SOME STRUCTURAL PROPERTIES IN BCH-ALGEBRAS

SHILPA KUMARI
Powerganj, Bageshwari Road, Gaya
MD. ILYAS
Deptt. of Mathematics, Gaya College, Gaya
AND
R.L. PRASAD
Magadh University, Bodh- Gaya

RECEIVED : 01 August, 2017
The study of BCH - algebra has been initiated by Hu and Li [1] in 1983. Here we have developed some structural properties of BCH -algebras which are helpful in determining operation table with given non-singular, nonnegative and p-semi simple elements.

Introduction

Definition (1.1) : A $\operatorname{system}\left(X ;{ }^{*}, 0\right)$ consisting of a non-empty set X, a binary operation * and a fixed element 0 is called a BCH -algebra if the following conditions are satisfied :

1. (BCH 1) $x * x=0$
2. $(\mathrm{BCH} 2) \quad x * y=0=y * x$ imply $x=y$
3. $(\mathrm{BCH} 3)(x * y) * z=(x * z) * y$
for all $x, y, z \in X$.
Definition (1.2) : In a BCH-algebra $(X ; *, 0)$ a relation \leq is defined as $x \leq y$ iff $x * y=0$. This relation is a partial order relation.

Definition (1.3): A non-empty subset S of a BCH -algebra $\left(X ;{ }^{*}, 0\right)$ is called a subalgebra if $x * y \in S$ whenever $x, y \in S$.

Now we mention some properties of a $\mathrm{BCH}-$ algebra $[1,2]$.
Theorem (1.4) : Let $\left(X ;{ }^{*}, 0\right)$ be a $\mathrm{BCH}-$ algebra then following are true
4. (BCH 4) $x * 0=x$
5. $(\mathrm{BCH} 5) 0 *(x * y)=(0 * x) *(0 * y)$
6. (BCH 6) $x * 0=0$ implies $x=0$
7. $(\mathrm{BCH} 7)(x *(x * y)) * y=0$
for all $x, y \in X$.
Notation (1.5) : Let $\left(X ;{ }^{*}, 0\right)$ be a BCH-algebra. Let

$$
\begin{align*}
& N(X)=\{x \in X: 0 * x=x\} \tag{1.1}\\
& B(X)=\{x \in X: 0 * x=0\} \tag{1.2}
\end{align*}
$$

$$
\begin{equation*}
P(X)=\{x \in X: 0 *(0 * x)=x\}, \tag{1.3}
\end{equation*}
$$

Then $N(X), B(X)$ and $P(X)$ are called non-singular part of X, non-negative part of X and p-semi simple part of X respectively. Further $N(X) \subseteq P(X)$. Let $Q(X)=P(X)-N(X)$.

Definition (1.6) : A BCH-algebra $\left(X ;{ }^{*}, 0\right)$ is called non - singular, non-negative and p-semi simple according as $N(X)=X, B(X)=X$ and $P(X)=X$.

Example (1.7) : Let $X=\{0, a\}$ and let a binary operation '*' be defined as follows:

$*$	0	a
0	0	a
a	a	0

Then $\left(X ;{ }^{*}, 0\right)$ is a non-singular BCH-algebra.

7 irst of all we see that
Lemma (2.1) : $N(X), B(X)$ and $P(X)$ are BCH-subalgebras.
Proof - Let $x, y \in N(X)$. Then $0 * x=x, 0 * y=y$. Now

$$
\begin{aligned}
0 *(x * y) & =(0 * x) *(0 * y) \\
& =x * y \operatorname{imply} N(X) \text { is a subalgebra. }
\end{aligned}
$$

Again

$$
x, y \in B(X) \Rightarrow 0 * x=0 \text { and } 0 * y=0
$$

So

$$
0 *(x * y)=(0 * x) *(0 * y)=0 \Rightarrow x * y \in B(X)
$$

Also

$$
x, y \in P(X) \Rightarrow 0 *(0 * x)=x \text { and } 0 *(0 * y)=y
$$

So

$$
\begin{aligned}
0 *(0 *(x * y)) & =0 *((0 * x) *(0 * y)) \\
& =(0 *(0 * x)) *(0 *(0 * y)) \\
& =x * y \Rightarrow x * y \in P(X)
\end{aligned}
$$

