SOME STRUCTURAL PROPERTIES IN BCH-ALGEBRAS

SHILPA KUMARI

Powerganj, Bageshwari Road, Gaya

MD. ILYAS

Deptt. of Mathematics, Gaya College, Gaya

AND

R.L. PRASAD

Magadh University, Bodh- Gaya

RECEIVED : 01 August, 2017

The study of BCH – algebra has been initiated by Hu and Li [1] in 1983. Here we have developed some structural properties of BCH–algebras which are helpful in determining operation table with given non-singular, non-negative and p-semi simple elements.

INTRODUCTION

Definition (1.1) : A system (X; *, 0) consisting of a non-empty set X, a binary operation * and a fixed element 0 is called a BCH-algebra if the following conditions are satisfied :

1. (BCH 1)
$$x * x = 0$$

2. (BCH 2)
$$x * y = 0 = y * x$$
 imply $x = y$

3. (BCH 3) (x * y) * z = (x * z) * y

for all $x, y, z \in X$.

Definition (1.2) : In a BCH–algebra (X; *, 0) a relation \leq is defined as $x \leq y$ iff x * y = 0. This relation is a partial order relation.

Definition (1.3): A non-empty subset S of a BCH-algebra (X; *, 0) is called a subalgebra if $x * y \in S$ whenever $x, y \in S$.

Now we mention some properties of a BCH – algebra [1,2].

Theorem (1.4) : Let (X; *, 0) be a BCH–algebra then following are true

4. (BCH 4) x * 0 = x

5. (BCH 5)
$$0 * (x * y) = (0 * x) * (0 * y)$$

6. (BCH 6)
$$x * 0 = 0$$
 implies $x = 0$

7. (BCH 7)
$$(x * (x * y)) * y = 0$$

for all $x, y \in X$.

Notation (1.5): Let (X; *, 0) be a BCH-algebra. Let

 $N(X) = \{x \in X : 0 * x = x\}$... (1.1)

 $B(X) = \{x \in X : 0 * x = 0\} \qquad \dots (1.2)$

214/M017

$$P(X) = \{x \in X : 0 * (0 * x) = x\}, \qquad \dots (1.3)$$

Then N(X), B(X) and P(X) are called non-singular part of X, non-negative part of X and p-semi simple part of X respectively. Further $N(X) \subseteq P(X)$. Let Q(X) = P(X) - N(X).

Definition (1.6) : A BCH-algebra (X; *, 0) is called non – singular, non-negative and *p*-semi simple according as N(X) = X, B(X) = X and P(X) = X.

Example (1.7) : Let $X = \{0, a\}$ and let a binary operation '*' be defined as follows:

*	0	а
0	0	а
а	а	0
	•	

Then (X; *, 0) is a non-singular BCH–algebra.

PROPERTIES OF N(X), B(X), P(X) and Q(X)

First of all we see that

Lemma (2.1): N(X), B(X) and P(X) are BCH-subalgebras.

Proof - Let
$$x, y \in N(X)$$
. Then $0 * x = x, 0 * y = y$. Now
 $0 * (x * y) = (0 * x) * (0 * y)$ (by (BCH 5))

 $= x * y$ imply $N(X)$ is a subalgebra.

 Again
 $x, y \in B(X) \Rightarrow 0 * x = 0$ and $0 * y = 0$.

 So
 $0 * (x * y) = (0 * x) * (0 * y) = 0 \Rightarrow x * y \in B(X)$.

Also $x, y \in P(X) \Rightarrow 0 * (0 * x) = x \text{ and } 0 * (0 * y) = y.$

So
$$0 * (0 * (x * y)) = 0 * ((0 * x) * (0 * y))$$

= $(0 * (0 * x)) * (0 * (0 * y))$

$$=x^{*}y \Longrightarrow x^{*}y \in P(X).$$

Hence the result.

Lemma (2.2): $x, y \in N(X) \Rightarrow x * y = y * x$.

Proof – We have x * y = (0 * x) * y = (0 * y) * x = y * x.

Proposition (2.3) : If $x, y \in N(X)$ and $x \neq y \neq 0$ then $x * y \neq 0, x * y \neq x$ and $x * y \neq y$.

Proof – If possible, suppose x * y = 0. Then y * x = x * y = 0. So

(BCH 2) imply x = y which is a contradiction. So $x * y \neq 0$.

