BCI – ALGEBRAS OF GRAPHS

MOHAMMAD ABID ANSARI

Deptt. of Maths, T.N.B. College, Bhagalpur

AND

R.L. PRASAD

Magadh Universitry, Bodh-Gaya

RECEIVED : 11 July, 2017

In this paper we have established that the class of all simple graphs with n vertices is a non-singular BCI – algebra. The binary operation on the class of graphs has been defined through binary operation on the class of all adjacency matrices corresponding to the graphs.

KEYWORDS : BCI - algebra , graph, adjacency matrix.

INTRODUCTION

Definition (1.1): A system (X; *, 0) consisting of a non-empty set X, a binary operation * and a fixed element 0 is called a BCI – algebra if the following conditions are satisfied :

- 1. (BCI 1) ((x * y) * (x * z)) * (z * y) = 0
- 2. (BCI 2) (x * (x * y)) * y = 0
- 3. (BCI 3) x * x = 0
- 4. (BCI 4) $x * y = 0 = y * x \Longrightarrow x = y$

for all $x, y, z \in X$.

Definition (1.2) : In a BCI – algebra (X; *, 0) a partial order relation \leq is defined as $x \leq y$ iff x * y = 0.

Definition (1.3): A BCI – algebra (X, *, 0) is called

(a) a BCK – algebra if 0 * x = 0 for all $x \in X$;

(b) a non-singular BCI – algebra if 0 * x = x for all $x \in X$;

Example(1.4): Let $X = \{0, 1\}$ and let the binary operation * be defined as

Then (X; *, 0) is a non-singular BCI –algebra.

Definition (1.5): A graph G is a pair (V, E) where V and E are finite sets and the elements of V are called vertices or points or nodes and the elements of set E are called edges or lines or arcs connecting pair of vertices.

Definition (1.6): A graph which has neither parallel edges nor self-loops is called a simple graph.

Definition (1.7): Adjacency matrix of a simple graph G, consisting of n vertices in order v_1, v_2, \dots, v_n in an $n \times n$ matrix $A = (x_{ij})$ defied as

 $\begin{cases} 1, \text{ if there is an edge between } v_i \text{ and } v_j \\ 0, \text{ otherwise }. \end{cases}$ Note (1.8): In an adjacency matrix $x_{ii} = 0$ and $x_{ij} = x_{ji}$ for $1 \le i \le n, 1 \le j \le n$.

Note (1.9): It is important to note that class of adjacency matrices has one - one correspondence with the class of all simple graphs with n vertices taken in order *i.e.*, each simple graph has a representation as an adjacency matrix and for each adjacency matrix there is a unique graph representing it.

Theorem (1.10): Let (X; *, 0) be a BCI – algebra and let M(X) be the class of all m x n matrix $(a_{ij})_{m \times n}$ with entries $a_{ij} \in X$. For $A = (a_{ij})_{m \times n}$, $B = (b_{ij})_{m \times n}$ we define

$$A = B$$
 iff $a_{ii} = b_{ii}, 1 \le i \le m, 1 \le j \le n$.

Further, we define a binary operation o in M(X) as

$$A \circ B = C = (c_{ij})_{m \times n} \qquad \dots (1.1)$$

where $c_{ij} = a_{ij} * b_{ij}, 1 \le i \le m, 1 \le j \le n$.

If **0** is the zero matrix with all entries 0 then (M(X); o, 0) is a BCI-algebra.

Proof: Let A, B, C $\in M(X)$ where $A = (a_{ij})_{m \times n}$, $B = (b_{ij})_{m \times n}$ and $C = (c_{ij})_{m \times n}$.

 $((A \circ B) \circ (A \circ C)) \circ (C \circ B) = K = (k_{ij})_{m \times n}$ Then

where

$$k_{ij} = ((a_{ij} * b_{ij}) * (a_{ij} * c_{ij})) * (c_{ij} * b_{ij}) = 0 \text{ for all } i, j, 1 \le i \le m, 1 \le j \le n.$$

This gives $((A \circ B) \circ (A \circ C)) \circ (C \circ B) = \mathbf{0}$

Other conditions of a BCI-algebra are also satisfied in M(X). Hence (M(X); o, 0) is a BCI-algebra.

Corollary (1.11): If X is the BCI – algebra considered in example (1.4) and M(X)be class of all $n \times n$ matrixes with entries in $\{0, 1\}$ then M(X) is a non-singular BCI – algebra under the binary operation o defined by (1.1).

BCI – ALGEBRA OF SIMPLE GRAPHS

Dheorem (2.1): Let G^n be the class of all simple graphs with *n*-vertices arranged in order v_1, v_2, \dots, v_n . For $G_1, G_2, \in G^n$, let A_1, A_2 be adjacency matrices representing G_1 and G_2 . We define a binary operation \bigcirc in G^n as

 $G_1 \odot G_2 = G_3$

where G_3 is the graph corresponding to adjacency matrix $A_3 = A_1 \circ A_2$.

If G_0 is the null graph in G^n then $(G^n; \bigcirc, G_0)$ is a BCI – algebra.

First we have the following lemma.

Lemma (2.2) : Let L(X) be the class of all $n \times n$ matrices $A = (a_{ij}), 1 \le i \le n, 1 \le j \le n$ such that $a_{ii} = 0, a_{ij} = a_{ji} = 0$ or 1. Then L(X) is a sub algebra of M(X).

Proof: Let $A = (a_{ij})$ and $B = (b_{ij})$ be elements of L(X) and let $C = (C_{ij}) = A \circ B$.

Then $c_{ii} = a_{ii} * b_{ii} = 0$

and

 $c_{ij} = a_{ij} * b_{ij} = a_{ji} * b_{ji} = c_{ji}$

This means that $C \in L(X)$. So L(X) is a sub algebra of M(X).

Proof of the theorem (2.1) First of all we note that the class of all adjacency matrices corresponding of the graphs in G^n is the class L(X).

Since L(X) is a non singular BCI–algebra, (G^n, \bigcirc, G_o) is a non-singular BCI–algebra. where binary operation \bigcirc is extended by binary operation o in L(X).

Note (2.3): The number of elements in G^n is $2^{n(n-1)/2}$.

References

- 1. Imai., Y. and Iseki, K., On axiom systems of propositional calculi, *Proceedings of the Japon Academy*, Vol. 42, pp. 19 22 (1966).
- 2. Iseki, K., An algebra related with a propositional calculus, *Proceedings of the Japon Academy*, Vol. **42**, pp. 26–29 (1966).
- 3. Ilyas, S. and Prasad, R. L., Ideals in semi commutative BCI algebra, *Aryabhata Research J. of Phy. Sci.*, Vol. 17, pp 9–11 (2014).
- 4. Kumar, Pawan, Khan, M.J. I. and Prasad, R. L., Non-singular BCI-algebras, *Anusandhan*, Vol. **XVIII**, No. **46**, 1-5 June (2016).

Acta Ciencia Indica, Vol. XLIII M, No. 2 (2017)