Hence the result.
Lemma (2.2) : $x, y \in N(X) \Rightarrow x^{*} y=y^{*} x$.
Proof - We have $x * y=(0 * x) * y=(0 * y) * x=y * x$.
Proposition (2.3) : If $x, y \in N(X)$ and $x \neq y \neq 0$ then $x * y \neq 0, x * y \neq x$ and $x * y \neq y$.
Proof - If possible, suppose $x * y=0$. Then $y^{*} x=x * y=0$. So
(BCH 2) imply $x=y$ which is a contradiction. So $x * y \neq 0$.
Let $x * y=x$. Then $(x * y) * x=x * x$. This gives $(x * x) * y=0 \Rightarrow 0 * y=0 \Rightarrow y=0$ which is a contradiction. So $x * y \neq x$.

As above

$$
x * y=y \Rightarrow x=0
$$

which is a contradiction. So $x * y \neq y$.
Hence the result.
Corollary (2.4) : A set $X=\{0, x, y\}$ under a binary operation '*' for which $0 * x=x$ and $0^{*} y=y$ cannot be a BCH-algebra.

Proposition (2.5) : Let $N(X)$ be the non-singular part of a BCH-algebra ($X ; *, 0$). Let a, b, c be three non-identical and non-zero elements of $N(X)$ such that $a * b=\mathrm{c}$. Then $a * c=b$ and $b * c=a$.

Proof: Using lemmas (2.1) and (2.2), we have

$$
a * c=c * a=(a * b) * a=(a * a) * b=0 * b=b
$$

and

$$
\begin{aligned}
& b * c=c * b=(a * b) * b=(b * a) * b=(b * b) * a \\
&=0 * a=a
\end{aligned}
$$

Hence the result.
Corollary (2.6) : Let $\left(X ;^{*}, 0\right)$ where $X=\{0, a, b, c\}$ be a non-singular BCH-algebra. Then the Cayley table is as follows:

$*$	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

This table is also unique.
Theorem (2.7) : In the binary operation table of a finite non-singular BCH -algebra no two elements of a particular row (or a particular column) are identical.

Proof : Let $0=x_{0}, x_{1}, x_{2}, \ldots \ldots \ldots . . . x_{n-1}$ be n distinct elements of a non-singular BCH $\operatorname{algebra}(X ; *, 0)$. If possible, let $x_{i} * x_{j}=x_{i} * x_{k}$ where $j \neq k$. Then

$$
\begin{aligned}
& \left(x_{i} * x_{j}\right) * x_{i}=\left(x_{i} * x_{k}\right) * x_{i} . \\
& \left(x_{i} * x_{i}\right) * x_{j}=\left(x_{i} * x_{i}\right) * x_{k}
\end{aligned}
$$

This gives
i.e., $x_{j}=x_{k}$, which is a contradiction.

Hence

$$
\begin{aligned}
& x_{i} * x_{j} \neq x_{i} * x_{k} . \\
& x_{i} * x_{1}=x_{j} * x_{1}(i \neq j) \\
\Rightarrow & \left(x_{i} * x_{1}\right) * x_{1}=\left(x_{j} * x_{1}\right) * x_{1} \\
\Rightarrow & \left(x_{1} * x_{i}\right) * x_{1}=\left(x_{1} * x_{j}\right) * x_{1} \\
\Rightarrow & \left(x_{1} * x_{1}\right) * x_{i}=\left(x_{1} * x_{1}\right) * x_{j} \\
\Rightarrow & x_{i}=x_{j} \text { which is a contradiction } .
\end{aligned}
$$

