap\left(B^{c} \cup B\right) \\
& =(A \cup B) \cap X=(A \cup B)
\end{aligned}
$$

Similarly, $(B * A) * A=B \cup A$.

Since, $A \cup B=B \cup A$, we have $(A * B) * B=(B * A) * A$.
Hence, $(T ; *, X)$ is commutative.
(ii) For $A, B, C \in T$, we have

$$
\begin{aligned}
A *(B * C) & =A *\left(B^{c} \cup C\right) \\
& =\mathrm{A}^{\mathrm{c}} \cup\left(\mathrm{~B}^{\mathrm{c}} \cup \mathrm{C}\right) \\
& =\left(\mathrm{A}^{\mathrm{c}} \cup \mathrm{~B}^{\mathrm{c}}\right) \cup \mathrm{C} \\
& =(\mathrm{A} \cap \mathrm{~B})^{\mathrm{c}} \cup \mathrm{C}
\end{aligned}
$$

Also, $\left(A^{*} B\right) *(A * C)=\left(A^{c} \cup B\right) *\left(A^{c} \cup C\right)$

$$
=\left(A^{c} \cup B\right)^{c} \cup\left(A^{c} \cup C\right)
$$

$$
=\left(A \cap B^{c}\right) \cup\left(A^{c} \cup C\right)
$$

$$
=\left(A \cup\left(A^{c} \cup C\right)\right) \cap\left(B^{c} \cup\left(A^{c} \cup C\right)\right)
$$

$$
=\left(\left(A \cup A^{c}\right) \cup C\right) \cap\left(\left(B^{c} \cup A^{c}\right) \cup C\right)
$$

$$
=(X \cup C) \cap\left(\left(B^{c} \cup A^{c}\right) \cup C\right)
$$

$$
=X \cap\left(\left(A^{c} \cup B^{c}\right) \cup C\right)
$$

$$
=\left(\left(A^{c} \cup B^{c}\right) \cup C\right)
$$

$$
=(A \cap B)^{c} \cup C
$$

So, $\left(T ;{ }^{*}, X\right)$ is self-distributive.
(iii) For $A, B, C \in T$, we have,

$$
\begin{aligned}
(B * C) *((A * B) & *(A * C)) \\
& =(B * C) *(A *(B * C)) \\
& =\left(B^{c} \cup C\right) *\left(\left(A^{c} \cup\left(B^{c} \cup C\right)\right)\right. \\
& =\left(B^{c} \cup C\right) *\left(\left(A^{c} \cup B^{c}\right) \cup C\right) \\
& =\left(B \cap C^{c}\right) \cup\left(\left(A^{c} \cup B^{c}\right) \cup C\right) \\
& =\left\{B \cup\left(\left(A^{c} \cup B^{c}\right) \cup C\right)\right\} \cap\left\{C^{c} \cup\left(\left(A^{c} \cup B^{c}\right) \cup C\right)\right\}=X \cap X=X
\end{aligned}
$$

So, $\left(T ;{ }^{*}, X\right)$ is Transitive.
Hence the result.

References

Walendziak, A., On Commutative BE-algebras, Sci. Math. Japon, pp 585-588 online (e-2008).
2. Kim, K.H. and Kim, Y. H., On BE algebras, Sci. Math. Jpn., 66, No. 1, pp. 113-116 (2007).
3. Kim, K.H., A note on BE-algebras, Sci. Math. Japon, 72, No. 2, pp. 127-132 (2010).
4. Ahn, S.S. and So, K.S., On generalized upper sets in BE-algebras, Bull. Korean. Math. Soc., No. 2, pp. 281-287 (2009).

