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The study of BCH – algebra has been initiated by Hu and 
Li [1] in 1983. Here we have developed some structural  
properties of BCH–algebras which are helpful in 
determining  operation table with given non-singular, non-
negative and p-semi simple elements. 

 

INTRODUCTION 

Definition (1.1) : A  system (X; *, 0) consisting of   a non-empty set X, a binary  

operation *  and  a  fixed element  0  is called a BCH–algebra  if  the following conditions  are 
satisfied : 

1. (BCH 1)   x * x  =  0  

2. (BCH 2)   x * y  = 0 = y * x imply  x = y 

3. (BCH 3)  (x * y) * z = (x * z) * y 

for all x, y, z  X. 

Definition (1.2) : In  a BCH–algebra (X; *, 0)  a relation ≤ is defined as x ≤ y iff x * y = 0. 
This relation is a partial  order  relation.  

Definition  (1.3 ) :   A  non –empty  subset  S  of a BCH–algebra  (X; *, 0) is  called a 
subalgebra  if  x * y  S whenever  x, y   S. 

Now  we  mention  some properties  of  a BCH – algebra [1,2]. 

Theorem (1.4) : Let (X; *, 0)  be  a  BCH–algebra then following  are true   

4. (BCH 4)   x * 0 = x  

5. (BCH 5)   0 * (x * y) = (0 * x) * (0 * y) 

6. (BCH 6)   x * 0 = 0 implies x = 0 

7. (BCH 7) (x * (x * y)) * y = 0 

for all x, y  X. 

Notation (1.5) : Let (X; *, 0) be  a BCH–algebra. Let  

     N (X)  = {x  X : 0 * x = x}   … (1.1) 

     B (X) = {x  X : 0 * x  =  0}   … (1.2) 
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     P (X) = {x  X : 0 * (0 * x) = x},   … (1.3) 

Then  N (X), B (X) and P (X) are  called  non-singular part  of X, non-negative part of X 
and p-semi simple  part of X respectively. Further N (X)  P (X). Let Q (X) = P (X) – N (X). 

Definition (1.6) :  A BCH–algebra  (X; *, 0)  is called  non – singular, non-negative and 
p-semi simple  according as N (X) = X, B (X) = X and P (X) = X. 

Example (1.7) : Let X = {0, a} and let a binary  operation ‘*’  be  defined  as follows: 

                      *     0       a   

                      0     0       a 

                     a     a       0 

Then (X; *,  0) is  a non-singular BCH–algebra.                               

PROPERTIES OF N (X), B (X), P (X) AND Q (X) 

First  of  all we  see  that  

Lemma (2.1) : N (X), B (X) and P (X)  are BCH–subalgebras . 

Proof -  Let x, y  N (X). Then 0 * x = x, 0 * y = y.  Now   

                         0 * (x * y) = (0 * x) * (0 * y)                  (by (BCH 5)) 

                         = x * y imply N (X) is  a subalgebra. 

Again    x, y  B (X)  0 * x = 0 and 0 * y = 0.   

So        0 * (x * y) = (0 * x) * (0 * y) = 0  x * y  B (X). 

Also    x, y  P (X)   0 * (0 * x) = x and  0 * (0 * y) = y.   

 So    0 * (0 * (x * y)) = 0 * ((0 * x) * (0 * y)) 

              = (0 * (0 * x)) * (0 * (0 * y)) 

             =  x * y   x * y  P (X). 

Hence the result. 

Lemma (2.2) :  x, y  N (X)  x * y = y * x. 

Proof – We have  x * y = (0 * x) * y = (0 * y) * x  = y * x. 

Proposition (2.3) :  If  x, y  N (X) and x ≠ y ≠ 0 then  x * y ≠ 0, x * y ≠ x and x * y ≠ y. 

Proof – If possible, suppose  x * y = 0. Then y * x = x * y = 0. So  

(BCH 2) imply   x = y  which is  a contradiction. So  x * y ≠ 0. 

Let x * y = x. Then (x * y) *  x = x * x. This gives (x * x) * y  = 0  0 * y = 0  y = 0 
which is  a contradiction. So  x * y ≠ x. 

As above      x * y = y    x = 0 

which is a contradiction. So  x * y ≠ y. 

Hence  the  result. 

Corollary (2.4) : A set X = {0, x, y} under a binary operation ‘*’ for which 0 * x = x and  
0 *  y = y cannot be  a  BCH–algebra.  
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Proposition (2.5) : Let N (X) be  the non-singular  part  of a BCH–algebra (X; *, 0). Let  
a, b, c be three  non-identical   and  non-zero elements  of  N (X)  such  that a * b = c. Then      
a * c = b and b * c  = a. 

Proof :  Using  lemmas  (2.1)  and (2.2) , we  have 

                  a * c =  c * a  = (a * b) * a = (a * a) * b = 0 * b = b 

and     b * c =  c * b  = (a * b) * b = (b * a) * b = (b * b) * a  

                                                                                 = 0 * a = a. 

Hence the result. 

