BE-ALGEBRAS WITH ZERO ELEMENT

RASHMI RANI

College of Engineering and Computing, Al Ghurair University, Academic City, Dubai, UAE

RECEIVED : 7 October, 2017

The concept of BE-Algebra has been introduced by H.S. Kim and Y.H. Kim in 2006. Since then different other concepts have been developed by several authors. In general, a BE-Algebra may not contain a zero element. But a BE algebra with zero element has some different significance. Here we study such BE-Algebras.

KEYWORDS : BE-Algebra, commutative BE-Algebra, Clopen set.

INTRODUCTION

Definition (1.1): Let (X; *, 1) be a system of type (2, 0) consisting of a non-empty set X, a binary operation * and a fixed element 1. The system (X; *, 1) is called BE-Algebra if the following conditions are satisfied:

```
(BE 1) x * x = 1
(BE 2) x * 1 = 1
(BE 3) 1 * x = x
(BE 4) x * (y * z) = y * (x * z)
```

for all $x, y, z \in X$.

Example (1.2) : Let $X = \{0, 1\}$ and let the binary operation '*' be defined as the Cayley table

Table (1)						
*	0	1				
0	1	1				
1	0	1				

Then (X; *, 1) is a BE-Algebra.

Note (1.3) : Here 1 can be replaced by any *a*.

Example (1.4): Let $Y = X^3 = \{(x_1, x_2, x_3) : x_i = 0 \text{ or } 1\}$ Let $0 \equiv (0 \ 0 \ 0),$ $1 \equiv (0, 0, 1)$ $2 \equiv (0, 1, 0)$ $3 \equiv (0, 1, 1)$ $4 \equiv (1, 0, 0)$ $5 \equiv (1, 0, 1)$ $6 \equiv (1, 1, 0)$ $7 \equiv (1, 1, 1)$

We extend binary operation '.' in Y from table (1). Then Cayley table for $Y = \{0, 1, 2, 3, 4, 5, 6, 7\}$ is given by

224/M017

Table (2)										
	0	1	2	3	4	5	6	7		
0	7	7	7	7	7	7	7	7		
1	6	7	6	7	6	7	6	7		
2	5	5	7	7	5	5	7	7		
3	4	5	6	7	4	5	6	7		
4	3	3	3	3	7	7	7	7		
5	2	3	2	3	7	7	6	7		
6	1	1	3	3	5	5	7	7		
7	0	1	2	3	4	5	6	7		

Table (2)

Definition (1.5) : Let (X; *, 1) be a BE-Algebra. If X contains an element $0 \in X$ such that

0 * x = 1 for all $x \in X$, then X is called a BE-Algebra with zero element 0.

Definition (1.6) : In a BE-algebra (X, *, 1), a binary operation "+" is defined as

$$x + y = (x * y) * y$$

A BE-Algebra (X, *, 1) is said to be commutative iff x + y = y + x for all $x, y \in X$

Definition(1.7): Let (X; *, 1) be a BE-Algebra with zero element 0 such that 0 commutes with each $x \in X$, *i.e.*, (0 * x) * x = (x * 0) * 0, then the complement of x, denoted as x^{c} , is defined as $x^{c} = x * 0$. Example 1 and example 2 satisfies conditions of above definitions.

Lemma (1.8) : We have $(x^c)^c = x$ for every $x \in X$.

Proof : Let $x^c = y$, then

 $y^{c} = y * 0 = (x * 0) * 0 = (0 * x) * x = 1 * x = x$

Hence the result.

Definition (1.9) : A BE-Algebra (X, *, 1) is said to be

Self-distributive, if for any $x, y, z \in X$ (a)

$$x * (y * z) = (x * y) * (x * z)$$

(b) Transitive, if for any x, y, $z \in X$

 $(y * z) \le (x * y) * (x * z), i.e., (y * z) * ((x * y) * (x * z)) = 1$

Definition (1.10): A non-empty subset A of a BE-algebra X is called an essence of X if X * A = A.