Let x * y = x. Then (x * y) * x = x * x. This gives $(x * x) * y = 0 \Rightarrow 0 * y = 0 \Rightarrow y = 0$ which is a contradiction. So $x * y \neq x$.

As above $x * y = y \implies x = 0$

which is a contradiction. So $x * y \neq y$.

Hence the result.

Corollary (2.4) : A set $X = \{0, x, y\}$ under a binary operation '*' for which 0 * x = x and 0 * y = y cannot be a BCH-algebra.

Proposition (2.5): Let N(X) be the non-singular part of a BCH-algebra (X; *, 0). Let a, b, c be three non-identical and non-zero elements of N(X) such that a * b = c. Then a * c = b and b * c = a.

Proof: Using lemmas (2.1) and (2.2), we have

$$a * c = c * a = (a * b) * a = (a * a) * b = 0 * b = b$$

$$b * c = c * b = (a * b) * b = (b * a) * b = (b * b) * a$$

$$= 0 * a = a.$$

and

$$= 0 * a =$$

Hence the result.

Corollary (2.6): Let (X; *, 0) where $X = \{0, a, b, c\}$ be a non-singular BCH-algebra. Then the Cayley table is as follows:

*	0	а	b	С
0	0 a b c	а	b	С
а	а	0	С	b
b	b	С	0	а
с	с	b	а	0

This table is also unique.

Theorem (2.7): In the binary operation table of a finite non-singular BCH-algebra no two elements of a particular row (or a particular column) are identical.

Proof: Let $0 = x_0, x_1, x_2, \dots, x_{n-1}$ be *n* distinct elements of a non-singular BCH – algebra (X; *, 0). If possible, let $x_i * x_j = x_i * x_k$ where $j \neq k$. Then

 $(x_i * x_i) * x_i = (x_i * x_k) * x_i.$

 $(x_i * x_i) * x_i = (x_i * x_i) * x_k$ This gives

 $x_i * x_i \neq x_i * x_k$

i.e., $x_i = x_k$, which is a contradiction.

Hence Again

$$\begin{aligned} x_i * x_1 &= x_j * x_1 \ (i \neq j) \\ \Rightarrow & (x_i * x_1) * x_1 = (x_j * x_1) * x_1 \\ \Rightarrow & (x_1 * x_i) * x_1 = (x_1 * x_j) * x_1 \\ \Rightarrow & (x_1 * x_1) * x_i = (x_1 * x_1) * x_j \\ \Rightarrow & x_i = x_i \text{ which is a contradiction }. \end{aligned}$$

Hence the result.

Corollary (2.8) : If $x, y \in N(X)$ and $x \neq y \neq z$ then $x * y \neq x * z$.

Theorem (2.9): Let (X; *, 0) be a BCH–algebra. Let $0 \neq a \in N(X)$ and $0 \neq b \in B(X)$. Then

a * b = a(i)

and (ii) either b * a = a or $(b * a) * a \in B(X)$.

Proof - (i) Using (BCH 5) we have

0 * (a * b) = (0 * a) * (0 * b) = a * 0 = a (by (BCH 4)).

Let a * b = c. Then

a * c = (0 * a) * c = (0 * c) * a = a * a = 0c * a = (a * b) * a = (a * a) * b = 0 * b = 0.and So using (BCH 2) we have c = a, *i.e.*, a * b = a. (ii) Again 0 * (b * a) = (0 * b) * (0 * a) = 0 * a = a. Let b * a = d. We have 0 * (d * a) = (0 * d) * (0 * a) = a * a = 0.d * a = 0 or $d * a \in B(X)$. This gives either a * d = (0 * a) * d = (0 * d) * a = a * a = 0.Also Thus if d * a = 0 then (BCH 2) gives d = a. So either b * a = a or $(b * a) * a \in B(X)$. **Theorem (2.10) :** Let (X; *, 0) be a BCH-algebra. Let $0 \neq a \in N(X), 0 \neq b \in B(X), c \in Q(X) \text{ and } 0 * c = d$. Then (i) 0 * d = c and $d \in Q(X)$, (ii) c * b = c, (iii) d * (b * c) = 0 and c * (b * d) = 0, (iv) $a * c \notin N(X), a * c \notin B(X),$ (v) $b * c \notin N(X) \cup B(X)$ and $b * c \neq c$, (vi) $c * d \neq 0, c * d \neq b$ and $c * d \neq c$. **Proof** - (i) We have 0 * d = 0 * (0 * c) = c0 * (0 * d) = 0 * c = d. So $d \in Q(X)$. and (ii) Let c * b = 1. Then 1 * c = (c * b) * c = (c * c) * b = 0 * b = 0.c * l = (0 * d) * lAlso (by (i)) = (0 * 1) * d= (0 * (c * b)) * d=((0 * c) * (0 * b)) * d= (d * 0) * d = (d * d) * 0 = 0.So (BCH 2) implies 1 = c, *i.e.*, c * b = c. (iii) Let b * c = m. Then d * m = (0 * c) * m= (0 * m) * c= (0 * (b * c)) * c=((0 * b) * (0 * c)) * c= (0 * d) * c= c * c = 0.d * (b * c) = 0.So