Corollary (2.6) : Let (X; *, 0)  where X = {0, a, b, c} be  a non-singular BCH-algebra. 
Then the Cayley table is as follows:  

                        *   0     a       b       c  

                     0   0     a       b       c 

                      a   a     0       c        b 

               b   b     c      0        a 

                               c   c      b      a        0 

This table  is  also unique. 

Theorem (2.7) : In the binary  operation  table of  a finite  non-singular  BCH-algebra  no 
two  elements of  a particular  row  (or a particular column)  are  identical. 

Proof : Let 0 = x0, x1, x2, ..........., xn – 1 be n distinct elements of a non-singular BCH – 
algebra (X; *, 0 ). If possible, let  xi * xj = xi * xk where j ≠ k. Then 

     (xi *  xj) * xi = (xi * xk) * xi. 

This gives     (xi *  xi) * xj = (xi * xi) * xk 

i.e., xj = xk, which is a contradiction. 

Hence     xi * xj  ≠  xi * xk. 

Again        xi * xl  = xj  * xl  (i ≠ j) 

                (xi * xl ) * xl = (xj * xl) * xl 

      (xl * xi) * xl = (xl * xj) * xl 

                (xl * xl) * xi = (xl * xl) * xj 

                xi = xj  which is a contradiction . 

Hence  the result. 

Corollary (2.8) : If x, y  N (X) and x ≠ y ≠  z then x * y ≠  x * z. 

Theorem (2.9): Let (X; *, 0) be a BCH–algebra. Let 0 ≠ a  N (X) and 0 ≠ b B (X). 
Then  

(i) a * b = a 

and (ii)     either  b * a = a or  (b * a) * a  B (X). 

Proof – (i)  Using (BCH 5) we have  

     0 * (a  * b) = (0 * a) * (0* b) = a * 0 = a (by (BCH 4)). 

Let a * b = c. Then  
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     a * c =  (0 * a) * c = (0 * c) * a = a * a = 0 

and       c * a = (a * b) * a = (a * a) * b = 0 * b = 0. 

So using (BCH 2) we have c = a, i.e., a * b = a. 

(ii) Again 0 * (b * a) = (0 * b) * (0 * a) = 0 * a = a. 

Let b * a = d. We have  

     0 * (d * a) = (0 * d) * (0 * a) = a * a = 0. 

This gives either    d * a = 0  or  d * a  B (X). 

Also      a * d  = (0 * a) * d = (0 * d) * a = a * a = 0. 

Thus if d * a = 0 then (BCH 2) gives d = a.  

So either  b * a = a or  (b * a) * a  B (X).  

Theorem (2.10) :  Let (X; *, 0) be  a BCH–algebra. Let  

  0 ≠ a  N (X),  0 ≠ b  B (X), c  Q (X) and 0 * c = d. Then  

(i) 0 * d = c  and  d  Q (X), 

(ii) c * b = c, 

(iii) d * (b * c) = 0   and c * (b * d)  = 0, 

(iv) a * c  N (X), a * c  B (X), 

(v) b * c  N (X) ∪	B (X)  and b * c ≠ c, 

(vi) c * d ≠  0, c * d ≠ b  and c * d ≠ c. 

Proof -  (i)  We have  

      0 * d = 0 * (0 * c) = c 

and       0 * (0 * d)  =  0 * c = d. So  d  Q (X). 

(ii) Let  c * b = l. Then  

     l * c = (c * b) * c = (c * c) * b = 0 * b = 0. 

Also      c * l =  (0 * d) * l       (by  (i)) 

             =  (0 * l) * d 

             = (0 * (c * b)) * d  

             = ((0 * c) * (0 * b)) * d 

             = (d * 0) * d = (d * d) * 0 = 0. 

So  (BCH  2)  implies  l = c,  i.e.,  c * b = c. 

(iii) Let  b * c = m. Then  

    d * m =  (0 * c) * m         

          =  (0 * m) * c 

          = (0 * (b * c)) * c  

          = ((0 * b) * (0 * c)) * c 

          = (0 * d) * c   

                 = c * c = 0. 

So               d * (b * c) = 0.  
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Interchanging d and c we get c * (b * d) = 0.  

(iv) We have  

    a * c = 0  (a * c) * a = 0 * a  (a * a) * c = a 

       0 * c = a  d = a. 

which is a contradiction. 

Again   a * c = a   (a * c) * a = a * a  (a * a) * c = 0 

      (0 * c) = 0    d  = 0. 

which is a contradiction. 

Also  a * c = a1  N (X)    (a * c) * a1 = a1 * a1 = 0 

        (a * a1) * c = 0. 

Since (a * a1)  N (X) above argument gives a contradiction.  

Further,  a * c = b  B(X)  0 * (a * c) = 0 * b. 

                                    (0 * a) * (0 * c) = 0 

                             a * d = 0 

                            (a * d) * a = 0 * a  

                            (a * a) * d = a 

                             0 * d  = a 

                   c = a. 

which is a contradiction. 

Hence the result. 