Again

Hence the result.
Corollary (2.8) : If $x, y \in N(X)$ and $x \neq y \neq z$ then $x * y \neq x * z$.
Theorem (2.9): Let $\left(X ;{ }^{*}, 0\right)$ be a BCH-algebra. Let $0 \neq a \in N(X)$ and $0 \neq b \in B(X)$. Then
(i) $a * b=a$
and (ii) either $b^{*} a=a$ or $(b * a) * a \in B(X)$.
Proof - (i) Using (BCH 5) we have

$$
0 *(a * b)=(0 * a) *(0 * b)=a * 0=a(\mathrm{by}(\mathrm{BCH} 4))
$$

Let $a * b=c$. Then

$$
a * c=(0 * a) * c=(0 * c) * a=a * a=0
$$

and

$$
c * a=(\mathrm{a} * b) * a=(a * a) * b=0 * b=0
$$

So using (BCH 2) we have $c=a$, i.e., $a * b=a$.
(ii) Again $0 *(b * a)=(0 * b) *(0 * a)=0 * a=a$.

Let $b * a=d$. We have

$$
0 *(d * a)=(0 * d) *(0 * a)=a * a=0
$$

This gives either

$$
d * a=0 \text { or } d * a \in B(X) .
$$

Also
$a * d=(0 * a) * d=(0 * d) * a=a * a=0$.
Thus if $d^{*} a=0$ then (BCH 2) gives $d=a$.
So either $b^{*} a=a$ or $(b * a) * a \in B(X)$.
Theorem (2.10) : Let $\left(X ;{ }^{*}, 0\right)$ be a BCH-algebra. Let

$$
0 \neq a \in N(X), 0 \neq b \in B(X), c \in Q(X) \text { and } 0 * c=d \text {. Then }
$$

(i) $0 * d=c$ and $d \in Q(X)$,
(ii) $c * b=c$,
(iii) $d^{*}\left(b^{*} c\right)=0$ and $c *(b * d)=0$,
(iv) $a * c \notin N(X), a * c \notin B(X)$,
(v) $\quad b^{*} c \notin N(X) \cup B(X)$ and $b * c \neq c$,
(vi) $c^{*} d \neq 0, c^{*} d \neq b$ and $c * d \neq c$.

Proof - (i) We have
and

$$
\begin{aligned}
& 0 * d=0 *(0 * c)=c \\
& 0 *(0 * d)=0 * c=d . \text { So } d \in Q(X)
\end{aligned}
$$

(ii) Let $c * b=1$. Then

$$
1 * c=(c * b) * c=(c * c) * b=0 * b=0
$$

Also

$$
\begin{aligned}
c * 1 & =(0 * d) * 1 \quad(\text { by (i) }) \\
& =(0 * 1) * d \\
& =(0 *(c * b)) * d \\
& =((0 * c) *(0 * b)) * d \\
& =(d * 0) * d=(d * d) * 0=0
\end{aligned}
$$

So (BCH 2) implies $1=c$, i.e., $c^{*} b=c$.
(iii) Let $b^{*} c=m$. Then

$$
\begin{aligned}
d * m & =(0 * c) * m \\
& =(0 * m) * c \\
& =(0 *(b * c)) * c \\
& =((0 * b) *(0 * c)) * c \\
& =(0 * d) * c \\
& =c * c=0 . \\
d *(b * c) & =0
\end{aligned}
$$

So

Interchanging d and c we get $c *\left(b^{*} d\right)=0$.
(iv) We have

$$
\begin{aligned}
a * c=0 & \Rightarrow(a * c) * a=0 * a \Rightarrow(a * a) * c=a \\
& \Rightarrow 0 * c=a \Rightarrow d=a .
\end{aligned}
$$

which is a contradiction.
Again

$$
\begin{aligned}
a * c=a & \Rightarrow(a * c) * a=a * a \Rightarrow(a * a) * c=0 \\
& \Rightarrow(0 * c)=0 \Rightarrow d=0 .
\end{aligned}
$$

which is a contradiction.

