SOME SPECIFIC BCH-ALGEBRAS

RAM KUMAR CHAKRAVARTI

Chowk Road, Bari Bag, Tootwari, Gaya
SHILPA KUMARI
Powerganj, Bageshwari Road, Gaya
AND
R.L. PRASAD

Magadh University, Bodh- Gaya
RECEIVED : 1 August, 2017
Hu and Li [1] introduced the concept of a BCH -algebra in 1983 as a generalization of the concepts BCK/BCIalgebras. Here we discuss method to obtain a BCHalgebra from given two BCH -algebras. Such methods are useful in developing the theory of BCH -algebras.

Introduction

Definition (1.1) : An algebra $\left(X ;{ }^{*}, 0\right)$ of type $(2,0)$ is called a BCH-algebra if the following conditions are satisfied:
(BCH 1) $x * x=0$;
(BCH 2) $x * y=0=y * x \Rightarrow x=y$;
$(\mathrm{BCH} 3)(x * y) * z=(x * z) * y$;
for all $x, y, z \in X$.
The concept of a BCH -algebra is a generalization of the concepts BCI -algebra and BCK-algebra in the following sense.

Definition (1.2) : A BCH-algebra $\left(X ;{ }^{*}, 0\right)$ is a BCI-algebra if it also satisfies condition
$($ BCI 1) $((x * y) *(x * z)) *(z * y)=0$
for all $x, y, z \in X$.
Definition (1.3) : A BCI-algebra $\left(X ;{ }^{*}, 0\right)$ is a BCK-algebra if it satisfies the condition
(BCK 1) $0 * x=0$ for all $x \in X$.
Definition (1.4) : A BCH-algebra $\left(X ;{ }^{*}, 0\right)$ is said to be
(A) non-negative if $0 * x=0$ for all $x \in X$;
(B) non-singular if $0 * x=x$ for all $x \in X$;
(C) proper if it does not satisfy condition (BCI 1).

Some properties of a BCH -algebra are as follows:
Proposition (1.5) : Let $\left(X ;{ }^{*}, 0\right)$ be a BCH-algebra.
Then the following hold :
(BCH 4) $x * 0=x$;
(BCH 5) $x * 0=0$ implies $x=0$;
$(\mathrm{BCH} 6) 0 *(x * y)=(0 * x) *(0 * y)$;
(BCH 7) $\left(x^{*}(x * y)\right) * y=0$;
for all $x, y, \in X$.
Definition (1.5) : A non-empty subset S of a BCH-algebra $\left(X ;{ }^{*}, 0\right)$ is called a subalgebra if $x * y \in S$ whenever $x, y \in S$.

Some specific bch - algebras

Here we discuss some specific BCH -algebras. First of all we prove the following result:
Theorem (2.1): Let $\left(X,{ }_{1}, 0\right)$ and $\left(Y ;{ }_{2}, 0\right)$ be two non-negative BCH -algebras such that $X \cap Y=\{0\}$. Let '*' be a binary operation defined on $X \cup Y$, as follows:

For $a, b \in \mathrm{X} \cup Y$, let

$$
a * b=\left\{\begin{array}{l}
a *_{1} b \text { if } a, b \in X \tag{2.1}\\
a *_{2} b \text { if } a, b \in Y \\
a \text { otherwise }
\end{array}\right.
$$

Then $(X \cup Y ; *, 0)$ is a non-negative BCH-algebra. We denote $(X \cup Y ; *, 0)$ by $X \oplus Y$.
Proof: The conditions (BCH 1) $x * x=0$ and $0 * x=0$ are satisfied from the given definitions.

Let $a * b=0=b^{*} a$. If $a, b \in X$ or $a, b \in Y$ then $a=b$. If $a \in X$ and $b \in Y$ then $a * b=0$ $\Rightarrow a=0$ and $b^{*} a=0 \Rightarrow b=0$. So condition (BCH 2) of a BCH-algebra is satisfied.

Now we prove condition (BCH 3). For $a, b \in X$ and $c \in Y$ we have

$$
(a * b) * c=a *_{1} b \text { and }(a * c) * b=a *_{1} b \text { which imply }(a * b) * c=(a * c) * b
$$

Again for $a \in X$ and $b, c \in Y$, we have

$$
(a * b) * c=a * c=a \text { and }(a * c) * b=a * b=a \text { which imply }(a * b) * c=(a * c) * b
$$

This proves that $\left(X \cup Y ;{ }^{*}, 0\right)$ is a BCH-algebra.
Corollary (2.2) : Every non-negative BCH-algebra can be extended to another non negative BCH -algebra by adjoining only one element and defining the binary operation suitably.

