ON g^* $b^{\#}$ -CLOSED SETS

R. USHA PARAMESWARI, P. AZHAGUESWARI

Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur -628215, India

RECEIVED : 23 August, 2017

In this paper the authors introduce a new class of sets called generalized $g^* b^{\#}$ -closed sets in topological spaces (briefly $g^* b^{\#}$ -closed set). Also we study some of its basic properties and investigate the relations between the associated topology.

KEYWORDS : $gb^{\#}$ -closed sets, $g^{*}b^{\#}$ -closed sets.

INTRODUCTION

Levine [7] introduced the notion of generalized closed (briefly g-closed) sets in topological space (X, τ) in 1970. J. Dontchev [4], H. Maki, R. Devi and K.Balachandran [9], N. Nagaveni [14], M.K.R.S. Veerakumar [21], A.A. Noorani *et. al* [16] introduced and investigated the concept of generalized semi pre closed sets, generalized α -closed sets, regular weakly generalized closed sets, g^* -closed sets and generalized *b*-closed sets respectively. R. Usha Parameswari *et. al* [20] introduced a class of generalized open sets in a topological space called $b^{\#}$ -closed sets (briefly $gb^{\#}$ -closed) in topological spaces. In this paper we introduce a new class of sets called $g^* b^{\#}$ -closed set which is between the class of $b^{\#}$ -closed sets and the class of $gb^{\#}$ -closed sets.

Preliminaries

hroughout this paper, (X, τ) , (Y, τ) and (Z, τ) (or simply, X, Y and Z) denote the non empty topological spaces on which no separation axioms are assumed unless explicitly stated. If A is any subset of X, then Cl (A) and Int (A) denote the closure and the interior of A respectively. The following known definitions and results are used in this paper.

Definition 2.1: A subset A of a topological space (X, τ) is called

(i) Semi-open [7] if $A \subseteq cl$ (int (A)) and semi-closed if int (cl (A)) $\subseteq A$,

(ii) **Pre-open [13]** if $A \subseteq$ int (cl (A)) and **pre-closed** if cl (int (A)) $\subseteq A$,

(iii) α -open [15] if $A \subseteq$ int (cl (int (A))) and α -closed if cl (int (cl (A))) $\subseteq A$,

(iv) Semi pre open or β -open [1] if $A \subseteq cl$ (int (cl (A))) and semi pre closed or β -closed if int (cl (int (A))) $\subseteq A$,

(v) **Regular open [19]** if int (cl(A)) = A and **regular closed** if cl(int(A)) = A.

(vi) *b***-open**[2] if $A \subseteq cl$ (int (A)) \bigcup int (cl (A)) and *b***closed** if cl (int (A)) \cap int (cl (A)) $\subseteq A$,

(vii) $b^{\#}$ -open [22] if A = cl (int (A)) \bigcup int (cl (A)) and $b^{\#}$ -closed if A = cl (int (A)) \cap int (cl (A)).

(viii) *p*-set [20] if cl (int (A)) \subseteq int (cl (A)).

(ix) q-set [21] if int (cl (A)) \subseteq cl (int (A)).

The semi closure (respectively, pre closure, α closure, semi pre closure, *b* closure and $b^{\#}$ -closure) of a subset *A* of a space (*X*, τ) is the intersection of all semi-closed sets (respectively, pre-closed, α -closed, semi pre closed, bclosed and $b^{\#}$ -closed) sets containing *A* and is denoted by scl (*A*) (respectively, pcl (*A*), α cl (*A*), spcl (*A*), bcl (*A*) and $b^{\#}$ -closed).

Definition 2.2 [8]: A subset A of a topological space (X, τ) is called *g***-closed** if cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

Definition 2.3 [17]: A subset A of a topological space (X, τ) is called *rg***-closed** if cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .

Definition 2.4 [3]: A subset A of a topological space (X, τ) is called *sg*-closed if scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in (X, τ) .

Definition 2.5 [11]: A subset A of a topological space (X, τ) is called *gp***-closed** if pcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

Definition 2.6 [5]: A subset A of a topological space (X, τ) is called *gpr*-closed if pcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .

Definition 2.7 [24]: A subset A of a topological space (X, τ) is called g^*p -closed if pcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .

Definition 2.8 [9]: A subset A of a topological space (X, τ) is called **ga-closed** if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) .

