SEMI-COMMUTATOR GRAPHS IN BCI-ALGEBRAS

MOHAMMAD ABID ANSARI

Deptt. of Maths, T.N.B. college, Bhagalpur

AND

R.L. PRASAD

Magadh Universitry, Bodh- Gaya

RECEIVED : 12 July, 2017

Zahiri and Borzooei [8] have developed the concept of graph in BCI–algebras in 2012. Some other authors have also developed the concept in different methods. Here we develop the concept of graph for semi-commutator elements and present an example which shows that all the concepts are different.

KEYWORDS : BCI-algebra , graph.

INTRODUCTION

Definition (1.1) : A system (X; *, 0) consisting of a non-empty set X, a binary operation * and a fixed element 0, is called a BCI – algebra if the following conditions are satisfied :

- 1. (BCI 1) ((x * y) * (x * z)) * (z * y) = 0
- 2. (BCI 2) (x * (x * y)) * y = 0
- 3. (BCI 3) x * x = 0
- 4. (BCI 4) $x * y = 0 = y * x \implies x = y$

for all $x, y, z \in X$.

Definition (1.2) : In a BCI-algebra (X; *, 0) a partial order relation \leq is defined as $x \leq y$ iff x * y = 0.

Notation (1.3): For a BCI-algebra (X; *, 0). Let B(X), P(X) and N(X) denote the sets

$$B(X) = \{x \in X : 0 * x = 0\}$$
 ... (1.1)

$$P(X) = \{x \in X : 0 * (0 * x) = x\} \qquad \dots (1.2)$$

$$V(X) = \{x \in X : 0 * x = x\}$$
 ... (1.3)

Here B(X), P(X) and N(X) are called BCK-part of X, p-semi simple part of X and non-singular part of X respectively.

Notation (1.4): For any $a \in P(X)$, let V(a) be the set

$$V(a) = \{x \in X : a * x = 0\}$$
 ... (1.4)

and is called the branch of X initiated by a.

Definition (1.5) : A subset A of a BCI-algebra (X; *, 0) is called semi commutator if x * y = y * x for all $x, y \in A$.

210/M017

Lemma (1.6) : Let (X; *, 0) be a BCI–algebra. Then the following results hold;

(P 1) x * 0 = x;(P 2) x * (x * (x * y)) = x * y;(P 3) (x * y) * z = (x * z) * y;(P 4) 0 * (x * y) = (0 * x) * (0 * y);(P 5) $x \le y \Longrightarrow x * z \le y * z$ and $z * y \le z * x.$

We also have

Theorem (1.7) : Let (X; *, 0) be a BCI–algebra and let N(X) be the non-singular part of X. Then

(i) N(X) is a subalgebra of X,

(ii) N(X) is semi-commutative, *i.e.*,

$$x, y \in N(X) \implies x * y = y * x;$$

(iii) if $x, y \in N(X)$, $x \neq y \neq 0$ then neither x * y = 0 nor x * y = x nor x * y = y;

(iv) $a, b \in N(X)$ equation a * x = b has a unique solution x = a * b in N(X).

The above results follow from results appearing in [3] and [4].

Notation (1.8) : Let X be a BCI–algebra. For $A \subseteq X$ let U(A) and L(A) be defined as

 $U(A) = \{x \in X : a * x = 0 \text{ for all } a \in A\},\$

 $L(A) = \{x \in X : x * a = 0 \text{ for all } a \in A\}.$

Definition (1.9): Let $x \in X$. Then there exists $a \in X$ such that $x \in V(a)$. Let

 $Z_x = \{ y \in X : L(\{x, y\}) = \{a\} \}.$

The set Z_x is called the *a* - divisor of *x*.

Zahiri and Borzooei [8] have established the following results.

Lemma (1.10):- Let $a, b \in P(X)$ and $x, y \in X$.