88

Interchanging d and c we get c * (b * d) = 0.

(iv) We have

$$a * c = 0 \Rightarrow (a * c) * a = 0 * a \Rightarrow (a * a) * c = a$$
$$\Rightarrow 0 * c = a \Rightarrow d = a.$$

which is a contradiction.

Again
$$a * c = a \Rightarrow (a * c) * a = a * a \Rightarrow (a * a) * c = 0$$

 $\Rightarrow (0 * c) = 0 \Rightarrow d = 0.$

which is a contradiction.

Also
$$a * c = a^{1} \in N(X) \implies (a * c) * a^{1} = a^{1} * a^{1} = 0$$

 $\implies (a * a^{1}) * c = 0.$

Since $(a * a^1) \in N(X)$ above argument gives a contradiction.

Further,
$$a * c = b \in B(X) \Longrightarrow 0 * (a * c) = 0 * b$$
.

$$\Rightarrow (0 * a) * (0 * c) = 0$$

$$\Rightarrow a * d = 0$$

$$\Rightarrow (a * d) * a = 0 * a$$

$$\Rightarrow (a * a) * d = a$$

$$\Rightarrow 0 * d = a$$

$$\Rightarrow c = a.$$

which is a contradiction.

Hence the result.

We have

$$b * c = a \in N(X)$$

$$\Rightarrow 0 * (b * c) = 0 * a.$$

$$\Rightarrow (0 * b) * (0 * c) = a$$

$$\Rightarrow 0 * (0 * c) = a$$

$$\Rightarrow c = a.$$

which is a contradiction.

Again
$$b * c = b \in B(X)$$

$$\Rightarrow 0 * (b * c) = 0 * b = 0$$

$$\Rightarrow (0 * b) * (0 * c) = 0$$

$$\Rightarrow 0 * (0 * c) = 0$$

$$\Rightarrow c = 0.$$

which is a contradiction.

Also

$$b * c = c$$

 $\Rightarrow 0 * (b * c) = 0 * c = d$
 $\Rightarrow (0 * b) * (0 * c) = d$

$$\Rightarrow 0 * (0 * c) = d$$
$$\Rightarrow c = d.$$

which is a contradiction.

This proves the result.

We see that

$$c * d = 0 \implies (c * d) * c = 0 * c$$
$$\implies (c * c) * d = d$$
$$\implies 0 * d = d$$
$$\implies c = d.$$

which is a contradiction. So $c * d \neq 0$.

Again $c * d = b \Rightarrow (c * d) * b = 0 \Rightarrow (c * b) * d = 0$

 $\Rightarrow c * d = 0$ (by (ii)) which is a contradiction.

Also
$$c * d = c \Rightarrow (c * d) * c = 0 \Rightarrow 0 * d = 0 \Rightarrow c = 0$$

which is a contradiction.

Hence the result.

Corollary (2.11) : In a finite BCH–algebra X, Q (X) contains even number of elements.

Example (2.12) : Let $X = \{0, a, b, c, d\}$ and let '*' be a binary operation on X such that $N(X) = \{0, a\}, B(X) = \{0, b\}$ and $Q(X) = \{c, d\}$. Under these conditions we wish to construct BCH – algebras. Using theorems (2.9) and (2.10) we have the following table for the binary operation :

	*	0	а	b	С	d	
-	0	0	а	0	d 1 x 0 t	С	
	а	а	0	а	1	т	
	b	b	n	0	x	у	
	С	С	и	С	0	v	
	d	d	w	d	t	0	

where we have to determine l, m, n, x, y, u, v, w and t so that above table becomes a BCH – algebra.