Definition 2.9 [10]: A subset A of a topological space (X, τ) is called αg -closed if αcl (A) $\subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

Definition 2.10 [6]: A subset A of a topological space (X, τ) is called *gspr*-closed if spcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is pre-open in (X, τ) .

Definition 2.11 [4]: A subset A of a topological space (X, τ) is called *gsp*-closed if spcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .

Definition 2.12 [25]: A subset A of a topological space (X,τ) is called **pre semi closed** if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X,τ) .

Definition 2.13 [16]: A subset A of a topological space (X, τ) is called *gb***-closed** if bcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

Definition 2.14 [12]: A subset A of a topological space (X, τ) is called *rgb*-closed if bcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .

Definition 2.15 [27]: A subset A of a topological space (X, τ) is called **gab-closed** if bcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) .

Definition 2.16 [26]: A subset A of a topological space (X, τ) is called g^*b -closed if bcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .

Definition 2.17 [23]: A subset A of a topological space (X, τ) is called $gb^{\#}$ -closed if $b^{\#}cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

118

Definition 2.18 [14]: A subset A of a topological space (X, τ) is called wg-closed if cl int $(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

Definition 2.19 [18]: A subset A of a topological space (X, τ) is called mildly *g*-closed if cl int $(A) \subseteq U$ whenever $A \subseteq U$ and U is *g*-open in (X, τ) .

Definition 2.20 [14]: A subset A of a topological space (X, τ) is called *rwg*-closed if cl int $(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .

Lemma 2.21: Let *A* be a sub set of a topological space *X*. Then cl (int (*A*)) \cap int (cl (*A*)) \subseteq bcl (*A*) $\subseteq b^{\#}$ – cl (*A*).

Theorem 2.22:

(i) If A is a p-set then cl (int (A)) $\subseteq b^{\#}$ – cl (A).

(ii) If A is a q-set then int $(cl(A)) \subseteq b^{\#} - cl(A)$.

g*b*-closed sets

In this section we introduce $g^* b^{\#}$ -closed set and discuss their properties.

Definition 3.1: A subset A of a space X is called a $g^* b^{\#}$ -closed set if $b^{\#}$ -cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.

Theorem 3.2:

(i) Every $b^{\#}$ -closed set is $g^* b^{\#}$ -closed set.

- (ii) Every $g^* b^{\#}$ -closed set is $g b^{\#}$ -closed set.
- (iii) Every $g^* b^{\#}$ -closed set is g belosed set.
- (iv) Every $g^*b^{\#}$ -closed set is g^* belosed set.
- (v) Every $g^*b^{\#}$ -closed set is *rgb*-closed set.
- (vi) Every $g^*b^{\#}$ -closed set is *gsp*-closed set.
- (vii) Every $g^*b^{\#}$ -closed set is gspr-closed set.

(viii) Every $g^*b^{\#}$ -closed set is pre semi closed set.

Proof:

- (i) Let A be a $b^{\#}$ -closed set in X such that $A \subseteq U$ where U is g-open in X. Since A is $b^{\#}$ -closed, $b^{\#}$ -cl (A) = A. Therefore $b^{\#}$ -cl (A) $\subseteq U$. Hence A is a $g^* b^{\#}$ -closed set in X.
- (ii) Let A be a $g^* b^{\#}$ -closed set in X such that $A \subseteq U$ where U is open in X. Since every open set is g-open, $b^{\#}$ -cl $(A) \subseteq U$. Hence A is a $g b^{\#}$ -closed set in X.
- (iii) Let A be a $g^* b^{\#}$ -closed set in X such that $A \subseteq U$ where U is open in X. Since every open set is g-open and since bcl $(A) \subseteq b^{\#}$ -cl (A), bcl $(A) \subseteq U$. Hence A is a g b closed set in X.
- (iv) Let A be a $g^*b^{\#}$ -closed set in X such that $A \subseteq U$ where U is g-open in X. Since A is $g^*b^{\#}$ -closed, $b^{\#}$ -cl $(A) \subseteq U$. Since bcl $(A) \subseteq b^{\#}$ -cl (A), bcl $(A) \subseteq U$. Hence A is a g^*b closed set in X.
- (v) Let A be a $g^*b^{\#}$ -closed set in X such that $A \subseteq U$ where U is regular open in X. Since every regular open is g-open and since bcl $(A) \subseteq b^{\#}$ -cl (A), bcl $(A) \subseteq U$. Hence A is a rgb closed set in X.

