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BCI - ALGEBRAS OF GRAPHS
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In this paper we have established that the class of all
simple graphs with n vertices is a non-singular BCl —
algebra. The binary operation on the class of graphs has
been defined through binary operation on the class of all
adjacency matrices corresponding to the graphs.
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INnTRODUCTION

Eeﬁnition (1.1) : A system (X; *, 0) consisting of a non-empty set X, a binary
operation * and a fixed element 0 is called a BCI — algebra if the following conditions
are satisfied :

LBCLD) (x*y)*(x*2)*(z*y)=0

2.(BCI2) (x*(x*y)*y=0

3.BCI 3) x*x =0

4.(BCI4) x*y =0=y*x=> x=y
forall x, y,z € X.

Definition (1.2) : In a BCI —algebra (X; *, 0) a partial order relation < is defined as
x<yiff x*y=0.

Definition (1.3): A BCI-—algebra (X, *, 0)is called

(a) a BCK —algebra if 0* x =0 for all x € X;

(b) a non-singular BCI —algebra if 0* x =x for all x € X

Example(1.4) : Let X = {0, 1} and let the binary operation * be defined as

*|o 1
0lo0 1
111 0

Then (X; *, 0)is a non-singular BCI —algebra.

Definition (1.5) : A graph G is apair (V, E) where V and E are finite sets and
the elements of V are called vertices or points or nodes and the elements of set E
are called edges or lines or arcs connecting pair of vertices.
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Definition (1.6) : A graph which has neither parallel edges nor self -loops is called
a simple graph.

Definition (1.7) : Adjacency matrix of a simple graph G, consisting of n vertices in
order vi, vy, veeueennen. v, inan n X n matrix 4 = (x;) defied as

1, if there is anedge between v; and v,
x; = | 0, otherwise.
Note (1.8) : In an adjacency matrix x; =0 and x;=x; for 1<i<n,1<j<n.

Note (1.9) : It is important to note that class of adjacency matrices has one — one
correspondence with the class of all simple graphs with » vertices taken in order i.e.,
each simple graph has a representation as an adjacency matrix and for each adjacency
matrix there is a unique graph representing it.

Theorem (1.10) : Let (X; *, 0) be a BCI — algebra and let M (X) be the class of all
m X n matrix (a;),~, with entries a; € X. For 4 = (a;) « n» B = (bjj)m < » We define
A=B iff a; =b;, 1< i<m,1< j<n.
Further, we define a binary operation o in M (X) as
AoB = C = (¢)uxn .. (1.
I1<i<m, 1< j<n.

where c;=a; * by,

If0 is the zero matrix with all entries 0 then (M (X); o, 0)is a BCl-algebra.
Proof : Let 4, B, C € M (X) where A= (a;) xn» B = (bjp)mxnand C = (¢;)p x p-
Then ((AoB) 0(A0C)) o(CoB)=K=(ky)mxn
where ki = ((az * by) * (a; * cp) * (c; * by)
=0 for all i,j,1 <i<m,1<j<n.
This gives (4o B)o(40C)) o(CoB) =0

Other conditions of a BCI-algebra are also satisfied in M (X). Hence (M (X); 0,0)is a
BCl-algebra.

Corollary (1.11) : If X is the BCI —algebra considered in example (1.4) and M (X)
be class of all #» x n matrixes with entries in {0, 1} then M (X) is a non-singular BCI —
algebra under the binary operation o defined by (1.1).

BCI - ALGEBRA OF SIMPLE GRAPHS

heorem (2.1) : Let G" be the class of all simple graphs with n-vertices arranged in

order vy, Va,eeoeeuennen. v,. For Gy, G,,e G", let A;, A, be adjacency matrices representing G,
and G,. We define a binary operation © in G" as
Gy @ G,=Gs

where G is the graph corresponding to adjacency matrix 43 = A4; 0 4,.
If G, is the null graph in G" then (G"; (®, G,) is a BCI — algebra.

First we have the following lemma.
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Lemma (2.2) : Let L (X) be the class of all n X n matrices 4 = (a;), 1 < i<n, 1< j<n
such that a; =0, a; = a; =0 or 1. Then L (X) is a sub algebra of M (X).

Proof : Let 4 = (a;) and B = (b;) be elements of L (X) and let C=(Cy) =4 o B.

Then ci=a; *b; =0
and ci=a; * by =a;*b;=cj.

This means that C € L (X). So L (X) is a sub algebra of M (X).

Proof of the theorem (2.1) First of all we note that the class of all adjacency
matrices corresponding of the graphs in G" is the class L (X).

Since L (X) is a non singular BCl-algebra, (G”, (®, G,) is a non-singular BCI-algebra.
where binary operation (©) is extended by binary operation o in L (X).

Note (2.3) : The number of elements in G"is 2" "~ V2.
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