In view of theorem (2.10) (iv) we see that

$$a * c = c \text{ or } d$$
Now $1 = a * c = c \implies (a * c) * a = c * a$
 $\Rightarrow (a * a) * c = c * a$
 $\Rightarrow 0 * c = c * a \Rightarrow d = c * a,$
i.e., $u = d$
Also $a * c = c \implies 0 * (a * c) = 0 * c$
 $\Rightarrow (0 * a) * (0 * c) = d$

$$\Rightarrow (0 * a) * (0 * c) = d$$
$$\Rightarrow a * d = d, i.e., m = d$$

Further, d * a = (0 * c) * a = (0 * a) * c = a * c = c

Thus, $l = c \implies m = d$, u = d and w = c.

Similar arguments gives that if l = a * c = d then m = c, w = d and u = c.

In view of theorem (2.9) either b * a = a or $(b * a) * a \in B(X)$. For any other value of b * a, $(b * a) * a \notin B(X)$. So b * a = a, *i.e.*, n = a.

Again in view of theorem (2.10) (v) we see that

x = b * c = d and y = b * d = c

In view of theorem (2.10) (vi) we see that c * d = a or d.

Let c * d = a. Then (c * d) * c = a * c

$$\Rightarrow (c * c) * d = a * c$$
$$\Rightarrow 0 * d = a * c$$
$$\Rightarrow c = a * c.$$

So c * d = a is possible only when a * c = c.

Also in this case

$$d * c = (0 * c) * (0 * d) = 0 * (c * d)$$

= 0 * a
= a.

In other case we take c * d = d

In this case (0 * c) * (0 * d) * 0 * d

i.e.,

Thus $v = a \Rightarrow t = a$ and $v = d \Rightarrow t = c$.

Thus possible BCH-algebras with required conditions are as follows :

d * c = c

				С							С		
0	0	а	0	d	С	_	0	0	а	0	d	С	
а	а	0	а	С	d		а	а	0	а	d	С	
b	b	а	0	d	С		b	b	а	0	d	С	
С	с	d	С	0	а		С	с	С	С	0	d	
d	d	С	d	а	0		d	d	d	d	С	0	

Theorem (2.11) : In a finite BCH-algebra X, N(X) contains 2^n distinct elements, n being a natural number.

Proof : We have seen in example (1.7) that a set X containing 2 elements can be a nonsingular BCH-algebra under suitable binary operation. We have also seen in corollary (2.4) that a BCH-algebra having three elements cannot be non-singular. Further, in corollary (2.6) we have seen that a set having $4 = 2^2$ elements is a non-singular BCH-algebra under a suitable binary operation.

Let $X = \{o, a, b, c\}$ be a BCH-algebra under a binary operation '*'. Let $Y = X \cup \{d\}$. In order that Y is a non singular BCH- algebra under an extended binary operation 'o' we must have 0 o d = d. In view of theorem (2.7) a o d, b o d, c o d must be distinct elements of Y. We may assume a o d = e, b o d = f and c o d = g.

So the number of elements in Y is 2^3 . The above arguments suggested that if (X, *, 0) is a non-singular BCH-algebra containing 2^n elements, then a non-singular BCH-algebra containing X must contain $2^n \cdot 2 = 2^{n+1}$ elements. Hence the result.

References

- 1. Hu, Q.P. and Li, X., On BCH-algebras, Math Seminar Notes, 11, 313-320 (1983).
- 2. Hu, Q.P. and Li, X., On proper BCH-algebras, Math Japonica, 30, 659-661 (1985).
- 3. Ilyas, S. and Prasad, R. L., Ideals in semi commutative BCI-algebra, *Aryabhata Research J. of Phy. Sci.*, Vol. 17, pp. 9–11 (2014).
- 4. Kumar, Pawan, Khan, M.J.I. and Prasad, R. L., Non-singular BCI-algebras, *Anusandhan*, Vol. **XVIII**, No. **46**, 1-5 June (2016).