- (vi) Let A be a $g^*b^{\#}$ -closed set in X such that $A \subseteq U$ where U is open in X. Since every open set is g-open and since spcl $(A) \subseteq b^{\#}$ -cl (A), spcl $(A) \subseteq U$. Hence A is a gsp-closed set in X.
- (vii) Let A be a $g^*b^{\#}$ -closed set in X such that $A \subseteq U$ where U is regular open in X. Since every regular open set is g-open and since spcl $(A) \subseteq b^{\#}$ -cl (A), spcl $(A) \subseteq U$. Hence A is a gspr-closed set in X.
- (viii) Let A be a $g^*b^{\#}$ -closed set in X such that $A \subseteq U$ where U is g-open in X. Since A is $g^*b^{\#}$ -closed and since spcl $(A) \subseteq b^{\#}$ -cl (A), spcl $(A) \subseteq U$. Hence A is a pre semi closed set in X.

The converse of the above Theorem need not be true as shown from the following Example.

Example 3.3: Let $X = \{a, b, c, d\}$ with the topology $\tau_1 = \{\Phi, X, \{a\}, \{b\}, \{a, b\}\}$. Let $A_1 = \{a, c, d\}$. Here A_1 is a $g^* b^{\#}$ -closed set but not a $b^{\#}$ -closed set.

Consider the topology $\tau_2 = \{\Phi, X, \{b\}\}$. Let $A_2 = \{b, c, d\}$. Here A_2 is a $gb^{\#}$ -closed set but not a $g^*b^{\#}$ -closed set.

Consider the topology $\tau_3 = \{\Phi, X, \{c\}\}$. Let $A_3 = \{a, c, b\}$. Here A_3 is gbclosed and gspclosed but not a $g^*b^{\#}$ -closed set.

Consider the topology $\tau_4 = \{\Phi, X, \{a\}\}$. Let $A_4 = \{b, c\}$. Here A_4 is g^*b closed but not a $g^*b^{\#}$ -closed set. Let $A_5 = \{a, c, d\}$. Here A_5 is rgb closed but not a $g^*b^{\#}$ -closed set. Let $A_6 = \{a, c\}$. Here A_6 is a gspr-closed set but not a $g^*b^{\#}$ -closed set.

Consider the topology $\tau_5 = \{\Phi, X, \{a\}, \{b\}, \{a, b\}\}$. Let $A_7 = \{b, c\}$. Here A_7 is pre semi closed set but not a $g^* b^{\#}$ -closed set.

The following Example gives the independency of $g^* b^{\#}$ -closed set with other closed sets in topological spaces.

Example 3.4: Let $X = \{a, b, c, d\}$ with the topology $\tau_1 = \{\Phi, X, \{a\}, \{b\}, \{a, b\}\}$. Here $\{c\}$ is pre closed, *b*-closed, *g*-closed, *rg*-closed, *ac*-closed, *ag*-closed, mildly *g*-closed, *rwg* closed and *wg*-closed but not a $g^* b^{\#}$ -closed set. Also $\{a\}$ is $g^* b^{\#}$ -closed but not a pre closed set, *gr*-closed set, *ag*-closed set, *wg* closed set, mildly *g*-closed set, *rwg* closed set and *ac*-closed set. Also $\{b\}$ is a $g^* b^{\#}$ -closed set but not a *rg*-closed set. Here $\{d\}$ is *gp*-closed and *ga*-closed but not a $g^* b^{\#}$ -closed set.

Consider the topology $\tau_2 = \{\Phi, X, \{a\}\}$. Here $\{b, d\}$ is a semi closed set but not a $g^* b^{\#}$ -closed set. Also $\{b, c\}$ is $g\alpha b$ -closed but not a $g^* b^{\#}$ -closed set.

Consider $\tau_3 = \{\Phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}$. Here $\{a, b, d\}$ is a $g^* b^{\#}$ -closed set but not a semi closed set. Also $\{c\}$ is a *gpr* closed set, g^*p -closed set but not a $g^* b^{\#}$ -closed set. Again $\{a\}$ is a $g^* b^{\#}$ -closed set but not a *gpr*-closed set, *gab* closed set and a g^*p -closed set. Also $\{b, c\}$ is $g^*b^{\#}$ -closed but not a $g\alpha$ -closed set. Again $\{b, d\}$ is a $g^* b^{\#}$ -closed set but not a b closed set.

