SEMI-COMMUTATOR GRAPHS IN BCI-ALGEBRAS

MOHAMMAD ABID ANSARI
Deptt. of Maths, T.N.B. college , Bhagalpur
AND
R.L. PRASAD
Magadh Universitry, Bodh- Gaya

RECEIVED : 12 July, 2017
Zahiri and Borzooei [8] have developed the concept of graph in BCl-algebras in 2012. Some other authors have also developed the concept in different methods. Here we develop the concept of graph for semi-commutator elements and present an example which shows that all the concepts are different.

KEYWORDS : BCI-algebra, graph.

Introduction

Definition (1.1) : A $\operatorname{system}\left(X ;{ }^{*}, 0\right)$ consisting of a non-empty set X, a binary operation * and a fixed element 0 , is called a BCI - algebra if the following conditions are satisfied :

1. (BCI 1) $((x * y) *(x * z)) *(z * y)=0$
2. (BCI 2) $(x *(x * y)) * y=0$
3. (BCI 3) $x * x=0$
4. (BCI 4) $x * y=0=y * x \Rightarrow x=y$
for all $x, y, z \in X$.
Definition (1.2) : In a BCI-algebra $\left(X ;{ }^{*}, 0\right)$ a partial order relation \leq is defined as $x \leq y$ iff $x * y=0$.

Notation (1.3) : For a BCI-algebra $(X ; *, 0)$. Let $B(X), P(X)$ and $N(X)$ denote the sets

$$
\begin{align*}
& B(X)=\{x \in X: 0 * x=0\} \tag{1.1}\\
& P(X)=\{x \in X: 0 *(0 * x)=x\} \tag{1.2}\\
& N(X)=\{x \in X: 0 * x=x\} \tag{1.3}
\end{align*}
$$

Here $B(X), P(X)$ and $N(X)$ are called BCK-part of X, p-semi simple part of X and nonsingular part of X respectively.

Notation (1.4): For any $a \in P(X)$, let $V(a)$ be the set

$$
\begin{equation*}
V(a)=\left\{x \in X: a^{*} x=0\right\} \tag{1.4}
\end{equation*}
$$

and is called the branch of X initiated by a.
Definition (1.5) : A subset A of a BCI-algebra ($X ; *, 0$) is called semi commutator if $x * y=y^{*} x$ for all $x, y \in A$.

Lemma (1.6) : Let $(X ; *, 0)$ be a BCI-algebra. Then the following results hold;
(P 1) $x * 0=x$;
(P 2) $x *(x *(x * y))=x * y$;
(P 3) $(x * y) * z=(x * z) * y$;
(P 4) $0 *(x * y)=(0 * x) *(0 * y)$;
(P 5) $x \leq y \Rightarrow x * z \leq y * z$ and $z * y \leq z * x$.
We also have
Theorem (1.7) : Let $(X ; *, 0)$ be a BCI-algebra and let $N(X)$ be the non- singular part of X. Then
(i) $N(X)$ is a subalgebra of X,
(ii) $N(X)$ is semi-commutative, i.e.,

$$
x, y \in N(X) \Rightarrow x^{*} y=y^{*} x
$$

(iii) if $x, y \in N(X), x \neq y \neq 0$ then neither $x * y=0$ nor $x * y=x$ nor $x * y=y$;
(iv) $a, b \in N(X)$ equation $a * x=b$ has a unique solution $x=a * b$ in $N(X)$.

The above results follow from results appearing in [3] and [4].
Notation (1.8) : Let X be a BCI-algebra. For $A \subseteq X$ let $U(A)$ and $L(A)$ be defined as

$$
\begin{aligned}
& U(A)=\{x \in X: a * x=0 \text { for all } a \in A\} \\
& L(A)=\{x \in X: x * a=0 \text { for all } a \in A\}
\end{aligned}
$$

Definition (1.9) : Let $x \in X$. Then there exists $a \in X$ such that $x \in V(a)$. Let

$$
Z_{x}=\{y \in X: L(\{x, y\})=\{a\}\} .
$$

The set Z_{x} is called the a-divisor of x.
Zahiri and Borzooei [8] have established the following results.
Lemma (1.10):- Let $a, b \in P(X)$ and $x, y \in X$.
Then (a)

$$
L(\{x, a\})=\left\{\begin{array}{l}
a \text { if } x \in V(a) \\
\phi \text { otherwise }
\end{array}\right.
$$

(b) if $a \neq b, x \in V(a)$ and $y \in V(b)$ then $L(\{x, y\})=\phi$
(c) $\quad x^{*} y=0 \Rightarrow L(\{x\}) \subseteq L(\{y\})$ and $Z_{y} \subseteq Z_{x}$.

