BCI - ALGEBRAS OF GRAPHS

MOHAMMAD ABID ANSARI
Deptt. of Maths, T.N.B. College, Bhagalpur
AND
R.L. PRASAD
Magadh Universitry, Bodh-Gaya

RECEIVED : 11 July, 2017
In this paper we have established that the class of all simple graphs with n vertices is a non-singular BCI algebra. The binary operation on the class of graphs has been defined through binary operation on the class of all adjacency matrices corresponding to the graphs.

KEYWORDS : BCl - algebra, graph, adjacency matrix.

Introduction

Definition (1.1) : A system $(X ; *, 0)$ consisting of a non-empty set X, a binary operation * and a fixed element 0 is called a BCI - algebra if the following conditions are satisfied :

1. (BCI 1) $((x * y) *(x * z)) *(z * y)=0$
2. (BCI 2) $(x *(x * y)) * y=0$
3. (BCI 3) $x * x=0$
4. (BCI 4) $x * y=0=y * x \Rightarrow x=y$
for all $x, y, z \in X$.
Definition (1.2): In a BCI - algebra $(X ; *, 0)$ a partial order relation \leq is defined as $x \leq y$ iff $x * y=0$.

Definition (1.3) : A BCI-algebra $\left(X,{ }^{*}, 0\right)$ is called
(a) a BCK - algebra if $0 * x=0$ for all $x \in X$;
(b) a non-singular BCI - algebra if $0^{*} x=x$ for all $x \in X$;

Example(1.4) : Let $X=\{0,1\}$ and let the binary operation * be defined as

$*$	0	1
0	0	1
1	1	0

Then $\left(X ;{ }^{*}, 0\right)$ is a non-singular BCI-algebra.
Definition (1.5) : A graph G is a pair (V, E) where V and E are finite sets and the elements of V are called vertices or points or nodes and the elements of set E are called edges or lines or arcs connecting pair of vertices.

Definition (1.6) : A graph which has neither parallel edges nor self -loops is called a simple graph.

Definition (1.7) : Adjacency matrix of a simple graph G, consisting of n vertices in order $v_{1}, v_{2}, \ldots \ldots \ldots \ldots . v_{n}$, in an $n \times n$ matrix $A=\left(x_{i j}\right)$ defied as

$$
x_{i j}=\left\{\begin{array}{l}
1, \text { if there is an edge between } v_{i} \text { and } v_{j} \\
0, \text { otherwise }
\end{array}\right.
$$

Note (1.8): In an adjacency matrix $x_{i i}=0$ and $x_{i j}=x_{j i}$ for $1 \leq i \leq n, 1 \leq j \leq n$.
Note (1.9) : It is important to note that class of adjacency matrices has one - one correspondence with the class of all simple graphs with n vertices taken in order i.e., each simple graph has a representation as an adjacency matrix and for each adjacency matrix there is a unique graph representing it.

Theorem (1.10) : Let $\left(X ;{ }^{*}, 0\right)$ be a BCI - algebra and let $M(X)$ be the class of all mxn matrix $\left(a_{i j}\right)_{m \times n}$ with entries $a_{i j} \in X$. For $A=\left(a_{i j}\right)_{m \times n}, B=\left(b_{i j}\right)_{m \times n}$ we define

$$
A=B \text { iff } a_{i j}=b_{i j}, 1 \leq i \leq m, 1 \leq j \leq n .
$$

Further, we define a binary operation o in $M(X)$ as

$$
\begin{equation*}
A \circ B=C=\left(c_{i j}\right)_{m \times n} \tag{1.1}
\end{equation*}
$$

where $c_{i j}=a_{i j} * b_{i j}, 1 \leq i \leq m, 1 \leq j \leq n$.
If $\mathbf{0}$ is the zero matrix with all entries 0 then $(M(X) ; \mathbf{0}, \mathbf{0})$ is a BCI-algebra.
Proof : Let $A, B, \boldsymbol{C} \in M(X)$ where $A=\left(a_{i j}\right)_{m \times n}, B=\left(b_{i j}\right)_{m \times n}$ and $C=\left(c_{i j}\right)_{m \times n}$.
Then $\quad((A \circ B) \circ(A \circ C)) \circ(C \circ B)=K=\left(k_{i j}\right)_{m \times n}$.
where