Consider $\tau_4 = \{\Phi, X, \{a\}, \{a, b\}\}$. Here $\{b\}$ is β -closed and sg-closed but not a $g^*b^{\#}$ -closed set. Let $B = \{a, c, d\}$. Here B is a $g^*b^{\#}$ -closed set but not a sg-closed set and a β -closed set.

The following example shows that the intersection of two $g^*b^{\#}$ -closed sets and the union of two $g^*b^{\#}$ -closed sets need not be a $g^*b^{\#}$ -closed set.

Example 3.5: Let $X = \{a, b, c, d\}$ with the topological space $\tau = \{\Phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}$. Here $A = \{b, c\}$ and $B = \{b, d\}$ are $g^*b^{\#}$ -closed sets. But $A \cap B = \{b\}$ is not a $g^*b^{\#}$ -closed set.

Consider the topological space $\tau = \{\Phi, X, \{a\}, \{b\}, \{a, b\}\}$. Here $A = \{a\}$ and $B = \{b\}$ are $g^*b^{\#}$ -closed sets. But $A \cup B = \{a, b\}$ is not a $g^*b^{\#}$ -closed set.

Theorem 3.6: Suppose *A* is a *p*-set and a $g^*b^{\#}$ -closed set. Then

- (i) A is gp-closed.
- (ii) A is gpr-closed.
- (iii) A is wg-closed.
- (iv) A is mildly g-closed.
- (v) *A* is *rwg*-closed.
- (vi) A is g^*p -closed.

Proof:

- (i) Let A be a p-set and a g*b[#]-closed set. Then Theorem 2.22, cl (int (A)) ⊆ b[#]- cl (A). Let U be any open set such that A ⊆ U. Since every open set is g-open, b[#]- cl (A) ⊆ U. This implies cl (int (A)) ⊆ U. That is pcl (A) = A ∪ cl (int (A)) ⊆ A ∪ U = U. Hence A is gp-closed.
- (ii) Let U be any regular open set such that $A \subseteq U$. Sine every regular open set is g-open and since A is $g^*b^{\#}$ -closed, $b^{\#}$ -cl $(A) \subseteq U$. This implies cl (int $(A)) \subseteq U$. That is pcl $(A) = A \cup$ cl (int $(A)) \subseteq U$. Hence A is gpr-closed.
- (iii) Let U be any open set such that $A \subseteq U$. Sine every open set is g-open and since A is $g^*b^{\#}$ -closed, $b^{\#}$ -cl $(A) \subseteq U$. This implies cl (int $(A)) \subseteq U$. Hence A is wg-closed.
- (iv) Let U be any g-open set such that $A \subseteq U$. Since A is $g^*b^{\#}$ -closed, $b^{\#}$ cl $(A) \subseteq U$. This implies cl (int $(A)) \subseteq U$. Hence A is mildly g-closed.
- (v) Let U be any regular open set such that $A \subseteq U$. Sine every regular open set is g-open and since A is $g^*b^{\#}$ -closed, $b^{\#}$ -cl $(A) \subseteq U$. This implies cl (int $(A)) \subseteq U$. Hence A is rwg-closed.

Let U be a g-open set such that $A \subseteq U$. Sine A is $g^*b^{\#}$ - closed, $b^{\#}$ - cl $(A) \subseteq U$. This implies cl (int $(A)) \subseteq U$. That is pcl $(A) = A \cup$ cl (int $(A)) \subseteq U$. Hence A is g^*p -closed.

Theorem 3.7: Suppose *A* is a *p*-set, *g*-open and $g^*b^{\#}$ -closed then *A* is pre-closed, β -closed and *b* closed.

Proof: Let A be a *p*-set, g-open and $g^*b^{\#}$ -closed. Then cl (int (A)) $\subseteq b^{\#}$ -cl (A). Since $A \subseteq A$ and A is $g^*b^{\#}$ -closed, $b^{\#}$ -cl (A) $\subseteq A$. This implies cl (int (A)) $\subseteq A$. Hence A is pre closed. Since every pre closed set is β -closed, A is β -closed and every pre closed set is bclosed, A is bclosed.