Definition (1.11) : Let $Y \subset X$ let and $G(Y)$ be a simple graph, whose vertices are just the elements of Y and for distinct $x, y \in Y$ there is an edge connecting x and y, denoted as $x y$ iff $L(\{x, y\})=\{a\}$ for some $a \in P(x)$. If $Y=X$ then $G(X)$ is called a BCI graph of X.

We also call such a graph as graph of type I.
The following definition of a graph appears in [5].
Definition (1.12) : Let $\left(X ;{ }^{*}, 0\right)$ be a BCI - algebra with $|X| \geq 4$ and let $N(X)$ be the non-singular part of X. Let $G(N(X)-\{0\})$ be a simple graph whose vertices are non zero element of $N(X)$ such that for non-zero district $a, b, c \in N(X)$ there are edges connecting a and b, b and c, c and a, denoted as $a b, b c$, ca respectively, iff $a^{*} b=c, b * c=a$ and $c * a=b$. This graph is called non-singular graph of X or graph of type II.

Semi-commutator graph

We define a graph in a BCI- algebra as follows:
Definition (2.1) : Let $\left(X ;{ }^{*}, 0\right)$ be a BCI-algebra and let A be semi-Commutator subset of X. Then $G(A)$ is a simple graph whose vertices are in A and there are edge connecting a and $b(a \neq b)$ iff $a * b=b^{*} a$. We denote such edge as $a b$. Also such graph is called semicommutator graph of X or graph of type III.

Now we give an example in which all three types of distinct graphs can be drawn.
Example (2.2) : Let $X=Y=\{0,1\}$ we consider binary operations * and o given by

$*$	0	1
0	0	0
1	1	0

and

o	0	1
0	0	1
1	1	0

respectively.
Then $(X ; *, 0)$ is a BCK-algebra and $(Y ; \mathrm{o}, 0)$ is a BCI-algebra. Let $Z=X \times X \times Y \times Y$.
Then Z is a BCI-algebra in which binary operation \odot is extended by $*$ and o respectively for first two coordinates and last two coordinates.

$$
\begin{aligned}
& \text { Let } 0=\left(\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right), \quad a=\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right) \text {, } \\
& b=\left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right), \quad c=\left(\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right), \quad d=\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right), \\
& e=\left(\begin{array}{llll}
0 & 1 & 0 & 1
\end{array}\right), \quad f=\left(\begin{array}{llll}
0 & 1 & 1 & 0
\end{array}\right), \quad g=\left(\begin{array}{llll}
0 & 1 & 1 & 1
\end{array}\right), \\
& h=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right), \quad i=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right), \quad j=\left(\begin{array}{llll}
1 & 0 & 1 & 0
\end{array}\right), \\
& k=\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right), \quad l=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right), \quad m=\left(\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right), \\
& n=\left(\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right), \quad p=\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

The binary operation \odot in Z is presented by the following table.

$\begin{array}{lllllllllllllllll}\mathrm{n} & \mathrm{n} & \mathrm{p} & \mathrm{l} & \mathrm{m} & \mathrm{j} & \mathrm{k} & \mathrm{h} & \mathrm{i} & \mathrm{f} & \mathrm{g} & \mathrm{d} & \mathrm{e} & \mathrm{b} & \mathrm{c} & 0 & \mathrm{a} \\ \mathrm{p} & \mathrm{p} & \mathrm{n} & \mathrm{m} & \mathrm{l} & \mathrm{k} & \mathrm{j} & \mathrm{i} & \mathrm{h} & \mathrm{g} & \mathrm{f} & \mathrm{e} & \mathrm{d} & \mathrm{c} & \mathrm{b} & \mathrm{a} & 0\end{array}$
Here

$$
\begin{aligned}
\mathrm{B}(\mathrm{Z}) & =\{0, \mathrm{~d}, \mathrm{~h}, \mathrm{l}\} \\
\mathrm{P}(\mathrm{Z}) & =\{0, \mathrm{a}, \mathrm{~b}, \mathrm{c}\}=\mathrm{N}(\mathrm{Z}) \\
\mathrm{V}(0) & =\{0, \mathrm{~d}, \mathrm{~h}, \mathrm{l}\} \\
\mathrm{V}(\mathrm{a}) & =\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{~m}\} \\
\mathrm{V}(\mathrm{~b}) & =\{\mathrm{b}, \mathrm{f}, \mathrm{j}, \mathrm{n}\} \\
\mathrm{V}(\mathrm{c}) & =\{\mathrm{c}, \mathrm{~g}, \mathrm{k}, \mathrm{p}\}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \mathrm{L}(\{0, \mathrm{~d}\})=\mathrm{L}(\{0, \mathrm{~h}\})=\mathrm{L}(\{0, \mathrm{l}\}) \\
& \quad=\mathrm{L}(\{\mathrm{~d}, \mathrm{~h}\})=\mathrm{L}(\{\mathrm{~d}, \mathrm{l}\}) \\
& \quad=\mathrm{L}(\{\mathrm{~h}, \mathrm{l}\})=\{0\} .
\end{aligned}
$$

