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In this present paper, we study ����/G/1 systems. The 
main aim of this present paper is to study the the waiting 
times during a delay cycle. We do so by developing the 
discreat – time version of the analysis for continuous – 
time system. Assuming that the set o all messages in the 
m – 1 generation is always served before those in the mth 
generation. However, any discipline may be employed with 
respect to the order of service within each generation. 
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WAITING TIMES DURING A DELAY CYCLE : 

We consider the waiting time of a message that arrive during a delay cycle with initial 

delay  ��. We call the initial delay the 0-th generation of the delay cycle, and call the period of 
time for serving all the messages that arrive during the m – 1th generation the m the generation, 
where m = 1, 2, ……….  The length of the m-th generation of a delay cycle (measured in 
slots) is denoted by Θ� and the PGF for Θ� is denoted by Θ�(�) for m = 0, 1, 2, ………. . 
We then have the recurrence relations as – 

                Θ�(�) =  B�(�)                                                          … (1.1.1) 

                         Θ�(�) =  Θ���	{ Λ	[�	(�)}; m = 1, 2, …. … (1.1.2) 

where    B�(�)  is the PGF for  ��. 

In what follows, we will consider system with FCFS, LCFS and ROS disiciplines within 
each generation. Here {Θ�; m = 0, 1, 2, …} is invariant within generations. However, the 
distribution of the waiting time of a Message does not depend on the service disicipline with 
in generations. 

Keaping in view, (1.1.1) and (1.1.2), we have, 
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��[Θ�(		Θ� − 	1)(		Θ� − 	2)] =
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+
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+
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(1 − 	ρ)(� − ��)(� − ��)
					… (1.1.5) 

REFERENCES  
1. Boxma, O.J., Models of two queues : A new views, Telitrafic Analysis and Computer Performance 

Evaluation, Boxma, O.J., Cohen, J.W., et al.,  Elever Science, Publisher (North Holland) Amsterdam 
pp 75-98 (1986).. 

2. Bruneel, H. and Kim, B.G., Discreat time Models for Communication Systems Including ATM, 
Kluwer Academic  Publishers, Boston, ISB 0-7923-9292-2 (1993). 

3. Buzen, J.P. and Denning, P.J., Measuring and calculating queue length distribution Computer, Vol. 
13, No. 4, pp33-44 (1980). 

4. Courtois, P.J., Decomposability, Queueing and Computer System Application (1977). 

 

 