Theorem 3.8 : Suppose A is a q-set, g-open and $g^*b^{\#}$ -closed then A is semi-closed, β -closed and bclosed.

Proof: Let A be a q-set, g-open and $g^*b^{\#}$ -closed. Then int (cl (A)) $\subseteq b^{\#}$ -cl (A). Since $A \subseteq A$ and A is $g^*b^{\#}$ -closed, $b^{\#}$ -cl (A) $\subseteq A$. This implies int (cl (A)) $\subseteq A$. Hence A is semi closed. Since every semi closed set is β -closed, A is β -closed and every semi closed set is b closed.

Theorem 3.9 : Suppose A is a p-set, open and $g^*b^{\#}$ -closed then A is closed.

Proof: Let A be a p-set, open and $g^*b^{\#}$ -closed. Then cl (int (A)) $\subseteq b^{\#}$ -cl (A). Since A is open cl (A) $\subseteq b^{\#}$ -cl (A). Since $A \subseteq A$ and A is $g^*b^{\#}$ -closed, $b^{\#}$ -cl (A) $\subseteq A$. This implies cl (A) $\subseteq A$. Hence A is closed.

Theorem 3.10: Let A be a $g^*b^{\#}$ -closed subset of a topological space X. Then $b^{\#}$ -cl (A)\A does not contain any non empty g-closed set.

Proof: Let *F* be a *g*-closed subset of $b^{\#}$ - cl (*A*)*A*. Then $A \subseteq X \setminus F$. Since $X \setminus F$ is *g*-open and since *A* is $g^* b^{\#}$ -closed, we have $b^{\#}$ -cl (*A*) $\subseteq X \setminus F$ that implies $F \subseteq b^{\#}$ -cl (*A*) $\cap (X \setminus b^{\#}$ -cl (*A*))= Φ .

Corollary 3.11: Let A be a $g^*b^{\#}$ -closed set. Then $b^{\#}$ -cl (A) = A if and only if $b^{\#}$ -cl $(A) \setminus A$ is g-closed.

Proof : If $b^{\#}$ -cl (A) = A then $b^{\#}$ -cl $(A) \setminus A = \Phi$ which is g-closed. Conversely let $b^{\#}$ -cl $(A) \setminus A$ be g-closed. Then by Theorem 3.10, $b^{\#}$ -cl $(A) \setminus A$ does not contain any non empty g-closed set. Since $b^{\#}$ -cl $(A) \setminus A$ is g-closed, $b^{\#}$ - cl $(A) \setminus A = \Phi$. Since $A \subseteq b^{\#}$ -cl (A) it follows that $b^{\#}$ -cl (A) = A.

The converse of the above Theorem need not be true as shown from the following example.

Example 3.12: Let $X = \{a, b, c, d\}$ with the topological space $\tau = \{\Phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then $b^{\#}$ -closed sets are $\Phi, X, \{a\}, \{b\}$ and $g^*b^{\#}$ -closed sets are $\Phi, X, \{a\}, \{b\}, \{c, d\}, \{a, c, d\}$ and $\{b, c, d\}$. Also g-closed sets are $\Phi, X, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}$ and $\{b, c, d\}$. Consider $A = \{a, b\}$. It is clear that $b^{\#}$ - closed sets are $0, X, \{c\}, d\}$ contains no non empty g-closed subset in X. But A is not $g^*b^{\#}$ - closed.

Theorem 3.13: If *A* is $g^*b^{\#}$ -closed and $A \subseteq B \subseteq b^{\#}$ -cl (*A*) then

(i) *B* is $g^*b^{\#}$ -closed.

(ii) $b^{\#}$ -cl (B)\B contains no non empty g-closed set.

Proof: Let A be a $g^*b^{\#}$ -closed set in X. such that $A \subseteq B \subseteq b^{\#}$ -cl (A). Let U be any g-open set in X such that $B \subseteq U$. Then $A \subseteq U$. Since A is $g^*b^{\#}$ -closed, $b^{\#}$ -cl (A) $\subseteq U$. Also $b^{\#}$ -cl (A) $= b^{\#}$ -cl (B). Therefore $b^{\#}$ -cl (B) $\subseteq U$ that implies B is $g^*b^{\#}$ -closed. Since B is $g^*b^{\#}$ -closed using Theorem 3.10, $b^{\#}$ -cl (B) \subseteq contains no nonempty g-closed set.