MAIN RESULTS

Theorem (2.1) : A non-empty collection T of subsets of a given set X is a BE-Algebra with zero element $0 = \Phi$ and unit element X in which 0 commutes with every $A \in T$ iff T is closed with respect to complement and union.

Proof: Let T be a BE-Algebra with binary operation '*', zero element $0 \equiv \Phi$ and unit element $1 \equiv X$.

If $T = \{\Phi, X\}$ then the condition is satisfied as $\Phi^c = X, X^c = \Phi$ and $\Phi \cup X = X \in T$.

Acta Ciencia Indica, Vol. XLIII M, No. 3 (2017)

Let $\Phi \neq A \neq X$ be an element of *T*. From the given condition Φ commutes with *A*, so $A^c = A * \Phi \in T$. So *T* is closed with respect to complement.

Since T is a BE-Algebra, A * A = X => either $A * A = A^c \cup A$ or $A * A = A \cup A^c$. This means that for $A, B \in T$, The binary operation '*' is defined either as

$$A * B = A^c \cup B$$
 or $A * B = A \cup B^c$,

But the condition A * X = X is satisfied only for $A * B = A^c \cup B$(A₁)

Also, in this case $X * A = X^c \cup A = A$ is satisfied.

So our binary operation * is given as $A * B = A^c \cup B$.

Also condition (BE 4) is satisfied for binary operation '*' given by (A_1) .

Let $A, B \in T$, then $A^c, B \in T$ which gives, $A^c * B = A \cup B \in T$. This proves that T is closed with respect to union.

Conversely, suppose that T is closed with respect to complement and union.

For A, $B \in T$, we define

$$A * B = A^c \cup B \qquad \dots (A_2)$$

Then '*' is a binary operation in T.

Also, for $A \in T$, we have

(BE 1) $A * A = A^{c} \cup A = X \equiv 1;$ (BE 2) $A * X = A^{c} \cup X = X \equiv 1;$ (BE 3) $X * A = \Phi \cup A = A;$ (BE 4) Let $A, B, C \in T$, then $A * (B * C) = A * (B^{c} \cup C)$ $= A^{c} \cup (B^{c} \cup C)$ $= (A^{c} \cup B^{c}) \cup C$

$$= (B^c \cup A^c) \cup C$$
$$= B^c \cup (A^c \cup C)$$
$$= B^c \cup (A * C)$$
$$= B * (A * C)$$

Since $\Phi * A = X \cup A = X$, Φ is a zero element of X.

This proves that $(T; *, 1 \equiv X)$ is a BE-Algebra with zero element $\Phi \equiv 0 \in T$.

Also $(\Phi * A) * A = 1 * A = A$ and $(A * \Phi) * \Phi = A^c * \Phi = A$

So Φ commutes with each $A \in T$.

Corollary (2.2) : *T* is closed with respect to intersection.

Corollary (2.3) : If T is finite then T defines a Topology on X. The elements of T are clopen sets.

Corollary (2.4) : If X is a topological space and T be the collection of clopoen subsets of X, then T is a BE-Algebra with respect to binary operation defined by (A_2) .

Example (2.5) : Let $X = \{a, b, c, d, e\}$ and let $T = \{\Phi, A, B, C, D, E, F, X\}$, where $A = \{a, b\}, B = \{a, b, c\}, C = \{c\}, D = \{c, d, e\}, E = \{d, e\}, F = \{a, b, d, e\}$. Then the Cayley table for binary operation '*' defined by (A_2) is given as

Table (5)									
*	1	A	В	С	D	Ε	F	0	
1	1	A	В	С	D	Ε	F	0	
A	1	1	1	D	D	D	1	D	
В	1	F	1	D	D	Ε	F	Ε	
С	1	F	1	1	1	F	F	F	
D	1	A	В	В	1	F	F	A	
Ε	1	В	В	В	1	1	1	В	
F	1	В	В	С	D	D	1	С	
0	1	1	1	1	1	1	1	1	

Table (3)

where $0 \equiv \Phi$ and $1 \equiv X$. Here (*T*; *, 1) is a BE-Algebra with zero element 0. Also *T* is a topological space in which each element is clopen set.