$$
\text { Also } \begin{aligned}
a^{*} c=a^{1} \in N(X) & \Rightarrow(a * c) * a^{1}=a^{1} * a^{1}=0 \\
& \Rightarrow\left(a * a^{1}\right) * c=0 .
\end{aligned}
$$

Since $\left(a * a^{1}\right) \in N(X)$ above argument gives a contradiction.
Further, $a^{*} c=b \in B(\mathrm{X}) \Rightarrow 0 *(a * c)=0 * b$.

$$
\begin{aligned}
& \Rightarrow(0 * a) *(0 * c)=0 \\
& \Rightarrow a * d=0 \\
& \Rightarrow(a * d) * a=0 * a \\
& \Rightarrow(a * a) * d=a \\
& \Rightarrow 0 * d=a \\
& \Rightarrow c=a
\end{aligned}
$$

which is a contradiction.
Hence the result.
We have

$$
\begin{aligned}
b * c & =a \in N(X) \\
& \Rightarrow 0 *(b * c)=0 * a . \\
& \Rightarrow(0 * b) *(0 * c)=a \\
& \Rightarrow 0 *(0 * c)=a \\
& \Rightarrow c=a .
\end{aligned}
$$

which is a contradiction.
Again $b^{*} c=b \in B(X)$

$$
\begin{aligned}
& \Rightarrow 0 *(b * c)=0 * b=0 \\
& \Rightarrow(0 * b) *(0 * c)=0 \\
& \Rightarrow 0 *(0 * c)=0 \\
& \Rightarrow c=0 .
\end{aligned}
$$

which is a contradiction.

$$
\text { Also } \quad \begin{aligned}
b * c & =c \\
& \Rightarrow 0 *(b * c)=0 * c=d \\
& \Rightarrow(0 * b) *(0 * c)=d
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 0 *(0 * c)=d \\
& \Rightarrow c=d .
\end{aligned}
$$

which is a contradiction.
This proves the result.
We see that

$$
\begin{aligned}
c * d=0 & \Rightarrow(c * d) * c=0 * c \\
& \Rightarrow(c * c) * d=d \\
& \Rightarrow 0 * d=d \\
& \Rightarrow c=d .
\end{aligned}
$$

which is a contradiction. So $c * d \neq 0$.
Again

$$
c^{*} d=\mathrm{b} \Rightarrow(c * d) * b=0 \Rightarrow(c * b) * d=0
$$

$$
\Rightarrow c^{*} d=0(\text { by }(\mathrm{ii})) \text { which is a contradiction. }
$$

Also $\quad c^{*} d=c \Rightarrow\left(c^{*} d\right) * c=0 \Rightarrow 0 * d=0 \Rightarrow c=0$
which is a contradiction.
Hence the result.
Corollary (2.11) : In a finite BCH -algebra $X, Q(X)$ contains even number of elements.
Example (2.12) : Let $X=\{0, a, b, c, d\}$ and let '*' be a binary operation on X such that $N(X)=\{0, a\}, B(X)=\{0, b\}$ and $Q(X)=\{c, d\}$. Under these conditions we wish to construct BCH - algebras. Using theorems (2.9) and (2.10) we have the following table for the binary operation :

$*$	0	a	b	c	d
0	0	a	0	d	c
a	a	0	a	1	m
b	b	n	0	x	y
c	c	u	c	0	v
d	d	w	d	t	0

where we have to determine l, m, n, x, y, u, v, w and t so that above table becomes a BCH algebra.