Theorem 3.14: If A is both g-open and $g^*b^{\#}$ -closed then $b^{\#}$ -cl (A) = A.

Proof: Since A is g-open and $g^*b^{\#}$ -closed, $b^{\#}$ -cl $(A) \subseteq A$. But always $A \subseteq b^{\#}$ -cl (A). Therefore $b^{\#}$ - cl (A) = A.

Theorem 3.15 : For $x \in X$, the set $X \setminus \{x\}$ is $g^*b^{\#}$ -closed or g-open.

Proof: Suppose $X \{x\}$ is not *g*-open then *X* is the only *g*-open set containing $X \{x\}$. This implies $b^{\#}$ -cl $(X \{x\}) \subseteq X$. Then $X \{x\}$ is $g^* b^{\#}$ -closed.

Theorem 3.16 : In a topological space X every g-open set is $b^{\#}$ -closed then every subset of X is $g^*b^{\#}$ - closed.

Proof: Suppose every g-open set is $b^{\#}$ -closed. Let A be a sub set of X such that $A \subseteq U$ whenever U is g-open. But $b^{\#}$ -cl $(A) \subseteq b^{\#}$ -cl (U) = U. Therefore A is $g^*b^{\#}$ -closed.

Theorem 3.17 : Let $A \subseteq Y \subseteq X$ and suppose that A is $g^*b^{\#}$ -closed in X then A is $g^*b^{\#}$ -closed relative to Y.

Proof: Given that $A \subseteq Y \subseteq X$ and A is $g^*b^{\#}$ -closed in X. Let $A \subseteq Y \cap U$ where U is g-open in X. Since A is $g^*b^{\#}$ -closed $A \subseteq U$ implies $b^{\#}$ -cl $(A) \subseteq U$. It follows that $Y \cap b^{\#}$ -cl $(A) \subseteq Y \cap U$. Thus A is $g^*b^{\#}$ -closed relative to Y.

Theorem 3.18 : Suppose that $B \subseteq A \subseteq X$, *B* is $g^*b^{\#}$ -closed relative to *A* and that *A* is both *g*-open and $b^{\#}$ -closed subset of *X* then *B* is $g^*b^{\#}$ -closed set relative to *X*.

Proof : Let $B \subseteq A \subseteq X$ where A is $b^{\#}$ -closed and g-open. Suppose B is $g^*b^{\#}$ -closed relative to A. Let $B \subseteq G$ where G is g-open in X. Then $B \subseteq G \cap A$. Since $G \cap A$ is g-open in A, $A \cap b^{\#}$ -cl $(B) \subseteq G \cap A$. Since A is $b^{\#}$ -closed, $b^{\#}$ -cl $(B) \subseteq b^{\#}$ -cl (A) = A implies $b^{\#}$ -cl $(B) = b^{\#}$ - cl $(B) \cap A \subseteq G \cap A \subseteq G$. This shows that B is $g^*b^{\#}$ -closed relative to X.

Theorem 3.19 : Every open Interval is $g^*b^{\#}$ -closed in R_1 where R_1 is the set of all real numbers equipped with standard topology.

Proof : Let A be an interval in R_1 . If A is empty nothing to prove. If A is an open interval of the form $(-\infty, a)$, (a, ∞) and (a, b), a < b then by Example 5.11 of [20] A is $b^{\#}$ -closed. Therefore by Theorem 3.2, A is $g^*b^{\#}$ -closed.

Theorem 3.20 : In the real line R_1 , every singleton set $g^*b^{\#}$ -closed.

Proof: Let $x \in R_1$. Fix an *g*-open set such that $\{x\} \subseteq G$. Then by Example 5.11 of [20], $b^{\#}$ -cl ($\{x\}$) = the intersection of $b^{\#}$ -closed sets = $\cap (x - \epsilon, x + \epsilon) = \{x\} \subseteq G$. Thus every singleton set $g^*b^{\#}$ -closed.