Proof : Let $\left(X,{ }_{1}, 0\right)$ be a non-negative BCH-algebra and let $z \notin X$ be an object. We put $Y=\{0, z\}$. Then Y is a non-negative BCH-algebra under the binary operation given by

o	0	z
0	0	0
z	z	0

Table (2.1)
Then using theorem (2.1) we see that $X \cup Y=X \cup\{z\}$ is a non-negative BCH -algebra.
Note (2.3) : In theorem (2.1) at least one of BCH-algebra X and Y must be nonnegative. For, suppose that both X and Y are not non-negative. Then there exist $x \in X$ and $y \in Y$ such that

$$
0 * x=s \in X \quad \text { and } 0 * y=t \in Y
$$

Then

$$
\begin{aligned}
& (0 * x) * y=s * y=s, \\
& (0 * y) * x=t * x=t \text { and } s \neq t .
\end{aligned}
$$

So condition (BCH 3) is not satisfied.
This can be illustrated by the following example :
Example (2.4) : Let $\left(X, *_{1}, 0\right)$ and $\left(Y ; *_{2}, 0\right)$ be two BCH -algebras given by the following tables

$*_{1}$	0	a
0	0	a
a	a	0

Table (2.2)

$*_{2}$	0	b
0	0	b
b	b	0

Table (2.3)

Let $Z=X \cup Y$. Applying definition (2.1) we have the Cayley table for binary operation '*' in Z :

$*$	0	a	b
0	0	a	b
a	a	0	a
b	b	b	0

Table (2.4)
Now

$$
(0 * a) * b=a * b=a
$$

and
$(0 * b) * a=b * a=b$
imply
$(0 * a) * b \neq(0 * b) * a$
So $(Z ; *, 0)$ is not a BCH-algebra.
Now we prove the following result:
Theorem (2.5) : Let $\left(X,{ }_{1}, 0\right)$ be a non-negative BCH-algebra and let $\left(Y ;{ }_{2}, 0\right)$ be a non-singular BCH-algebras such that $X \cap Y=\{0\}$. A binary operation * be defined on $X \cup Y$ as follows

$$
a * b=\left\{\begin{array}{l}
a *_{1} b \text { if } a, b \in X \tag{2.2}\\
a *_{2} b \text { if } a, b \in Y \\
a \text { otherwise, provide } a \neq 0
\end{array}\right.
$$

(If $a=0$, we regard a as an element of the BCH-algebra in which b belongs)
Then $\left(X \cup Y ;{ }^{*}, 0\right)$ is a BCH-algebra.
Proof : For $a \neq 0, b \neq 0, c \neq 0$ and $a, b, c \in X \cup Y$, the identify

$$
(a * b) * c=(a * c) * b
$$

can be proved as in theorem (2.1).
Let $a, b, c \in X \cup Y$ where $a=0, b \in X, c \in Y$. Then

$$
\begin{aligned}
& (a * b) * c=0 * c=c \text { and }(a * c) * b=c * b=c \\
& (b * c) * a=b * a=b \text { and }(b * a) * c=b * c=b \\
& (c * a) * b=c * b=c \text { and }(c * b) * a=c * a=c
\end{aligned}
$$

Other conditions hold as in theorem (2.2.1).
Hence $(X \cup Y ; *, 0)$ is a BCH -algebra.
Remark (2.6) : Above result is not possible if X contain an element x such that $0 * x=y \neq 0$. For in this case if $0 \neq z \in Y$ then we have

$$
(0 * z) * x=z * x=z
$$

and
$(0 * x) * z=y * z=y$.
Corollary (2.7) : If S_{1} and S_{2} are subspaces of X and Y respectively then $S_{1} \cup S_{2}$ is a subspace of $X \cup Y$ in theorems (2.1) and (2.2).

An as illustration of the above result we have the following example:
Example(2.8) :- Let

$$
\begin{aligned}
& 0 \equiv\left(\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right), \quad 1 \equiv\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right), \quad 2 \equiv\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right), \quad 3 \equiv\left(\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right), \\
& a \equiv\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right), b \equiv\left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right), \\
&
\end{aligned}
$$

Let $X=\{0,1,2,3\}$ and $Y=\{0, a, b, c\}$. We consider BCH-algebras $(X ; *, 0)$ and $(Y ; \mathrm{o}, 0)$ where binary operations $*$ and o are defined as follows:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	2	1	0

Table (2.5)

$*$	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

Table (2.6)

Let $Z=X$ U Y and let binary operations \odot be defined by (2.2). Then Cayley table for $(X \cup Y ; \odot, 0)$ is given by

\odot	0	1	2	3	a	b	c
0	0	0	0	0	a	b	c
1	1	0	1	0	1	1	1
2	2	2	0	0	2	2	2
3	3	2	1	0	3	3	3
a	a	a	a	a	0	c	b
b	b	b	b	b	c	0	a
c	c	c	c	c	b	a	0

It is easy to verify that $(X \cup Y ; \odot, 0)$ is a BCH -algebra.

References

1. Hu, Q.P. and Li, X., On BCH-algebras, Math Seminar Notes, 11, 313-320 (1983).
2. Hu, Q.P. and Li, X., On proper BCH-algebras, Math Japonica, 30, 659-661 (1985).
3. Ilyas, S. and Prasad, R. L., Ideals in semi commutative BCI-algebra, Aryabhata Research J. of Phy. Sci, Vol. 17, pp 9-11 (2014).
4. Imai., Y. and Iseki, K., On axiom systems of propositional calculi, Proceedings of the Japon Academy, Vol. 42, pp. 19-22 (1966).
5. Iseki , K., An algebra related with a propositional calculus , Proceedings of the Japon Academy, Vol. 42, pp. 26-29 (1966).
6. Kumar, Pawan, Khan, M.J.I. and Prasad, R. L., Non-singular BCI-algebras, Anusandhan, Vol. XVIII, No. 46, 1-5 June (2016).