In view of theorem (2.10) (iv) we see that

$$
a * c=c \text { or } d
$$

Now $\quad 1=a * c=c \Rightarrow(a * c) * a=c * a$

$$
\Rightarrow(a * a) * c=c * a
$$

$$
\Rightarrow 0^{*} c=c^{*} a \Rightarrow d=c^{*} a
$$

$$
\text { i.e., } u=d
$$

Also

$$
\begin{aligned}
a * c=c & \Rightarrow 0 *(a * c)=0 * c \\
& \Rightarrow(0 * a) *(0 * c)=d \\
& \Rightarrow a * d=d, \text { i.e., } m=d
\end{aligned}
$$

Further, $\quad d * a=(0 * c) * a=(0 * a) * c=a * c=c$

Thus, $1=c \Rightarrow m=d, u=\mathrm{d}$ and $\mathrm{w}=\mathrm{c}$.
Similar arguments gives that if $1=a * c=d$ then $m=c, w=d$ and $u=c$.
In view of theorem (2.9) either $b^{*} a=a$ or $\left(b^{*} a\right) * a \in B(X)$. For any other value of $b * a,(b * a) * a \notin B(X)$. So $b * a=a$, i.e., $n=a$.

Again in view of theorem (2.10) (v) we see that

$$
x=b^{*} c=d \text { and } y=b^{*} d=c
$$

In view of theorem (2.10) (vi) we see that $c * d=a$ or d.
Let $c * d=a$. Then $(c * d) * c=a * c$

$$
\begin{aligned}
& \Rightarrow(c * c) * d=a * c \\
& \Rightarrow 0 * d=a * c \\
& \Rightarrow c=a * c .
\end{aligned}
$$

So $c^{*} d=a$ is possible only when $a * c=c$.
Also in this case

$$
\begin{aligned}
d * c & =(0 * c) *(0 * d)=0 *(c * d) \\
& =0 * a \\
& =a
\end{aligned}
$$

In other case we take $c * d=d$
In this case $(0 * c) *(0 * d) * 0 * d$
i.e.,

$$
d^{*} c=c
$$

Thus $v=a \Rightarrow t=a$ and $v=d \Rightarrow t=c$.
Thus possible BCH-algebras with required conditions are as follows :

$*$	0	a	b	c	d
0	0	a	0	d	c
a	a	0	a	c	d
b	b	a	0	d	c
c	c	d	c	0	a
d	d	c	d	a	0

$*$	0	a	b	c	d
0	0	a	0	d	c
a	a	0	a	d	c
b	b	a	0	d	c
c	c	c	c	0	d
d	d	d	d	c	0

Theorem (2.11) : In a finite BCH-algebra $X, N(X)$ contains 2^{n} distinct elements, n being a natural number.

Proof : We have seen in example (1.7) that a set X containing 2 elements can be a nonsingular BCH -algebra under suitable binary operation. We have also seen in corollary (2.4) that a BCH -algebra having three elements cannot be non-singular. Further, in corollary (2.6) we have seen that a set having $4=2^{2}$ elements is a non- singular BCH-algebra under a suitable binary operation.

Let $X=\{o, a, b, c\}$ be a BCH-algebra under a binary operation '*'. Let $Y=X \cup\{d\}$. In order that Y is a non singular BCH- algebra under an extended binary operation ' o ' we must have $0 o d=d$. In view of theorem (2.7) a od, bod cod must be distinct elements of Y. We may assume $a \circ d=e, b \circ d=f$ and $c o d=g$.

So the number of elements in Y is 2^{3}. The above arguments suggested that if $(X, *, 0)$ is a non-singular BCH -algebra containing 2^{n} elements, then a non-singular BCH -algebra containing X must contain $2^{n} .2=2^{n+1}$ elements. Hence the result.

References

1. Hu, Q.P. and Li, X., On BCH-algebras, Math Seminar Notes, 11, 313-320 (1983).
2. Hu, Q.P. and Li, X., On proper BCH-algebras, Math Japonica, 30, 659-661 (1985).
3. Ilyas, S. and Prasad, R. L., Ideals in semi commutative BCI-algebra, Aryabhata Research J. of Phy. Sci., Vol. 17, pp. 9-11 (2014).
4. Kumar, Pawan, Khan, M.J.I. and Prasad, R. L., Non-singular BCI-algebras, Anusandhan, Vol. XVIII, No. 46, 1-5 June (2016).