References

- 1. Andrijevic, D., Semi-pre open sets, Mat. vesnik, 38(1), 24-32 (1986).
- 2. Andrijevic, D., On b-open sets, Mat. Vesnik, 48, 59-64 (1996).
- 3. Bhattacharya, P. and Lahiri, B.K., Semi-generalized closed sets in Topology, *Indian J. Math*, **29(3)**, 375-382 (1987).
- 4. Dontchev, J., On generalizing semi-pre open sets, *Mem. Fac. Sci. Kochi. Univ. Ser. A. Math.*, **16**, 35-48 (1995).
- Gnanambal, Y., On generalized pre regular closed sets in topological spaces, *Indian J. Pure. Appl. Math.*, 28(3), 351-360 (1997).
- 6. Govindappa, Navalagi, Chandrashakarappa, A.S. and Gurushantanavar, S.V., Int. Jour of Mathematics and Computer Applications, **12(2)**, 51-58 (2010).
- Levine, N., Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, 70, 36-41 (1963).
- 8. Levine, N., Generalized closed sets in topology, Rend. Circ. Math Palermo, 19 (2), 89-96 (1970).
- Maki, H.R. Devi and Balachandran, K., Generalized α-closed sets in topology, Bull Fukuoka. Univ. Ed. Part III, 42 (1993).
- Maki, H. R. Devi and Balachandran, K., Associated topologies of Generalized α-closed sets and α-Generalized closed sets, *Mem. Sci. Kochi. Univ. Ser. A. Math.*, 15, 51-63 (1994).
- 11. Maki, H., Umahara, J. and Noiri, T., Every topological space is pre-*T*_{1/2} Space, *Mem. Fac. Sci. Kochi. Univ. Ser. A. Math.*, **17**, 33-42 (1996).
- Mariappa, K. and Sekar, S., On Regular Generalized b-closed sets, Int. Jour. of Math Analysis, 13, 613-624 (2013).
- Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N., On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53, 47-53 (1982).
- 14. Nagaveni, N., Studies on Generalization of Homeomorphisms in topological spaces, *Ph.D Thesis*, Bharathiyar University, Coimbatore (1999).
- 15. Njastad, O., On some classes of nearly open sets, Pacific J. Math., 15, 961-970 (1965).
- Omari, A.A. and Noorani, M.S., On Generalized b-closed sets, *Bull. Malays. Math. Sci. Soc.*, (2), 32(1), 19-30 (2009).
- Palaniappan, N. and Rao, K.C., Regular Generalized closed sets, *Kyungpook Math. J.*, 33, 211-219 (1993).

- Park, J.K. and Park, J.H., Mildly Generalized closed sets, almost normal and mildly normal spaces, Chaos solutions and Fractals, 20, 1103-1111 (2004).
- Stone, M., Applications of the theory of boolean rings to general topology, *Trans. Amer. Math. Soc.*, 41, 374-481 (1937).
- Thangavelu, P. and Rao, K.C., p-sets in topological spaces, Bull. Pure and Appl. Sci., 21 (E)(2), 341-345 (2002).
- 21. Thangavelu, P. and Rao, K.C., q-sets in topological spaces, Prog of Maths., 36 (1 and 2), 159-165 (2002).
- Parameswari, R. Usha, Thangavelu, P., On b[#]-open sets, International Journal of Mathematics Trends and Technology, 5(3), 202-218 (2014).
- Veerakumar, M.K.R.S., Between closed sets and g-closed sets, Mem. Fac. Sci. Koch. Univ. Ser. A., Math, 17(21), 1-19 (2000).
- 24. Veerakumar, M.K.R.S., g*-preclosed sets, Acta Ciencia Indica, XXVIII (M), (1) (2002).
- Veerakumar, M.K.R.S., Pre semi closed sets, *Acta ciencia Indica*, XXVIII (M), (1), 165-181 (2002).
 Vidhya, D., Parimelazhagan, R., g*b-closed sets in topological spaces, *Int. J. Contemp. Math.*
- Sciences, 7(27), 1305-1312 (2012).
 27. Vinayagamoorthi, L. and Nagaveni, N., On generalized αb-closed sets, Proceeding ICMD-Allahabad, Puspha Publication, 1, 1-11 (2010).
- 28. Vithya, N., Thangavelu, P., Generalization of *b*-closed sets, *International Journal of pure and* Applied Mathematics, **106 (6)**, 93-102 (2016).

124