$$
\begin{aligned}
k_{i j} & =\left(\left(a_{i j} * b_{i j}\right) *\left(a_{i j} * c_{i j}\right)\right) *\left(c_{i j} * b_{i j}\right) \\
& =0 \text { for all } i, j, 1 \leq i \leq m, 1 \leq j \leq n .
\end{aligned}
$$

This gives $((A \circ B) \circ(A \circ C)) \circ(C \circ B)=\mathbf{0}$
Other conditions of a BCI-algebra are also satisfied in $M(X)$. Hence $(M(X) ; \mathbf{o}, \mathbf{0})$ is a BCI-algebra.

Corollary (1.11) : If X is the BCI - algebra considered in example (1.4) and $M(X)$ be class of all $n \times n$ matrixes with entries in $\{0,1\}$ then $M(X)$ is a non-singular BCIalgebra under the binary operation o defined by (1.1).

Bci-algebra of simple graphs

Theorem (2.1) : Let G^{n} be the class of all simple graphs with n-vertices arranged in order $v_{1}, v_{2}, \ldots \ldots \ldots \ldots . . v_{n}$. For $G_{1}, G_{2}, \in G^{n}$, let A_{1}, A_{2} be adjacency matrices representing G_{1} and G_{2}. We define a binary operation \odot in G^{n} as

$$
G_{1} \bigcirc G_{2}=G_{3}
$$

where G_{3} is the graph corresponding to adjacency matrix $A_{3}=A_{1}$ o A_{2}.
If G_{o} is the null graph in G^{n} then $\left(G^{n} ; \bigcirc, G_{\mathrm{o}}\right)$ is a BCI - algebra.
First we have the following lemma.

Lemma (2.2): Let $L(X)$ be the class of all $n \times n$ matrices $A=\left(a_{i j}\right), 1 \leq i \leq n, 1 \leq j \leq n$ such that $a_{i i}=0, a_{i j}=a_{j i}=0$ or 1 . Then $L(X)$ is a sub algebra of $M(X)$.

Proof: Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be elements of $L(X)$ and let $C=\left(C_{i j}\right)=A \circ B$.
Then
and

$$
\begin{aligned}
& c_{i i}=a_{i i} * b_{i i}=0 \\
& c_{i j}=a_{i j} * b_{i j}=a_{j i} * b_{j i}=c_{j i} .
\end{aligned}
$$

This means that $C \in L(X)$. So $L(X)$ is a sub algebra of $M(X)$.
Proof of the theorem (2.1) First of all we note that the class of all adjacency matrices corresponding of the graphs in G^{n} is the class $L(X)$.

Since $L(X)$ is a non singular BCI-algebra, $\left(G^{n}, \bigcirc, G_{0}\right)$ is a non-singular BCI-algebra. where binary operation © is extended by binary operation o in $L(X)$.

Note (2.3): The number of elements in G^{n} is $2^{n(n-1) / 2}$.

References

1. Imai., Y. and Iseki, K., On axiom systems of propositional calculi, Proceedings of the Japon Academy, Vol. 42, pp. 19 - 22 (1966).
2. Iseki, K., An algebra related with a propositional calculus, Proceedings of the Japon Academy, Vol. 42, pp. 26 - 29 (1966).
3. Ilyas, S. and Prasad, R. L., Ideals in semi commutative BCI - algebra, Aryabhata Research J. of Phy. Sci., Vol. 17, pp 9-11 (2014).
4. Kumar, Pawan, Khan, M.J. I. and Prasad, R. L., Non-singular BCI-algebras, Anusandhan, Vol. XVIII, No. 46, 1-5 June (2016).