Example (2.6) : Let $X = \{a, b, c\}$ and let T = P(X). Let $0 \equiv \Phi, A = \{a\}, B = \{b\}, C = \{c\}, D = \{b, c\}, E = \{a, c\}, F = \{a, b\}, 1 \equiv X$. Then binary operation '*' defined by (A) is given by the Cayley table

Table (4)									
*	1	A	В	С	D	Ε	F	0	
1	1	A	В	С	D	Ε	F	0	
A	1	1	D	Ε	D	1	1	D	
В	1	Ε	1	Ε	1	Ε	1	Ε	
С	1	F	F	1	1	1	F	F	
D	1	A	F	Ε	1	Ε	F	A	
Ε	1	F	В	D	D	1	F	В	
F	1	Ε	D	С	D	Ε	1	С	
0	1	1	1	1	1	1	1	1	

Then (T; *, 1) is a BE-Algebra with zero element 0.

Also essences of *X* are $\{1, D\}$, $\{1, E\}$, $\{1, F\}$ and $\{1, A, E, F\}$.

Theorem (2.7) : The BE-Algebra (T; *, X) considered in theorem (2.1) is

(i) commutative

(ii) self-distributive

(iii) transitive.

Proof : (i) For $A, B \in T$ we have

 $(A * B) * B = (A^c \cup B) * B = (A \cap B^c) \cup B$ $= (A \cup B) \cap (B^c \cup B)$ $= (A \cup B) \cap X = (A \cup B)$

Similarly, $(B * A) * A = B \cup A$.

Since, $A \cup B = B \cup A$, we have (A * B) * B = (B * A) * A. Hence, (T; *, X) is commutative. (ii) For $A, B, C \in T$, we have $A^*(B^*C) = A^*(B^c \cup C)$ $= A^{c} \cup (B^{c} \cup C)$ $= (A^{c} \cup B^{c}) \cup C$ $= (A \cap B)^{c} \cup C$ Also, $(A * B) * (A * C) = (A^{c} \cup B) * (A^{c} \cup C)$ $= (A^c \cup B)^c \cup (A^c \cup C)$ $= (A \cap B^c) \cup (A^c \cup C)$ $= (A \cup (A^c \cup C)) \cap (B^c \cup (A^c \cup C))$ $= ((A \cup A^c) \cup C) \cap ((B^c \cup A^c) \cup C)$ $= (X \cup C) \cap ((B^c \cup A^c) \cup C)$ $= X \cap ((A^c \cup B^c) \cup C)$ $= ((A^c \cup B^c) \cup C)$ $= (A \cap B)^c \cup C$ So, (T; *, X) is self-distributive. (iii) For $A, B, C \in T$, we have, (B * C) * ((A * B) * (A * C))= (B * C) * (A * (B * C)) $= (B^c \cup C) * ((A^c \cup (B^c \cup C)))$ $= (B^c \cup C) * ((A^c \cup B^c) \cup C)$ $= (B \cap C^{c}) \cup ((A^{c} \cup B^{c}) \cup C)$

$$= \{B \cup ((A^{c} \cup B^{c}) \cup C)\} \cap \{C^{c} \cup ((A^{c} \cup B^{c}) \cup C)\} = X \cap X = X$$

So, (T; *, X) is Transitive.

Hence the result.

References

- 1. Walendziak, A., On Commutative BE-algebras, Sci. Math. Japon, pp 585-588 online (e-2008).
- 2. Kim, K.H. and Kim, Y. H., On BE algebras, Sci. Math. Jpn., 66, No. 1, pp. 113-116 (2007).
- 3. Kim, K.H., A note on BE-algebras, Sci. Math. Japon, 72, No. 2, pp. 127-132 (2010).
- Ahn, S.S. and So, K.S., On generalized upper sets in BE-algebras, *Bull. Korean. Math. Soc.*, No. 2, pp. 281-287 (2009).

Acta Ciencia Indica, Vol. XLIII M, No. 3 (2017)