Then (a)

$$L(\{x, a\}) = \begin{cases} a & \text{if } x \in V(a) \\ \\ \phi & \text{otherwise} \end{cases}$$

- (b) if $a \neq b, x \in V(a)$ and $y \in V(b)$ then $L(\{x, y\}) = \phi$
- (c) $x * y = 0 \Rightarrow L(\{x\}) \subseteq L(\{y\}) \text{ and } Z_y \subseteq Z_x$.

Definition (1.11) : Let $Y \subset X$ let and G(Y) be a simple graph, whose vertices are just the elements of Y and for distinct x, $y \in Y$ there is an edge connecting x and y, denoted as xy iff $L(\{x, y\}) = \{a\}$ for some $a \in P(x)$. If Y = X then G(X) is called a BCI graph of X.

We also call such a graph as graph of type I.

The following definition of a graph appears in [5].

Definition (1.12) : Let (X; *, 0) be a BCI – algebra with $|X| \ge 4$ and let N(X) be the non-singular part of X. Let $G(N(X) - \{0\})$ be a simple graph whose vertices are non – zero element of N(X) such that for non-zero district $a, b, c \in N(X)$ there are edges connecting a and b, b and c, c and a, denoted as ab, bc, ca respectively, iff a * b = c, b * c = a and c * a = b. This graph is called non-singular graph of X or graph of type II.

524

SEMI-COMMUTATOR GRAPH

We define a graph in a BCI- algebra as follows:

Definition (2.1): Let (X; *, 0) be a BCI-algebra and let A be semi-Commutator subset of X. Then G(A) is a simple graph whose vertices are in A and there are edge connecting a and b ($a \neq b$) iff a * b = b * a. We denote such edge as ab. Also such graph is called semi-commutator graph of X or graph of type III.

Now we give an example in which all three types of distinct graphs can be drawn.

Example (2.2) : Let $X = Y = \{0, 1\}$ we consider binary operations * and o given by

*	0	1	and	0	0	1
0	0	0		0	0	1
1	1	0		1	1	0

respectively.

Then (X; *, 0) is a BCK-algebra and (Y; 0, 0) is a BCI-algebra. Let $Z = X \times X \times Y \times Y$.

Then Z is a BCI-algebra in which binary operation \odot is extended by * and o respectively for first two coordinates and last two coordinates.

Let $0 = (0 \ 0 \ 0 \ 0)$, $a = (0 \ 0 \ 0 \ 1)$, $b = (0 \ 0 \ 1 \ 0)$, $c = (0 \ 0 \ 1 \ 1)$, $d = (0 \ 1 \ 0 \ 0)$, $e = (0 \ 1 \ 0 \ 1)$, $f = (0 \ 1 \ 1 \ 0)$, $g = (0 \ 1 \ 1 \ 1)$, $h = (1 \ 0 \ 0 \ 0)$, $i = (1 \ 0 \ 0 \ 1)$, $j = (1 \ 0 \ 1 \ 0)$, $k = (1 \ 0 \ 1 \ 1)$, $l = (1 \ 1 \ 0 \ 0)$, $m = (1 \ 1 \ 0 \ 1)$, $n = (1 \ 1 \ 1 \ 0)$, $p = (1 \ 1 \ 1 \ 1)$.

The binary operation \odot in Z is presented by the following table.

	0	0	а	b	c	d	e	f	g	h	i	j	k	1	m	n	р			
	0	0	а	b	c	0	а	b	c	0	а	b	c	0	а	b	c			
	а	а	0	c	b	а	0	c	b	а	0	c	b	а	0	c	b			
	b	b	c	0	а	b		0		b			а			0		c	b	
l	0	с			ι (b	а	0	d	d e	e f	g	0	
1	b				e f		C				C 1		c		0		1			
	e	e			f		0					g		a		с	b			
	f	f	U			b	c	0		f	-		e	b	c	0	а			
	g	g	f	e	d	c	b	а	0	g	f	e	d	c	b	а	0			
	h	h	i	j	k	h	i	-		0	а	b	c	0	а	b	c			
	i	i	h	k	j	i	h	j	k	а	0	c	b	а	0	c	b			
	j	j	k	h	i	j	k	h	i	b	c	0	а	b	c	0	а			
	k	k	j	i	h	ŀ	c j	i	ł	n c	b b	a	0	c	b	а	0			
	1	1	m	n	р	ł	n i	j	k	c d	l e	e f	g	0	а	b	c			
	m	m	1	р	n	i	h	k	j	e	d	g	f	а	0	c	b			