So there exist edges $0 \mathrm{~d}, 0 \mathrm{~h}, 01$, dh, dl, hl.
Similarly

$$
\begin{gathered}
L(\{a, e\})=L(\{a, i\})=L(\{a, m\})=L=(\{e, i\}) \\
=L(\{e, m\})=L(\{i, m\})=\{a\}
\end{gathered}
$$

So there exist edges ae, ai, am, ei, em, im.
Also $\mathrm{L}(\{\mathrm{b}, \mathrm{f}\})=\mathrm{L}(\{\mathrm{b}, \mathrm{j}\})=\mathrm{L}(\{\mathrm{b}, \mathrm{n}\})=\mathrm{L}=(\{\mathrm{f}, \mathrm{j}\})$

$$
=\mathrm{L}(\{\mathrm{f}, \mathrm{n}\})=\mathrm{L}(\{\mathrm{j}, \mathrm{n}\})=\{\mathrm{b}\}
$$

So there exist edges $\mathrm{bf}, \mathrm{bj}, \mathrm{bn}, \mathrm{fj}$, fn, jn .
Also $\mathrm{L}(\{\mathrm{c}, \mathrm{g}\})=\mathrm{L}(\{\mathrm{c}, \mathrm{k}\})=\mathrm{L}(\{\mathrm{c}, \mathrm{p}\})=\mathrm{L}=(\{\mathrm{g}, \mathrm{k}\})$
$=\mathrm{L}(\{\mathrm{g}, \mathrm{p}\})=\mathrm{L}(\{\mathrm{k}, \mathrm{p}\})=\{\mathrm{c}\}$.
So there exist edges cg, ck, cp, gk, gp and kp.
Thus the BCI graph (or graph of type I) is given by

e
a

g

Non zero elements of $N(Z)$ are a, b, Also $a \odot b=c, b \odot c=a$ and $c \odot a=b$. So, non -singular graph (or graph of type II) is given by
b

Further, semi- commutator subsets of Z are

$$
\begin{aligned}
& \mathrm{A}=\{0, \mathrm{a}, \mathrm{~b}, \mathrm{c}\}, \mathrm{B}=\{\mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}\} \\
& \mathrm{C}=\{\mathrm{h}, \mathrm{i}, \mathrm{j}, \mathrm{k}\}, \mathrm{D}=\{1, \mathrm{~m}, \mathrm{n}, \mathrm{p}\}
\end{aligned}
$$

Thus semi commutator graphs (or graph of type III) of Z are represented as

p

NOTE(2.3):- graphs of type I, II and III are different and the graphs are simple

References

1. Imai., Y . and Iseki, K.; On axiom systems of propositional calculi, Proceedings of the Japon Academy, vol. 42.pp. 19 - 22, 1966.
2. Iseki , K. ; An algebra related with a propositional calculus, Proceedings of the Japon Academy, vol. 42.pp. $26-29,1966$.
3. Ilyas, S. and Prasad, R. L. ; Ideals in semi commutative BCI - algbra, Aryabhata Research J. of phy. Sci, vol. 17, pp 9-11, 2014.
4. Kumar Pawan, Khan, M. J. I. and Prasad, R. L.; Non - singular BCI - algebras, Anusandhan, Vol . XVIII no. 46, 1 -5 June (2016).
5. Kumar Pawan, Khan, M. J. I.; Graphs based on Non - singular BCI - algebras, Anusandhan, Vol. XVIII no. 46, 16 -26 June (2016).
6. Meng, J. and Xim, X. L.; Commutative BCI - algebras, Mathematics Japonica, vol. 37 no. 3, pp 567-572, 1992.
7. Yesheng , H.; BCI - algebra, Science press, 2006.
8. Zahiri, O. And Borzooei , R.A.; Graph of BCI - algebras, Inter. J. of Maths and Mathematical Sciences Vol. 2012, pp 1-16, 2012.