We have  

             b * c = a  N (X)   

          0 * (b * c) =  0 * a. 

           (0 * b) * (0 * c) = a 

           0 *  (0 * c) = a  

            c = a. 

which is a contradiction. 

Again  b * c = b  B (X)   

         0 * (b * c) =  0 * b = 0 

          (0 * b) * (0 * c) = 0 

          0 *  (0 * c)  =  0  

           c  = 0. 

which is a contradiction. 

Also                     b * c = c     

          0 * (b * c) = 0 * c = d 

           (0 * b) * (0 * c) = d 
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          0 * (0 * c) = d  
       c = d. 

which is a contradiction. 

This proves the result. 

We see that  

    c * d = 0  (c * d) * c = 0 * c  

               (c * c) * d = d 

               0 * d  =  d  
       c = d. 

which is a contradiction. So c * d ≠ 0. 

Again    c * d = b  (c * d) * b = 0  (c * b) * d = 0 

                           c * d = 0  (by (ii)) which is a contradiction. 

Also     c * d = c  (c * d) * c = 0  0 * d = 0    c = 0 

which is a contradiction. 

Hence the result. 

 Corollary (2.11) : In a finite BCH–algebra X, Q (X) contains even number of elements.  

Example (2.12) : Let X = {0, a, b, c, d} and let ‘*’ be a binary operation on X such that   
N (X) = {0, a}, B (X) = {0, b} and Q (X) = {c, d}. Under  these  conditions we  wish  to 
construct  BCH – algebras.  Using theorems (2.9) and (2.10) we have  the  following table  for  
the binary operation  :  

                        *   0     a       b       c      d 

                      0   0     a       0       d      c 

                      a   a     0       a        l      m 

               b   b     n       0        x      y 

                        c   c      u      c        0       v 

              d   d      w     d        t       0 

where we have to determine l, m, n, x, y, u, v, w and t so  that  above  table  becomes  a BCH – 
algebra.  

In  view of  theorem   (2.10) (iv) we  see  that 

              a * c = c or d 

Now       l = a * c = c     (a * c) * a = c * a 

       (a * a) * c = c * a 

       0 * c = c * a   d = c * a, 

     i.e., u = d 

Also     a * c = c  0 * (a * c) = 0 * c 

       (0 * a) * (0 * c) = d 

       a * d = d,  i.e.,  m = d 

Further,    d * a = (0 * c) * a = (0 * a) * c = a * c = c  
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Thus, l = c   m = d, u = d and  w  =  c. 

Similar  arguments gives that if l = a * c = d then m = c, w = d and u = c.   

In view of  theorem (2.9) either b * a = a or (b * a) * a  B (X). For  any  other  value  of  
b * a, (b * a) * a  B (X). So b * a = a,  i.e., n = a.  

Again in view of theorem (2.10) (v) we see that  

     x = b * c = d and y = b * d = c 

In view  of  theorem  (2.10)  (vi)  we  see  that  c * d = a or d. 

Let c * d = a. Then (c * d) * c = a * c  

       (c * c) * d = a * c  

       0 * d = a * c  

       c = a * c. 

So c * d = a is possible only when  a * c = c. 

Also in this case   

    d * c = (0 * c) * (0 * d) = 0 * (c * d)  

     = 0 * a 

     = a. 

In other case we take c * d = d 

In this case  (0 * c) * (0 * d) * 0 * d 

i.e.,       d * c = c  

Thus v = a   t = a  and v = d  t = c. 

Thus possible BCH–algebras with required conditions are as follows : 

*   0     a       b       c      d *   0     a       b       c      d 

0   0     a       0       d      c 0   0     a       0       d      c 

a   a     0       a        c      d a   a     0       a        d     c 

b   b     a       0        d      c b   b     a       0        d      c 

c    c     d      c        0      a c   c      c      c        0       d 

d   d      c     d        a       0 d   d     d      d        c       0 

Theorem (2.11) :  In a finite BCH-algebra X, N (X) contains 2n distinct  elements, n being 
a natural number.  

Proof : We have seen in example (1.7) that a set X containing 2 elements can be a non- 
singular  BCH-algebra under suitable binary operation. We have also seen in corollary (2.4) 
that a BCH-algebra having three elements cannot be non-singular. Further, in corollary (2.6) 
we have seen that a set having 4 = 22 elements is a non- singular BCH-algebra under a suitable 
binary operation. 

Let X = {o, a, b, c} be a BCH-algebra under a binary operation ‘*’. Let Y = X  {d}. In  
order that Y is a non singular BCH- algebra under an extended binary  operation ‘o’ we  must  
have 0 o d = d. In view of theorem (2.7) a o d, b o d, c o d must be distinct  elements  of Y. We 
may assume  a o d = e, b o d = f and c o d = g. 
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So the number of elements in Y is 23. The above arguments suggested that if (X, *, 0) is a 
non-singular BCH-algebra containing 2n elements, then a non-singular BCH-algebra 
containing X must contain 2n . 2 = 2n + 1 elements. Hence the result.  
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