m k h d n 1 j i f h 0 а n p g e c k 0 р p n m 1 j i h g f e d с b а Here $B(Z) = \{0, d, h, l\}$ $P(Z) = \{0, a, b, c\} = N(Z)$ $V(0) = \{0, d, h, l\}$ $V(a) = \{a, e, i, m\}$ $V(b) = \{b, f, j, n\}$ $V(c) = \{c, g, k, p\}.$ We have $L(\{0, d\}) = L(\{0, h\}) = L(\{0, l\})$ = $L(\{d, h\}) = L(\{d, l\})$ $= L(\{h, l\}) = \{0\}.$ So there exist edges 0d, 0h, 0l, dh, dl, hl. Similarly $L(\{a, e\}) = L(\{a, i\}) = L(\{a, m\}) = L = (\{e, i\})$ $= L(\{e, m\}) = L(\{i, m\}) = \{a\}.$ So there exist edges ae, ai, am, ei, em, im. Also $L(\{b, f\}) = L(\{b, j\}) = L(\{b, n\}) = L = (\{f, j\})$ $= L(\{f, n\}) = L(\{j, n\}) = \{b\}.$ So there exist edges bf, bj, bn, fj, fn, jn. Also $L(\{c, g\}) = L(\{c, k\}) = L(\{c, p\}) = L = (\{g, k\})$ $= L(\{g, p\}) = L(\{k, p\}) = \{c\}.$ So there exist edges cg, ck, cp, gk, gp and kp. Thus the BCI graph (or graph of type I) is given by e а m g k с р

Non zero elements of N(Z) are a, b, c. Also $a \odot b = c, b \odot c = a$ and $c \odot a = b$. So, non-singular graph (or graph of type II) is given by

Further, semi- commutator subsets of Z are

 $A = \{0, a, b, c\}, B = \{d, e, f, g\}$

 $C = \{h, i, j, k\}, D = \{l, m, n, p\}$

Thus semi commutator graphs (or graph of type III) of Z are represented as

NOTE(2.3):- graphs of type I, II and III are different and the graphs are simple

References

- Imai., Y. and Iseki, K.; On axiom systems of propositional calculi, Proceedings of the Japon Academy, vol. 42.pp. 19 – 22, 1966.
- Iseki, K.; An algebra related with a propositional calculus, Proceedings of the Japon Academy, vol. 42.pp. 26 – 29, 1966.
- Ilyas, S. and Prasad, R. L.; Ideals in semi commutative BCI algbra, Aryabhata Research J. of phy. Sci, vol. 17, pp 9 – 11, 2014.
- Kumar Pawan, Khan, M. J. I. and Prasad, R. L.; Non singular BCI algebras, Anusandhan, Vol XVIII no. 46, 1 -5 June (2016).
- Kumar Pawan, Khan, M. J. I.; Graphs based on Non singular BCI algebras, Anusandhan, Vol. XVIII no. 46, 16-26 June (2016).
- Meng, J. and Xim, X. L.; Commutative BCI algebras, Mathematics Japonica, vol. 37 no. 3, pp 567-572, 1992.

- 7.
- Yesheng , H.; BCI algebra, Science press, 2006. Zahiri, O. And Borzooei , R.A.; Graph of BCI algebras, Inter. J. of Maths and Mathematical Sciences Vol . 2012 , pp 1 16, 2012. 8.

528